首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Rhamnogalacturonan II (RG-II) is a region of pectin macromolecules that is present in plant primary cell walls. RG-II can be solubilized from cell walls as a borate-RG-II complex (B-RG-II), where two RG-II fragments are cross-linked via a borate diester linkage. Here, a rabbit monoclonal antibody against B-RG-II was prepared, which recognized both B-RG-II and RG-II monomers without borate ester-crosslinking. A pectic fragment with unknown structure was also recognized by the antibody, but neither homogalacturonan nor rhamnogalacturonan I was recognized. Immunoelectron microscopic analyses of Arabidopsis root tip cells were performed using this antibody. The signal was detected in developing cell plates and cell walls, which were denser in longitudinal walls than in transverse walls. These results coincide with our previous results obtained in suspension cultured tobacco cells, confirming that RG-II is present in cell plates at an early stage of their assembly.

Abbreviations: B: boron; B-RG-II: borate-RG-II complex; ELISA: enzyme-linked immunosorbent assay; IgG: immunoglobulin G; mBSA: methylated bovine serum albumin; PGA: polygalacturonic acid; PLL: poly-l-lysine; RG-I: rhamnogalacturonan I; RG-II: rhamnogalacturonan II  相似文献   


2.
Boron in plant cell walls   总被引:26,自引:0,他引:26  
Matoh  Toru 《Plant and Soil》1997,193(1-2):59-70
Boron is an essential element for higher plants, yet the primary functions remain unclear. In intact tissues of higher plants, this element occurs as both water soluble and water insoluble forms. In this review, the intracellular localisation of B and possible function of B in cell walls of higher plants are discussed. The majority of the water soluble B seems to be localised in the apoplastic region as boric acid. The water insoluble B is associated with rhamnogalacturonan II (RG-II) and the complex is ubiquitous in higher plants. In the Brassicaceae, Apiaceae, Chenopodiaceae, Asteraceae, Amaryllidaceae, and Liliaceae, nearly all the cell wall B is associated with RG-II, while in the Cucurbitaceae, only half of the cell wall B is in this complex. In duckweed, a different type of B-polysaccharide complex has been identified.Analysis of the structure of the B–RG-II complex reveals that the complex is composed of boric acid and two chains of monomeric RG-II. Boric acid does not merely bind to sugars but crosslinks two chains of pectic polysaccharide at the RG-II region through borate-diester bonding, thus forming a network of pectic polysaccharides in cell walls. The B–RG-II complex is reconstituted in vitro only by mixing monomeric RG-II and boric acid at pH 4.0. In the in vitro reconstitution, germanic acid can substitute for boric acid to some extent. The RG-II epitope, which cross reacts with the antibody toward the B-RG-II complex, is detected in walls of every cell in radish roots. The epitope is also detected in growing pollen tube cell walls, which are claimed to require B.Whilst it is now clear that boric acid links some cell wall components, it is not yet clear whether there is a structural requirement for B in cell wall function.  相似文献   

3.
Borate ester cross-linking of the cell wall pectic polysaccharide rhamnogalacturonan II (RG-II) is required for the growth and development of angiosperms and gymnosperms. Here, we report that the amounts of borate cross-linked RG-II present in the sporophyte primary walls of members of the most primitive extant vascular plant groups (Lycopsida, Filicopsida, Equisetopsida, and Psilopsida) are comparable with the amounts of RG-II in the primary walls of angiosperms. By contrast, the gametophyte generation of members of the avascular bryophytes (Bryopsida, Hepaticopsida, and Anthocerotopsida) have primary walls that contain small amounts (approximately 1% of the amounts of RG-II present in angiosperm walls) of an RG-II-like polysaccharide. The glycosyl sequence of RG-II is conserved in vascular plants, but these RG-IIs are not identical because the non-reducing L-rhamnosyl residue present on the aceric acid-containing side chain of RG-II of all previously studied plants is replaced by a 3-O-methyl rhamnosyl residue in the RG-IIs isolated from Lycopodium tristachyum, Ceratopteris thalictroides, Platycerium bifurcatum, and Psilotum nudum. Our data indicate that the amount of RG-II incorporated into the walls of plants increased during the evolution of vascular plants from their bryophyte-like ancestors. Thus, the acquisition of a boron-dependent growth habit may be correlated with the ability of vascular plants to maintain upright growth and to form lignified secondary walls. The conserved structures of pteridophyte, lycophyte, and angiosperm RG-IIs suggests that the genes and proteins responsible for the biosynthesis of this polysaccharide appeared early in land plant evolution and that RG-II has a fundamental role in wall structure.  相似文献   

