首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
 The production of the 16-membered macrolide antibiotic, spiramycin, in Streptomyces ambofaciens is inhibited by glucose, 2-deoxyglucose and inorganic phosphate. The role of intracellular ATP content and phosphorylated metabolites as common regulating signals of both glucose and phosphate inhibitory effects is discussed. Two enzymatic targets of the effect of phosphate on spiramycin biosynthesis were studied. Valine dehydrogenase, the first enzyme of valine catabolism (supplier of aglycone spiramycin precursors), and alkaline phosphatase, which cleaves phosphorylated intermediates, were repressed in the presence of excess phosphate. Received: 2 May 1995/Received revision: 28 July 1995/Accepted: 4 August 1995  相似文献   

2.
螺旋霉素(SP)为16元环大环内酯类抗生素,含有螺旋霉素Ⅰ、Ⅱ和Ⅲ个组分,其结构的差异为16元内酯环的C3上分别连接羟基(SPⅠ)、乙酰基(SPⅡ)和丙酰基(SPⅢ);SPⅡ和SPⅢ是在相同的3-O-酰基转移酶催化下SPⅠ进一步酰化的产物。SPⅠ、SPⅡ和SPⅢ在生物学活性方面无大差异。为简化螺旋霉素组分,便于今后对其结构进行进一步改造,根据碳霉素和麦迪霉素生物合成中的3-O-酰基转移酶序列,设计了简并性PCR引物,并采用SON-PCR(single oligonucleotide nested PCR)方法,从螺旋霉素产生菌S.spiramyceticus F21中进行特异性扩增,获得了螺旋霉素3-O-酰基转移酶基因(sspA)及其侧翼序列,共约4.3kb(其中的3457nt DNA序列已被Genbank收录,DQ642742)。采用DNA同源双交换技术对S.spiramyceticus F21中的sspA进行了删除。对螺旋霉素原株和sspA缺失变株进行发酵产物提取和HPLC分析表明:原株中SPⅠ、SPⅡ和SPⅢ的相对含量分别为7.8%、67%和25%,变株中则分别为72%、18%和9.6%;变株主要组分为SPⅠ。螺旋霉素sspA缺失变株的获得为螺旋霉素组分简化及其衍生物的结构改造奠定了基础。  相似文献   

3.
Several cosmid clones from Streptomyces ambofaciens containing the spiramycin resistance gene srmB were introduced into S. fradiae PM73, a mutant defective in tylosin synthesis, resulting in tylosin synthesis. The DNA responsible for this complementation was localized to a 10.5-kilobase EcoRI fragment. A 32-kilobase DNA segment which included the srmB spiramycin resistance gene and DNA which complemented the defect in strain PM73 were mutagenized in vivo with Tn10 carrying the gene for Nmr (which is expressed in Streptomyces spp.) or in vitro by insertional mutagenesis with a drug resistance gene (Nmr) cassette. When these mutagenized DNA segments were crossed into the S. ambofaciens chromosome, three mutant classes blocked in spiramycin synthesis were obtained. One mutant accumulated two precursors of spiramycin, platenolide I and platenolide II. Two mutants, when cofermented with the platenolide-accumulating mutant, produced spiramycin. Tylactone supplementation of these two mutants resulted in the synthesis of a group of compounds exhibiting antibiotic activity. Two other mutants failed to coferment with any of the other mutants or to respond to tylactone supplementation.  相似文献   

4.
Spiramycin is a multicomponent antibiotic, and different components have different antibacterial activities. In Streptomyces spiramyceticus 16-10-2, spiramycin II and spiramycin III (SPMII and SPMIII) are the main components, while spiramycin I (SPMI) needs to be controlled below 12%. Based on this, the influences of Al3+ on total spiramycin titer and components were investigated in this work. Those experiments were mainly performed in 15?L fermentor and Al3+ made a great improvement in spiramycin titer. The optimal adding concentration and adding time of Al3+ were 0.32?g/L at 12?hr. Under this condition, spiramycin titer was increased by 19.51% compared with the control. Moreover, the percentage of SPMII and SPMIII was increased by 7.14%. At the same time, the time of mycelia autolysis was lengthened. In addition, the specific activities of acetyl-CoA synthetase, acetate kinase, acetylphosphotransferase, and acylating enzyme were much higher than those of control. The content of acetic acid and succinic acid was beyond 3 and 4.5 times than that of control, respectively.  相似文献   

5.
6.

