首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The histidine at position 55 of the amino acid sequence of the Escherichia coli single-stranded DNA binding protein was replaced by tyrosine, glutamic acid, lysine, phenylalanine, and isoleucine. The properties of the mutant proteins were determined using analytical ultracentrifugation, NMR spectroscopy, gel filtration, and fluorimetric detection of their single-stranded DNA binding ability. While the phenylalanine and isoleucine substitutions did not change the properties of the protein measurably, tyrosine and lysine mutants dissociate into subunits and loose some of their binding affinity for poly(dT). For the lysine mutant we show by electron microscopy that the protein, although fully dissociated and possibly denatured in the free state, binds to poly(dT) as a tetramer indistinguishable from the wild-type protein. The process of tetramerization as observed via single-stranded DNA binding ability is composed of a variety of steps ranging in time from some milliseconds to several hours; it probably involves several forms of dissociated and non-native protein.  相似文献   

2.
The folC gene from mutant strain SF4 was cloned into a pUC19 plasmid. Expression of the mutant gene from the lac promoter of the plasmid complemented the auxotrophy for methionine of the SF4 strain. The only difference in sequence between the mutant and wild-type genes was a G925A base change resulting in an A309T amino acid change. The mutant enzyme had a 30-fold higher Km for 10-formyltetrahydrofolate as well as a 60-fold higher Km for glutamate and a 200-fold higher Km for dihydropteroate of the dihydrofolate synthetase activity. Site-specific mutagenesis was used to substitute other amino acids at codon 309. Mutants with glycine, isoleucine, and valine substitutions at this position, when expressed from multicopy plasmids, complemented the SF4 strain. The glycine mutant had properties similar to the wild-type enzyme, whereas the isoleucine and valine mutants had properties similar to the threonine mutant, SF4. Mutant genes with arginine, glutamate, and leucine substitutions, which did not complement the SF4 strain, could complement a folC deletion strain, but produced smaller colonies on complex plates and did not grow on minimal medium. In the deletion strain, an increasing requirement for folate product supplements was observed as the folylpolyglutamate synthetase-dihydrofolate synthetase activities of the complementing mutants decreased.  相似文献   

3.
We have determined the nucleotide sequence of the URF A6L and ATPase 6 genes of the mitochondrial DNA of wild-type Chinese hamster ovary (CHO) cells and of two independently isolated, cytoplasmically inherited CHO mutant cell lines that are resistant to oligomycin, an inhibitor of the mitochondrial ATP synthase (ATPase) complex. Comparison of the nucleotide sequences of the mutants with that of their parental cell line revealed a single nucleotide difference, a G-to-A transition at nucleotide 433 of the ATPase 6 gene. This single base pair change predicts a nonconservative amino acid change, with a glutamic acid residue being replaced by a lysine residue at amino acid 145 of the ATPase 6 gene product in the mutants. This glutamic acid residue and several others in the surrounding amino acid sequence are conserved among all species examined to date. Analyses of several of the biochemical properties of the oligomycin-resistant CHO mutants indicate that the glutamic acid residue at position 145 of subunit 6 of the mitochondrial ATP synthase complex is important for the binding of oligomycin to the enzyme complex, but is not essential for proton translocation.  相似文献   

4.
Using four neutralizing monoclonal antibodies which presumably bind to the same antigenic site on the CVS glycoprotein (antigenic site III as defined by cross-neutralization tests), we isolated 58 mutants of the CVS strain of rabies virus. These mutants were highly resistant to the selecting antibodies and grew efficiently in cell cultures. We classified them into five groups on the basis of the pattern of resistance to the four antibodies. We determined pathogenicities of the mutants for adult mice by intracerebral inoculation. Group 2 mutants were nonpathogenic or had attenuated pathogenicity. On the contrary, mutants from the other groups were pathogenic, causing paralysis and death as does CVS. We determined the nucleotide alterations of representative mutants from each group by using the dideoxy method of RNA sequencing. In the glycoproteins of eight nonpathogenic or attenuated mutants, we identified an amino acid substitution at position 333. Arginine 333 was replaced by either glutamine or glycine. In the glycoprotein of eight pathogenic mutants, we identified an amino acid substitution at lysine 330, asparagine 336, or isoleucine 338. Thus, although all substitutions affected neutralization and were located close to each other in the glycoprotein sequence, only substitutions at position 333 affected pathogenicity.  相似文献   