4.
Rhamnogalacturonan II (RG-II) is a structurally complex, low molecular weight pectic polysaccharide that is released from primary cell walls of higher plants by treatment with endopolygalacturonase and is chromatographically purified after alkaline deesterification. A recombinant monovalent antibody fragment (Fab) that specifically recognizes RG-II has been obtained by selection from a phage display library of mouse immunoglobulin genes. By itself, RG-II is not immunogenic. Therefore, mice were immunized with a neoglycoprotein prepared by covalent attachment of RG-II to modified BSA. A cDNA library of the mouse IgG1/kappa antibody repertoire was constructed in the phage display vector pComb3. Selection of antigen-binding phage particles resulted in the isolation of an antibody Fab, CCRC-R1, that binds alkali-treated RG-II with high specificity. CCRC-R1 binds an epitope found primarily at sites proximal to the plasma membrane of suspension-cultured sycamore maple cells. In cells deesterified by alkali, CCRC-R1 labels the entire wall, suggesting that the RG-II epitope recognized by CCRC-R1 is masked by esterification in most of the wall and tha such RG-II esterification is absent near the plasma membrane.  相似文献   

5.
Plant cell walls consist of carbohydrate, protein, and aromatic compounds and are essential to the proper growth and development of plants. The carbohydrate components make up ∼90% of the primary wall, and are critical to wall function. There is a diversity of polysaccharides that make up the wall and that are classified as one of three types: cellulose, hemicellulose, or pectin. The pectins, which are most abundant in the plant primary cell walls and the middle lamellae, are a class of molecules defined by the presence of galacturonic acid. The pectic polysaccharides include the galacturonans (homogalacturonan, substituted galacturonans, and RG-II) and rhamnogalacturonan-I. Galacturonans have a backbone that consists of α-1,4-linked galacturonic acid. The identification of glycosyltransferases involved in pectin synthesis is essential to the study of cell wall function in plant growth and development and for maximizing the value and use of plant polysaccharides in industry and human health. A detailed synopsis of the existing literature on pectin structure, function, and biosynthesis is presented.  相似文献   

6.
Pectin structure and biosynthesis   总被引:6,自引:0,他引:6  
Pectin is structurally and functionally the most complex polysaccharide in plant cell walls. Pectin has functions in plant growth, morphology, development, and plant defense and also serves as a gelling and stabilizing polymer in diverse food and specialty products and has positive effects on human health and multiple biomedical uses. Pectin is a family of galacturonic acid-rich polysaccharides including homogalacturonan, rhamnogalacturonan I, and the substituted galacturonans rhamnogalacturonan II (RG-II) and xylogalacturonan (XGA). Pectin biosynthesis is estimated to require at least 67 transferases including glycosyl-, methyl-, and acetyltransferases. New developments in understanding pectin structure, function, and biosynthesis indicate that these polysaccharides have roles in both primary and secondary cell walls. Manipulation of pectin synthesis is expected to impact diverse plant agronomical properties including plant biomass characteristics important for biofuel production.  相似文献   

7.
In carnation shoots (Dianthus caryophyllus cv. Killer), hyperhydricity was induced in in vitro culture using a low agar concentration. Using transmission electron microscopy, cytochemical techniques and immunolocation of JIM5 and JIM7 pectin epitopes, we followed the sub-cellular modifications of cell walls in relation to peroxidase activity and hydrogen peroxide accumulation during hyperhydricity induction. Peroxidase activity revealed a significant induction of the stomatal and epidermal cells as well as of the intercellular spaces of hyperhydric leaves. Similarly, hydrogen peroxide accumulated in the epidermal cell walls and the intercellular spaces of hyperhydric leaves. Immunolocation of an epitope recognised by the JIM5 antibody revealed the main unesterified nature of the cell walls. Such an epitope was located in the epidermal cell walls as well as in the corners of cell junctions in control leaves. However, hyperhydric leaves showed a total reduction of JIM5 labelling in the corners of cell junctions and a significant reduction of the intercellular spaces and the middle lamella. Highly-methylsterified pectin, recognised by the JIM7 antibody, was present to a slight extent in cell walls in control and hyperhydric leaves. We propose that the altered anatomy observed in hyperhydric carnation leaves could be regulated by the concomitant actions of pectin methyl esterases and free radicals, modifying the structure of the pectin and polysaccharides of the cell walls.  相似文献   