Background

Hemorrhagic shock (HS) following trauma is a leading cause of death among persons under the age of 40. During HS the body undergoes systemic warm ischemia followed by reperfusion during medical intervention. Ischemia/reperfusion (I/R) results in a disruption of cellular metabolic processes that ultimately lead to tissue and organ dysfunction or failure. Resistance to I/R injury is a characteristic of hibernating mammals. The present study sought to identify circulating metabolites in the rat as biomarkers for metabolic alterations associated with poor outcome after HS. Arctic ground squirrels (AGS), a hibernating species that resists I/R injury independent of decreased body temperature (warm I/R), was used as a negative control.

Methodology/principal findings

Male Sprague-Dawley rats and AGS were subject to HS by withdrawing blood to a mean arterial pressure (MAP) of 35 mmHg and maintaining the low MAP for 20 min before reperfusing with Ringers. The animals’ temperature was maintained at 37±0.5°C for the duration of the experiment. Plasma samples were taken immediately before hemorrhage and three hours after reperfusion. Hydrophilic and lipid metabolites from plasma were then analyzed via 1H–NMR from unprocessed plasma and lipid extracts, respectively. Rats, susceptible to I/R injury, had a qualitative shift in their hydrophilic metabolic fingerprint including differential activation of glucose and anaerobic metabolism and had alterations in several metabolites during I/R indicative of metabolic adjustments and organ damage. In contrast, I/R injury resistant AGS, regardless of season or body temperature, maintained a stable metabolic homeostasis revealed by a qualitative 1H–NMR metabolic profile with few changes in quantified metabolites during HS-induced global I/R.

Conclusions/significance

An increase in circulating metabolites indicative of anaerobic metabolism and activation of glycolytic pathways is associated with poor prognosis after HS in rats. These same biomarkers are absent in AGS after HS with warm I/R.  相似文献   

7.
Microcosm tests simulating bioslurry reactors with 40% soil content, containing high concentrations of TNT and/or RDX, and spiked with either [14C]-TNT or [14C]-RDX were conducted to investigate the fate of explosives and their metabolites in bioslurry treatment processes. RDX is recalcitrant to indigenous microorganisms in soil and activated sludge under aerobic conditions. However, soil indigenous microorganisms alone were able to mineralize 15% of RDX to CO2 under anaerobic condition, and supplementation of municipal anaerobic sludge as an exogenous source of microorganisms significantly enhanced the RDX mineralization to 60%. RDX mineralizing activity of microorganisms in soil and sludge was significantly inhibited by the presence of TNT. TNT mineralization was poor (< 2%) and was not markedly improved by the supplement of aerobic or anaerobic sludge. Partitioning studies of [14C]-TNT in the microcosms revealed that the removal of TNT during the bioslurry process was due mainly to the transformation of TNT and irreversible binding of TNT metabolites onto soil matrix. In the case of RDX under anaerobic conditions, a significant portion (35%) of original radioactivity was also incorporated into the biomass and bound to the soil matrix.  相似文献   

8.
AIMS: To understand the modification of C4-metabolism under anaerobic glycolysis condition by overexpressing anaplerotic enzymes, which mediating carboxylation of C3 into C4 metabolites, in Escherichia coli. METHODS AND RESULTS: Anaplerotic NADP-dependent malic enzyme (MaeB), as well as the other anaplerotic enzymes, including phosphoenolpyruvate carboxylase (Ppc), phosphoenolpyruvate carboxykinase (Pck) and NAD-dependent malic enzyme (MaeA), were artificially expressed and their C4 metabolism was compared in E. coli. Increasing MaeB expression enhanced the production of C4 metabolites by 2.4 times compared to the wild-type strain in anaerobic glucose medium with bicarbonate supplementation. In MaeB expression, C4 metabolism by supplementing 10 g l(-1) of NaHCO(3) was three times than that by no supplementation, which showed the greatest response to increased CO(2) availability among the tested anaplerotic enzyme expressions. CONCLUSIONS: The higher C4 metabolism was achieved in E. coli expressing increased levels of the NADPH-dependent MaeB. The greatest increase in the C4 metabolite ratio compared to the other tested enzymes were also found in E. coli with enhanced MaeB expression as CO(2) availability increased. SIGNIFICANCE AND IMPACT OF THE STUDY: The higher C4 metabolites and related biomolecule productions can be accomplished by MaeB overexpression in metabolically engineered E. coli.  相似文献   