5.
We have determined the nucleotide sequences of 10 intragenic human HPRT gene deletion junctions isolated from thioguanine-resistant PSV811 Werner syndrome fibroblasts or from HL60 myeloid leukemia cells. Deletion junctions were located by fine structure blot hybridization mapping and then amplified with flanking oligonucleotide primer pairs for DNA sequence analysis. The junction region sequences from these 10 HPRT mutants contained 13 deletions ranging in size from 57 bp to 19.3 kb. Three DNA inversions of 711, 368, and 20 bp were associated with tandem deletions in two mutants. Each mutant contained the deletion of one or more HPRT exon, thus explaining the thioguanine-resistant cellular phenotype. Deletion junction and donor nucleotide sequence alignments suggest that all of these HPRT gene rearrangements were generated by the nonhomologous recombination of donor DNA duplexes that share little nucleotide sequence identity. This result is surprising, given the potential for homologous recombination between copies of repeated DNA sequences that constitute approximately a third of the human HPRT locus. No difference in deletion structure or complexity was observed between deletions isolated from Werner syndrome or from HL60 mutants. This suggests that the Werner syndrome deletion mutator uses deletion mutagenesis pathway(s) that are similar or identical to those used in other human somatic cells.  相似文献   

6.
7.
Summary Ribosomal protein S5 was isolated from wild type Bacillus subtilis ATCC 6633 and from a spectinomycin resistant mutant (BSPC 111) derived from spectinomycin sensitive to resistance is accomtrypsin and all the tryptic peptides were isolated by column- and paper-chromatography. By comparative amino acid analyses of the peptides, it was demonstrated that the S5 from the mutant differs from the wild type S5 by a replacement of one amino acid, namely lysine by isoleucine in the peptide T9. The results are compared with E. coli spectinomycin resistant mutants.  相似文献   

8.
Previously (Holland et al., J. Virol. 52:566-574, 1984; Kikuchi et al., J. Virol. 52:806-815, 1984) we described the isolation and partial characterization of over 100 herpes simplex virus type 1 mutants which were resistant to neutralization by a pool of glycoprotein C- (gC) specific monoclonal antibodies. The genetic basis for the inability of several of these gC- mutants to express an immunoreactive envelope form of gC is reported here. Comparative nucleotide sequence analysis of the gC gene of the six mutants gC-3, gC-8, gC-49, gC-53, gC-85, and synLD70, which secrete truncated gC polypeptides, with that of the wild-type KOS 321 gC gene revealed that these mutant phenotypes were caused by frameshift or nonsense mutations, resulting in premature termination of gC translation. Secretion of the gC polypeptide from cells infected with these mutants was due to the lack of a functional transmembrane anchor sequence. The six secretor mutants were tested for suppression of amber mutations in mixed infection with a simian virus 40 amber suppressor vector. Mutant gC-85 was suppressed and produced a wild-type-sized membrane-bound gC. Nucleotide sequence analysis of the six gC deletion mutants gC-5, gC-13, gC-21, gC-39, gC-46, and gC-98 revealed that they carried identical deletions which removed 1,702 base pairs of the gC gene. The deletion, which was internal to the gC gene, removed the entire gC coding sequence and accounted for the novel 1.1-kilobase mRNA previously seen in infections with these mutants. The mutant gC-44 was previously shown to produce a membrane-bound gC protein indistinguishable in molecular weight from wild-type gC. This mutant differed from wild-type virus in that it had reduced reactivity with virus-neutralizing monoclonal antibodies. Nucleotide sequence analysis of the gC gene of mutant gC-44 demonstrated a point mutation which changed amino acid 329 of gC from a serine to a phenylalanine.  相似文献   

9.
The cultural conditions were investigated for a Brevibacterium flavum mutant, No. 2–190, with a low level of citrate synthase (CS) and with feedback-resistant phosphoenoipyruvate (PEP) carboxylase and aspartokinase (AK). The productivity was increased from 28 to 38 g/1 (as the HC1 salt) with a medium containing 10% glucose. From this strain, pyruvate kinase (PK)-defective mutants were derived and selected as to the inability to grow on ribose. Among them, strain Kl-18 showed higher lysine productivity than the parent under all cultural conditions tested, and produced 43 g/1 of lysine, at maximum. A lysine-producing mutant, No. 536–4, with a feedback- resistant AK was derived from PK-defective strain KH-21 which had low CS activity and a feedback-resistant PEP carboxylase. The mutant was isolated by a new selection method, that is, on the basis of resistance to α-amino-ß-hydroxyvaleric acid, a threonine analogue plus lysine. In this strain, HD had been altered so as to become feedback-resistant at the same time, resulting in the byproduction of threonine and isoleucine. The total amount of these aspartate family amino acids was higher on molar basis than that of lysine produced by strain No. 2–190.  相似文献   