8.
Fleurya aestuans (Linnaeus) Miquel and Phragmenthera capitata (Spreng) are two plants endemic to central Africa that are used in traditional medicine. However, information on their molecular constituents is lacking. In the present study and as part of our research on the structure/bioactivity relationship of plant cell wall molecules, we investigated the structure of polysaccharides isolated from leaf cell walls of both plant species. To this end, we used sequential extraction of polysaccharides, gas chromatography, matrix assisted laser desorption ionisation-time of flight mass spectrometry (MALDI-TOF MS) and immuno-dot assays. Our data indicate the presence of both pectin and hemicellulosic polysaccharides in the cell walls of both plants. In particular, cell wall of F. aestuans leaves appears to contain much more pectin than those of P. capitata. Structural analysis of hemicellulosic polysaccharides revealed differences in the structure of xyloglucan isolated from both species. While only the XXXG-type was found in P. capitata, both XXXG and XXGG types were detected in F. aestuans. No arabinosylated subunits were found in any of the xyloglucan isolated from both plant species. In addition, xylan structure with non methylated-α-d-glucuronic acid on side chains was only detected in F. aestuans leaf cell walls. Finally, structural analysis of rhamnogalacturonan-I (RG-I) and rhamnogalacturonan-II (RG-II) shows that unlike RG-II, RG-I is qualitatively different between F. aestuans and P. capitata leaves.  相似文献   

9.
The Arabidopsis (Arabidopsis thaliana) root epidermal bulger1-1 (reb1-1) mutant (allelic to root hair defective1 [rhd1]) is characterized by a reduced root elongation rate and by bulging of trichoblast cells. The REB1/RHD1 gene belongs to a family of UDP-D-Glucose 4-epimerases involved in the synthesis of D-Galactose (Gal). Our previous study showed that certain arabinogalactan protein epitopes were not expressed in bulging trichoblasts of the mutant. In this study, using a combination of microscopical and biochemical methods, we have investigated the occurrence and the structure of three major Gal-containing polysaccharides, namely, xyloglucan (XyG), rhamnogalacturonan (RG)-I, and RG-II in the mutant root cell walls. Our immunocytochemical data show that swollen trichoblasts were not stained with the monoclonal antibody CCRC-M1 specific for alpha-L-Fucp-(1-->2)-beta-D-Galp side chains of XyG, whereas they were stained with anti-XyG antibodies specific for XyG backbone. In addition, analysis of a hemicellulosic fraction from roots demonstrates the presence of two structurally different XyGs in reb1-1. One is structurally similar to wild-type XyG and the other is devoid of fuco-galactosylated side chains and has the characteristic of being insoluble. Similar to anti-XyG antibodies, anti-bupleuran 2IIC, a polyclonal antibody specific for galactosyl epitopes associated with pectins, stained all root epidermal cells of both wild type and reb1-1. Similarly, anti-RG-II antibodies also stained swollen trichoblasts in the mutant. In addition, structural analysis of pectic polymers revealed no change in the galactosylation of RG-I and RG-II isolated from reb1-1 root cells. These findings demonstrate that the reb1-1 mutation affects XyG structure, but not that of pectic polysaccharides, thus lending support to the hypothesis that biosynthesis of Gal as well as galactosylation of complex polysaccharides is regulated at the polymer level.  相似文献   

10.
Boron (B) deficiency results in inhibition of pumpkin (Cucurbia moschata Duchesne) growth that is accompanied by swelling of the cell walls. Monomeric rhamnogalacturonan II (mRG-II) accounted for 80% to 90% of the total RG-II in B-deficient walls, whereas the borate ester cross-linked RG-II dimer (dRG-II-B) accounted for more than 80% of the RG-II in control plants. The results of glycosyl residue and glycosyl linkage composition analyses of the RG-II from control and B-deficient plants were similar. Thus, B deficiency does not alter the primary structure of RG-II. The addition of (10)B-enriched boric acid to B-deficient plants resulted within 5 h in the conversion of mRG-II to dRG-II-(10)B. The wall thickness of the (10)B-treated plants and control plants was similar. The formation and possible functions of a borate ester cross-linked RG-II in the cell walls are discussed.  相似文献   

11.
Pectins are the major component of plant cell walls, and they display diverse biological activities including immunomodulation. The pectin macromolecule contains fragments of linear and branched regions of polysaccharides such as homogalacturonan, rhamnogalacturonan-I, xylogalacturonan, and apiogalacturonan. These structural features determine the effect of pectins on the immune system. The backbones of pectic macromolecules have immunosuppressive activity. Pectins containing greater than 80% galacturonic acid residues were found to decrease macrophage activity and inhibit the delayed-type hypersensitivity reaction. Branched galacturonan fragments result in a biphasic immunomodulatory action. The branched region of pectins mediates both increased phagocytosis and antibody production. The fine structure of the galactan, arabinan, and apiogalacturonan side chains determines the stimulating interaction between pectin and immune cells. This review summarizes data regarding the relationship between the structure and immunomodulatory activity of pectins isolated from the plants of the European north of Russia and elucidates the concept of polypotency of pectins in native plant cell walls to both stimulate and suppress the immune response. The possible mechanisms of the immunostimulatory and anti-inflammatory effects of pectins are also discussed.  相似文献   