9.
The production of secondary metabolites with antibiotic properties is a common characteristic to Bacillus spp. These metabolites not only have diverse chemical structures but also have a wide range of bioactivities with medicinal and agricultural interests such as antibiotic. Bacillus sp. fmbJ has been found to produce lipopeptides fengycin and surfactin in accordance with our previous report. In this study, another antimicrobial substance was separated and purified from the culture supernatant of strain fmbJ using the silica gel column chromatography and preparative reversed-phase high-performance liquid chromatography. By means of electrospray ionization mass spectroscopy, infrared spectroscopy, and nuclear magnetic resonance, the antagonistic compound was determined to be 4″-isovaleryl-spiramycin III with the molecular weight of 982 Da. This report is the first to introduce the finding of spiramycin produced from Bacillus sp. The study provides a novel source for the production of spiramycin in pharmaceutical industries.  相似文献   

10.
The kinetics of anaerobic degradation of glycol-based Type I aircraft deicing fluids (ADFs) were characterized using suspended-growth fill-and-draw reactors. Both Type I ADFs tested showed near-complete anaerobic degradability. First-order degradation rate constants of 3.5 d-1 for the propylene glycol-based Type I ADF and 5.2 d-1 for the ethylene glycol-based Type I ADF were obtained through continuous-culture means under mesophilic conditions (35 °C). Fill-and-draw operation at lower temperatures affected anaerobic degradability only minimally down to 25 °C but substantially below 25 °C. High Type I ADF feed concentrations substantially affected degradability. Batch testing of fill-and-draw reactors resulted in first-order degradation rate constants of 1.9 d-1 for propylene glycol-based Type I ADF and 3.5 d-1 for ethylene glycol-based Type I ADF.  相似文献   

11.
Up to 90% of the gamma-Hexachlorocyclohexane (gamma-HCH) applied to an anaerobic mixed bacterial flora enriched from an arable soil were degraded within 4-5 days. Degradation resulted in a rapid release of chloride and in formation of chlorine-free volatile metabolites. CO2 formation from the molecule was not detected. Investigations with 14C/3H- and 36Cl/3H double-labelled gamma-HCH indicated that the release of Cl and H did not occur in the ratio of 1:1. More Cl than H was split off. The volatile compounds contained more 14C than 3H. Gas chromatographic studies also showed the rapid decrease of gamma-HCH and the formation of several metabolities. gamma-Pentachlorocyclohexene was nto detected. Increasing O2-contents in the gas phase of cultures resulted in decreases of the compound's degradation. Release of chloride and of volatile metabolites were observed with O2 contents in the gas phase up to 5%. alpha-HCH was also, but more slowly as with gamma-HCH, degraded by the anaerobic mixed flora. Chloride was released and volatile, chlorine-free metabolites were found.  相似文献   

12.
Two linked genetic loci, rib 2 and rib 3, of yeast mitochondrial genome are the sites of mutations that confer resistance to erythromycin and/or spiramycin. We have examined two mutations at the rib 2 locus. Mutation ER354 was found at the nucleotide position 3993 of the large ribosomal RNA gene; it corresponded to a C to G transversion leading to a double resistance to erythromycin and spiramycin. Mutation SR551 was found also at the same position, but the C was replaced by a T, conferring resistance to spiramycin only. Rib 2 and rib 3 are 836 base pairs apart on the gene sequence, but are very close to each other in the secondary structure of ribosomal RNA.  相似文献   

13.
The aim of this work was to develop a strategy to isolate a morphologically stable mutant of Streptomyces ambofaciens ATCC 15154 which produced high titers of spiramycin. The rationale was to grow a nitrosoguanidine-mutated population for many generations under nonselective conditions followed by two cycles of protoplast formation and regeneration. A total of 2,400 surviving colonies were then screened for spiramycin production and subsequently checked for stability. From this experiment, strain 6-37 was isolated that produced 181 mg of spiramycin per liter and only one morphological type. The parent strain (ATCC 15154) produced 107 mg of spiramycin per liter and four morphological types. Strain 6-37 was then mutated with nitrosoguanidine, and 14,000 colonies were screened for spiramycin production. From this experiment, five strains were isolated that produced titers ranging from 187 to 373 mg of spiramycin per liter. Subsequent media and time studies with these strains resulted in a fermentation that produced 1,728 mg of spiramycin per liter.  相似文献   