10.
An active transport system high specific for 1-lysine was found in the cells of the wild strain of Corynebacterium glutamicum, Km being about 10 microM. Accumulation of lysine was higher, if the cells were cultivated on a medium containing glucose. The cells of the homoserine-deficient lysine producer have no alterations in the lysine transport. The lysine transport was also studied in three lysine producing analog resistant mutants (two mutants are resistant to aminoethylcysteine and one to lysine hydroxamate). The key enzyme of the lysine biosynthesis, aspartate kinase, is insensitive to the feedback inhibition by the mixture of lysine and threonine in all the mutant studied; at the same time the cells of these mutants grown on a glucose-containing medium above mentioned alterations are suggested to provide the resistance to the lysine analog.  相似文献   

11.
An aspartate kinase-deficient mutant of Thermus thermophilus, AK001, was constructed. The mutant strain did not grow in a minimal medium, suggesting that T. thermophilus contains a single aspartate kinase. Growth of the mutant strain was restored by addition of both threonine and methionine, while addition of lysine had no detectable effect on growth. To further elucidate the lysine biosynthetic pathway in T. thermophilus, lysine auxotrophic mutants of T. thermophilus were obtained by chemical mutagenesis. For all lysine auxotrophic mutants, growth in a minimal medium was not restored by addition of diaminopimelic acid, whereas growth of two mutants was restored by addition of alpha-aminoadipic acid, a precursor of lysine in biosynthetic pathways of yeast and fungi. A BamHI fragment of 4.34 kb which complemented the lysine auxotrophy of a mutant was cloned. Determination of the nucleotide sequence suggested the presence of homoaconitate hydratase genes, termed hacA and hacB, which could encode large and small subunits of homoaconitate hydratase, in the cloned fragment. Disruption of the chromosomal copy of hacA yielded mutants showing lysine auxotrophy which was restored by addition of alpha-aminoadipic acid or alpha-ketoadipic acid. All of these results indicated that in T. thermophilus, lysine was not synthesized via the diaminopimelic acid pathway, believed to be common to all bacteria, but via a pathway using alpha-aminoadipic acid as a biosynthetic intermediate.  相似文献   

12.
K Tanaka  K Chowdhury  K S Chang  M Israel    Y Ito 《The EMBO journal》1982,1(12):1521-1527
Mouse trophoblast cell lines established from cultured midterm placenta and a cell line obtained from cultured blastocyst resemble trophectoderm cells. These cells are resistant to infection by wild-type polyoma virus. We have isolated six polyoma virus mutants capable of growing in trophoblast cell lines. Restriction enzyme analyses and marker rescue experiments revealed that the genetic changes necessary for the growth of these mutants ( PyTr mutants) in trophoblast cells were located in a regulatory region of the genome between the origin of viral DNA replication and the region encoding the viral structural proteins. PyTr mutants are, therefore, similar to PyEC mutants, described by others, which are able to grow in embryonal carcinoma cell lines such as F9 or PCC4. The nucleotide sequence of two independently obtained PyTr mutants has an identical 26-bp deletion from nucleotide 5131 to 5156. This deleted region is replaced by either the sequence GGGA or by viral DNA sequences that flank this deletion. PyECF9 mutants grow well in trophoblast and trophectoderm cells, but PyTr mutants do not grow in F9 or PCC4 cells.  相似文献   

13.
Nine mutants within a 23 nucleotide sequence of the trpE gene of Salmonella typhimurium have been characterized. trpE91, a mutant which is externally suppressible has a single base deletion. Eight (or nine) nucleotides upstream of this deletion, two independently isolated mutations have the same transversion. In combination with trpE91 these mutations lead to partial restoration of synthesis of anthranilate synthetase in the absence of external suppressors. In the transversion the sequence A CA is changed to A AA and this new sequence may be the site where frameshifting occurs to allow leakiness. Leakiness is displayed by two further mutants of the same sign as trpE91, and one of the opposite sign, in the absence of any base substitution or external suppressors. Specific sequences, e.g., UUUC, may be especially prone to frameshifting and this sequence is created at the site of the +1 frameshift mutant which displays leakiness. In the new reading frame generated by the two -1 frame leaky mutants, a tryptophan codon is encountered. Leakiness is necessarily detected in the absence of tryptophan and under these conditions there will be a shortage of charged tryptophan tRNA. The possibility of such functional imbalance leading to frameshifting in these mutants is discussed.  相似文献   