12.
Summary Asclepias speciosa Torr, has latex-containing cells known as nonarticulated laticifers. In stem sections of this species, we have analyzed the cell walls of nonarticulated laticifers and surrounding cells with various stains, lectins, and monoclonal antibodies. These analyses revealed that laticifer walls are rich in (1→4) β-D-glucans and pectin polymers. Immunolocalization of pectic epitopes with the antihomogalacturonan antibodies JIM5 and JIM7 produced distinct labeling patterns. JIM7 labeled all cells including laticifers, while JIM5 only labeled mature epidermal cells and xylem elements. Two antibodies, LM5 and LM6, which recognize rhamnogalacturonan I epitopes distinctly labeled laticifer walls. LM6, which binds to a (l→5) α-arabinan epitope, labeled laticifer walls more intensely than walls of other cells. LM5, which recognizes a (1→4) β-D-galac-tan epitope, did not label laticifer segments at the shoot apex but labeled more mature portions of laticifers. Also the LM5 antibody did not label cells at the shoot apical meristem, but as cells grew and matured the LM5 epitope was expressed in all cells. LM2, a monoclonal antibody that binds to β-D-glucuronic acid residues in arabinogalactan proteins, did not label laticifers but specifically labeled sieve tubes. Sieve tubes were also specifically labeled byRicinus communis agglutinin, a lectin that binds to terminal β-D-galactosyl residues. Taken together, the analyses conducted showed that laticifer walls have distinctive cytochemical properties and that these properties change along the length of laticifers. In addition, this study revealed differences in the expression of pectin and arabinogalactan protein epitopes during shoot development or among different cell types.  相似文献   

13.
P. J. Casero  J. P. Knox 《Protoplasma》1995,188(1-2):133-137
Summary The use of the anti-pectin monoclonal antibody JIM5 in conjunction with immunofluorescence microscopy and also confocal microscopy has indicated that the JIM5 epitope is associated with structural features of the plasma-membrane-face of the cell wall of tomato pericarp cells. JIM5 recognized the primary pit fields of the cell walls, as identified by co-staining with callose-reactive aniline blue. In addition, abundant linear arrays of the pectin epitope were observed to radiate out from the primary pit fields in parallel, as well as random, arrangements. These observations have implications for our understanding of the organization of the polymer networks that comprise the primary cell wall.  相似文献   

14.
15.
Summary We have utilized light and transmission electron microscopy and immunocytochemistry to examine onion roots treated with the herbicide dichlobenil (2,6-dichlorobenzonitrile; DCB), a purported disrupter of cellulose biosynthesis. The most salient effect of DCB is observed on cell plate formation, the process that gives rise to new cell walls. In the presence of DCB, cell plates develop normally up to the tubular network stage. They are the result of fusion of Golgi-derived vesicles and the accumulation of callose and the first strands of cellulose. The DCB-treated cell plates retain the reticulate and malleable nature of the tubular network/early fenestrated plate stage of cell plate formation, but fail to display signs of the stiffening and straightening associated with an accumulation of cellulose. Instead, the malleable cell plates in the DCB-treated cells retain a wavy architecture, accumulate pockets of electron opaque material, and produce plasmodesmata in abnormal orientations. Immunocytochemical investigations of the abnormal cell plates formed after DCB treatment show 20-fold increase in the level of callose labelling found in the control cell plates. Xyloglucans and rhamnogalacturonans can be detected in the partially-formed cell plates, with the labelling density of xyloglucan 4–5 times greater than in the control cell plates and that of the rhamnogalacturonans being similar to the controls. These data support the hypothesis that DCB inhibits cellulose biosynthesis as a primary mechanism of action, and that in the absence of cellulose synthesis the cell plates fail to mature and to give rise to new cross walls.Abbreviations DCB dichlorobenzonitrile - PGA/RGI polygalacturonic acid/rhamnogalacturonan I  相似文献   