14.
L M Ford  T E Eaton    O W Godfrey 《Applied microbiology》1990,56(11):3511-3514
The aim of this work was to develop a strategy to isolate a morphologically stable mutant of Streptomyces ambofaciens ATCC 15154 which produced high titers of spiramycin. The rationale was to grow a nitrosoguanidine-mutated population for many generations under nonselective conditions followed by two cycles of protoplast formation and regeneration. A total of 2,400 surviving colonies were then screened for spiramycin production and subsequently checked for stability. From this experiment, strain 6-37 was isolated that produced 181 mg of spiramycin per liter and only one morphological type. The parent strain (ATCC 15154) produced 107 mg of spiramycin per liter and four morphological types. Strain 6-37 was then mutated with nitrosoguanidine, and 14,000 colonies were screened for spiramycin production. From this experiment, five strains were isolated that produced titers ranging from 187 to 373 mg of spiramycin per liter. Subsequent media and time studies with these strains resulted in a fermentation that produced 1,728 mg of spiramycin per liter.  相似文献   

15.
The major metabolite produced by incubating [14C]lindane with rat liver microsomes under anaerobic conditions was determined to be chlorobenzene, with lesser amounts of benzene also being formed. Using relatively high lindane concentrations (250 microM), four nonvolatile metabolites of lindane were also produced anaerobically, the predominant one being identified by mass spectrometry as tetrachlorocyclohexene (TCCH). TCCH, likewise, was reduced to chlorobenzene and benzene in microsomes under anaerobic conditions. Binding of [14C]lindane to microsomal protein occurred under aerobic as well as anaerobic incubation conditions; however, lindane protein binding was greatest in anaerobic incubations compared to those containing an atmosphere of air or 100% oxygen. Hemin reduced by dithionite also readily produced chlorobenzene and benzene from lindane. These results indicate that lindane interacts readily with heme and heme proteins, including cytochrome P-450, in the absence of oxygen to undergo multiple chloride eliminations forming chlorobenzene and benzene as end products.  相似文献   

16.
Transformation of verapamil by Cunninghamella blakesleeana   总被引:3,自引:0,他引:3  
A filamentous fungus, Cunninghamella blakesleeana AS 3.153, was used as a microbial model of mammalian metabolism to transform verapamil, a calcium channel antagonist. The metabolites of verapamil were separated and assayed by the liquid chromatography-ion trap mass spectrometry method. After 96 h of incubation, nearly 93% of the original drug was metabolized to 23 metabolites. Five major metabolites were isolated by semipreparative high-performance liquid chromatography and were identified by proton nuclear magnetic resonance and electrospray mass spectrometry. Other metabolites were characterized according to their chromatographic behavior and mass spectral data. The major metabolic pathways of verapamil transformation by the fungus were N dealkylation, O demethylation, and sulfate conjugation. The phase I metabolites of verapamil (introduction of a functional group) by C. blakesleeana paralleled those in mammals; therefore, C. blakesleeana could be a useful tool for generating the mammalian phase I metabolites of verapamil.  相似文献   

17.
Spiramycin production byStreptomyces ambofaciens is controlled by the nitrogen source present in the culture medium. Thus, amino acids according to the mode of catabolism (transamination or deamination) influenced the spiramycin production differently. Arginine, whose catabolism led to an important excretion of ammonium, gave a slight spiramycin production of 5.3 mg. g–1 dry cell weight; however, the introduction of an ammonium trapping agent [0.25% Mg3(PO4)2] enhanced spiramycin production by 415%. The use of a neutral culture medium showed the existence of a critical phase during which the ammonium pulse had maximum negative effects on spiramycin production. Among these negative effects, the ammonium pulse provoked an increase in the growth rate, which was partially responsible for the decrease of the spiramycin production. The inhibitory effects of ammonium on spiramycin production were mitigated when the growth rate was controlled by the phosphate concentration. In addition, protease activities were limited on a culture medium in which ammonium was present and spiramycin production was null, whereas on lysine, where spiramycin production was favored, protease activities were higher.  相似文献   

18.
The novel formula of spiramycin/propolis loaded chitosan (CS)/alginate (Alg) nanoparticles (NPs) was assessed for Toxoplasma gondii (T. gondii) treatment in comparison with the commercially available spiramycin regarding tissue penetration and blood brain barrier (BBB) passage. Swiss Albino mice were inoculated intraperitoneally by 2500 tachyzoites of the virulent T. gondii RH strain. The experimental groups were treated with oral spiramycin, propolis, CS/Alg NPs, spiramycin loaded CS/Alg NPs, propolis loaded CS/Alg NPs, and spiramycin/propolis loaded CS/Alg NPs. The results demonstrated that spiramycin/propolis loaded CS/Alg NPs exerted the longest survival time with no mortality on the sacrifice day (8th) in addition to representing the highest significant parasite percent reduction of (≥96% reduction) in liver, spleen and brain designating successful tissue penetration and BBB passage. Tachyzoites treated with spiramycin/propolis loaded CS/Alg NPs demonstrated the most disfigured rapturing organism via scanning electron microscope examination along with representing an overall remarkable improvement of the histopathological pictures of liver, spleen and brain. In conclusion, spiramycin/propolis loaded CS/Alg NPs showed the uppermost efficacy in the treatment of acute murine toxoplasmosis. The safe nature and the anti-parasitic effect of each of CS, Alg, spiramycin and propolis encourage the synergistic use of spiramycin/propolis loaded CS/Alg NPs as a potent treatment for human toxoplasmosis.  相似文献   