14.
The beta subunit of the rat liver mitochondrial ATP synthase contains a glycine-rich amino acid sequence implicated in binding nucleotides by its similarity to a sequence found in many other nucleotide-binding proteins. A C-terminal three-quarter-length rat liver beta subunit fragment (Glu122 through Ser479), containing this homology region, interacts with adenine nucleotides (Garboczi, D.N., Hullihen, J.H., and Pedersen, P.L. (1988) J. Biol. Chem. 263, 15694-15698). Here we directly test the involvement of the glycine-rich region in nucleotide binding by altering its amino acid sequence through mutation or deletion. Twenty-one mutations within the glycine-rich region of the beta subunit cDNA were randomly generated. Wild-type and mutant beta subunit proteins were purified from overexpressing Escherichia coli strains. The mutant proteins were screened for changes in their interaction with 2'(3')-O-(2,4,6-trinitrophenyl)adenosine 5'-triphosphate (TNP-ATP), a fluorescent nucleotide analog. Only one mutant protein bearing two amino acid changes (Gly153----Val, Gly156----Arg) exhibited a fluorescence enhancement higher than that of the wild-type "control." Further analysis of this protein revealed a lower affinity for TNP-ATP (Kd = 10 microM) compared with wild type (Kd = 5 microM). In addition, a mutant from which amino acids Gly149-Lys214 had been deleted was prepared. This mutant protein, which lacks the entire glycine-rich region, also displayed a marked reduction in affinity for TNP-ATP (Kd greater than 60 microM). Prior addition of 0.5 mM ATP significantly reduced the binding of TNP-ATP to both the double and deletion mutants. The altered interaction of nucleotide with both glycine-rich region mutants points to the involvement of this region in the binding site. Further, this work shows that a beta subunit protein that lacks the glycine-rich homology region can still interact with nucleotide, indicating that one or more additional regions of this subunit contribute to the nucleotide binding site.  相似文献   

15.
The regulatory properties of aspartate kinase (EC 2.7.2.4) and homoserine dehydrogenase (EC 1.1.1.3) in two barley (Hordeum vulgare L.) mutants resistant to growth inhibition by lysine plus threonine, Rothamsted (R) 3004 and R3202, were compared with those in the normal, sensitive parent line cv. Bomi. Three forms of aspartate kinase (AKI, AKII, AKIII) were chromatographically separated and were considered to represent at least three independently regulated isoenzymes. Aspartate kinase I was inhibited by threonine; AKII and AKIII by lysine or lysine plus S-adenosylmethionine. The characteristics of AKI were unchanged in the mutants. Aspartate kinase II and AKIII from Bomi were both inhibited by lysine and by lysine plus S-adenosylmethionine. Aspartate kinase II from mutant R3202 was altered in its properties such that it was insensitive to lysine or lysine plus S-adenosylmethionine; AKII from mutant R3004 did not differ in its properties from AKII of Bomi. The concentration of lysine required to give half maximal inhibition of AKIII from R3004 was ten times that required for AKIII of Bomi; AKIII from R3202 did not differ from that of Bomi in this regard. There was no change in the properties of homoserine dehydrogenase of the mutants as compared with that of Bomi. We conclude that the lt1 and lt2 loci code for structural genes for lysine- and lysine plus S-adenosylmethionine-sensitive aspartate kinase isoenzymes. The mutant genes Lt1b and Lt2 in R3202 and R3004 respectively code for feedback-desensitized isoenzymes. The presence of one of these is sufficient to allow the synthesis of methionine to overcome the growth inhibition by lysine plus threonine.  相似文献   

16.
Mourad G  King J 《Plant physiology》1995,107(1):43-52
Threonine dehydratase/deaminase (TD), the first enzyme in the isoleucine biosynthetic pathway, is feedback inhibited by isoleucine. By screening M2 populations of ethyl methane sulfonate-treated Arabidopsis thaliana Columbia wild-type seeds, we isolated five independent mutants that were resistant to L-O-methylthreonine, an isoleucine structural analog. Growth in the mutants was 50- to 600-fold more resistant to L-O-methylthreonine than in the wild type. The resistance was due to a single, dominant nuclear gene that was denoted omr1 and was mapped to chromosome 3 in GM11b, the mutant line exhibiting the highest level of resistance. Biochemical characteristics (specific activities, Km, Vmax, and pH optimum) of TD in extracts from the wild type and GM11b were similar except for the inhibition constant of isoleucine, which was 50-fold higher in GM11b than in the wild type. Levels of free isoleucine were 20-fold higher in extracts from GM11b than in extracts from wild type. Therefore, isoleucine feedback insensitivity in GM11b is due to a mutant form of the TD enzyme encoded by omr1. The mutant allele omr1 of the line GM11b could provide a new selectable marker for plant genetic transformation.  相似文献   