16.
The annual developmental cycle of tuberous roots of Ranunculus asiaticus was studied with respect to structure and content of their cells, to understand how these roots are adapted to desiccation, high temperature and rehydration. Light microscopy, histochemical analysis, and protein analyses by SDS-PAGE were employed at eight stages of annual root development. During growth and maturation of the roots, cortical cells increased in size and their cell walls accumulated pectin materials in a distinct layer to the inside of the primary walls, with pits between adjoining cells. The number of starch granules and protein bodies also increased within the cells. Several discrete proteins accumulated. Following quiescence and rehydration of the roots there was a loss of starch and proteins from the cells, and cell walls decreased in thickness. The resurrection geophyte R. asiaticus possesses desiccation-tolerant annual roots. They store carbon and nitrogen reserves within their cells, and pectin within the walls to support growth of the plant following summer quiescence and rehydration.  相似文献   

17.
During seed imbibition and embryo activation, rapid change from a metabolically resting state to the activation of diverse extracellular and/or membrane bound molecules is essential and, hence, endocytosis could be activated too. In fact, we have documented endocytic internalization of the membrane impermeable endocytic tracer FM4–64 already upon 30 min of imbibition of Arabidopsis seeds. This finding suggest that endocytosis is activated early during seed imbibition in Arabidopsis. Immunolocalization of rhamnogalacturonan-II (RG-II) complexed with boron showed that whereas this pectin is localized only in the cell walls of dry seed embryos, it starts to be intracellular once the imbibition started. Brefeldin A (BFA) exposure resulted in recruitment of the intracellular RG-II pectin complexes into the endocytic BFA-induced compartments, confirming the endocytic origin of the RG-II signal detected intracellularly. Finally, germination was significantly delayed when Arabidopsis seeds were germinated in the presence of inhibitors of endocytic pathways, suggesting that trafficking of extracellular molecules might play an important role in the overcome of germination. This work constitutes the first demonstration of endocytic processes during germination and opens new perspectives about the role of the extracellular matrix and membrane components in seed germination.  相似文献   

18.
Ryser U  Keller B 《The Plant cell》1992,4(7):773-783
A polyclonal antibody was used to localize a glycine-rich cell wall protein (GRP 1.8) in French bean hypocotyls with the indirect immunogold method. GRP 1.8 could be localized mainly in the unlignified primary cell walls of the oldest protoxylem elements and also in cell corners of both proto- and metaxylem elements. In addition, GRP 1.8 was detected in phloem using tissue printing. The labeled primary walls of dead protoxylem cells showed a characteristically dispersed ultrastructure, resulting from the action of hydrolases during the final steps of cell maturation and from mechanical stress due to hypocotyl growth. Primary walls of living protoxylem and adjacent parenchyma cells were only weakly labeled. This was true also for the secondary walls of proto- and metaxylem cells, which in addition showed high background labeling. Inhibition of lignification with a specific and potent inhibitor of phenylalanine ammonia-lyase did not lead to enhanced labeling of secondary walls, showing that lignin does not mask the presence of GRP 1.8 in these walls. Dictyosomes of living proto- and metaxylem cells were not labeled, but dictyosomes of xylem parenchyma cells without secondary walls, adjacent to strongly labeled protoxylem elements, were clearly labeled. These observations suggest that GRP 1.8 is not produced by xylem vessels but by xylem parenchyma cells that export the protein to the wall of protoxylem vessels.  相似文献   

19.
Polarized one- and two-dimensional infrared spectra were obtained from the epidermis of onion (Allium cepa) under hydrated and mechanically stressed conditions. By Fourier-transform infrared microspectroscopy, the orientation of macromolecules in single cell walls was determined. Cellulose and pectin exhibited little orientation in native epidermal cell walls, but when a mechanical stress was placed on the tissue these molecules showed distinct reorientation as the cells were elongated. When the stress was removed the tissue recovered slightly, but a relatively large plastic deformation remained. The plastic deformation was confirmed in microscopic images by retention of some elongation of cells within the tissue and by residual molecular orientation in the infrared spectra of the cell wall. Two-dimensional infrared spectroscopy was used to determine the nature of the interaction between the polysaccharide networks during deformation. The results provide evidence that cellulose and xyloglucan associate while pectin creates an independent network that exhibits different reorientation rates in the wet onion cell walls. The pectin chains respond faster to oscillation than the more rigid cellulose.  相似文献   

20.
Cultured cells of tobacco (Nicotiana tabacum L.) BY-2 which could propagate at the same rate as the parent cells (1 mg B liter(-1)) under a lower level of boron (0.01 mg B liter(-1)) were obtained. The selected cells had swollen cell walls. In the parent cells, all the RG-II occurred as a B-RG-II complex, however, two-thirds of the RG-II occurred in a monomeric form in the selected cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号