17.
Previous results from this laboratory indicated that, in Escherichia coli K12, a new class of missense suppressors, which read the lysine codons AAA and AAG, may be misacylated lysine transfer RNAs. We therefore isolated and determined the nucleotide sequence of the lysine tRNA from two of the suppressor strains. In each case, we found both wild-type and mutant species of lysine tRNA, a result consistent with evidence that there are two genes for lysine tRNA in the E coli genome. The wild-type sequence was essentially identical to that reported for lysine tRNA from E. coli B. The mutant species isolated from each suppressor strain had a U for C70 nucleotide substitution, demonstrating that the AAG suppressor is a mutant lysine tRNA. The nucleotide substitution in the amino acid acceptor stem is consistent with the in vivo evidence that the suppressor corrects AAA and AAG missense mutations by inserting an amino acid other than lysine during polypeptide synthesis. This report represents the first verification of missense suppression caused by misacylation of a mutant tRNA.  相似文献   

18.
The YjgF/YER057c/UK114 family of proteins is conserved across the three domains of life, yet no biochemical function has been clearly defined for any member of this family. In Salmonella enterica, a deletion of yjgF results in a requirement for isoleucine when the mutant strain is grown in glucose-serine or pyruvate medium. Feedback inhibition of IlvA is required for the curative effect of isoleucine on glucose-serine medium. On pyruvate medium, yjgF mutants are unable to synthesize enough isoleucine for growth. From this study, we conclude that the isoleucine requirement of a yjgF mutant on pyruvate is a consequence of the decreased transaminase B (IlvE) activity that has previously been characterized in these mutants.  相似文献   

19.
Three independently isolated mutants of human cytomegalovirus strain AD169 were found to be resistant to ganciclovir at a 50% effective dose of 200 microM. Phosphorylation of ganciclovir was reduced 10-fold in mutant-infected cells compared with AD169-infected cells. All three mutants were also determined to be resistant to the nucleotide analogs (S)-1-[(3-hydroxy-2- phosphonylmethoxy)propyl]adenine (HPMPA) and (S)-1-[(3-hydroxy-2-phosphonylmethoxy)propyl]cytosine (HPMPC) and hypersensitive to thymine-1-D-arabinofuranoside (AraT). Single base changes resulting in amino acid substitutions were demonstrated in the nucleotide sequence of the DNA polymerase gene of each mutant. The polymerase mutation contained in one of the mutants was transferred to the wild-type AD169 background. Ganciclovir phosphorylation in cells infected with the recombinant virus produced by this transfer was found to be equivalent to that of AD169-infected cells. The ganciclovir resistance of the recombinant was reduced fourfold compared with that of the parental mutant; however, the recombinant remained resistant to HPMPA and HPMPC and hypersensitive to AraT. The ganciclovir resistance of the mutants therefore appears to result from mutations in two genes: (i) a kinase which phosphorylates ganciclovir and (ii) the viral DNA polymerase.  相似文献   

20.
A total of 59 cytocidal (cyt) mutants were isolated from adenovirus 2 (Ad2) and Ad5. In contrast to the small plaques and adenovirus type of cytopathic effects produced by wild-type cyt+ viruses, the cyt mutants produced large plaques, and the cytopathic effect was characterized by marked cellular destruction. cyt mutants were transformation defective in established rat 3Y1 cells. cyt+ revertants and cyt+ intragenic recombinants recovered fully the transforming ability of wild-type viruses. Thus, the cyt gene is an oncogene responsible for the transforming function of Ad2 and Ad5. Genetic mapping in which we used three Ad5 deletion mutants (dl312, dl313, and dl314) as reference deletions located the cyt gene between the 3' ends of the dl314 deletion (nucleotide 1,679) and the dl313 deletion (nucleotide 3,625) in region E1B. Restriction endonuclease mapping of these recombinants suggested that the cyt gene encodes the region E1B 19,000-molecular-weight (175R) polypeptide (nucleotides 1,711 to 2,236). This was confirmed by DNA sequencing of eight different cyt mutants. One of these mutants has a single missense mutant, two mutants have double missense mutations, and five mutants have nonsense mutations. Except for one mutant, these point mutations are not located in any other known region E1B gene. We conclude that the cyt gene codes for the E1B 19,000-molecular-weight (175R) polypeptide, that this polypeptide is required for morphological transformation of rat 3Y1 cells, and that simple amino acid substitutions in the protein can be sufficient to produce the cyt phenotype.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号