19.
Strains of available terverticillate penicillium species and varieties were analyzed for profiles of known mycotoxins and other secondary metabolites produced on Czapek yeast autolysate agar (intracellular metabolites) and yeast extract-sucrose agar (extracellular metabolites) by using simple thin-layer chromatography screening techniques. These strains (2,473 in all) could be classified into 29 groups based on profiles of secondary metabolites. Most of these profiles of secondary metabolites were distinct, containing several biosynthetically different mycotoxins and unknown metabolites characterized by distinct colors and retardation factors on thin-layer chromatography plates. Some species (P. italicum and P. atramentosum) only produced one or two metabolites by the simple screening methods. The 29 groups based on profiles of secondary metabolites were known species or subgroups thereof. These species and subgroups were independently identifiable by using morphological and physiological criteria. The species accepted, the number of isolates in each species investigated, and the mycotoxins they produced were: P. atramentosum, 4; P. aurantiogriseum, 510 (group I: penicillic acid and S-toxin and group II: penicillic acid, penitrem A [low frequency], terrestric acid [low frequency], viomellein, and xanthomegnin); P. brevicompactum, 81 (brevianamid A and mycophenolic acid); P. camembertii group I, 38, and group II, 114 (cyclopiazonic acid); P. chrysogenum, 87 (penicillin, roquefortine C, and PR-toxin); P. claviforme, 4 (patulin and roquefortine C); P. clavigerum, 4 (penitrem A); P. concentricum group I, 10 (griseofulvin and roquefortine C), and group II, 3 (patulin and roquefortine C); P. crustosum, 123 (penitrem A, roquefortine C, and terrestric acid); P. echinulatum, 13; P. expansum, 91 (citrinin, patulin, and roquefortine C); P. granulatum, 6 (patulin, penitrem A, and roquefortine C [traces]); P. griseofulvum, 21 (cyclopiazonic acid, griseofulvin, patulin, and roquefortine C); P. hirsutum, 100 (group I: terrestric acid; group II: citrinin, penicillic acid , roquefortine C, and terrestric acid; and group III: roquefortine C and terrestric acid), P. hirsutum group IV, 2 (chaetoglobosin C); P. isariiforme, 1; P. italicum, 41; P. mali, 104; P. roquefortii, 78 (group I: mycophenolic acid, PR-toxin, and roquefortine C and group II: mycophenolic acid, patulin, penicillic acid [low frequency], and roquefortine C); P. viridicatum group I, 634 (brevianamid A [low frequency], penicillic acid, viomellein, and xanthomegnin), P. viridicatum group II and III, 494 (citrinin and ochratoxin A), P. viridicatum group IV, 12 (griseofulvin and viridicatumtoxin). It is proposed that profiles of secondary metabolites be strongly emphasized in any future revision of the penicillia.  相似文献   

20.
Under anaerobic conditions and with proper electron donors, NADPH-cytochrome P-450 reductase (EC 1.6.2.4) and xanthine oxidase (EC 1.2.3.2) similarly reductively metabolized mitomycin C. Reversed phase high performance liquid chromatography was used to separate, detect, and isolate several metabolites. Three metabolites were identified by mass spectrometry and thin layer chromatography as 1,2-cis- and trans-2,7-diamino-1-hydroxymitosene and 2,7-diaminomitosene. Three metabolites were phosphate-dependent, and two of them were identified to be 1,2-cis- and trans-2,7-diaminomitosene 1-phosphate. The amounts of the five identified metabolites generated during the reduction of mitomycin C varied with pH and nucleophile concentration. At pH 6.5, 2,7-diaminomitosene was essentially the only metabolite formed, whereas from pH 6.8 to 8.0, trans- and cis-2,7-diamino-1-hydroxymitosene increased in quantity as 2,7-diaminomitosene decreased. The disappearance of mitomycin C and the production of metabolites were enzyme and mitomycin C concentration-dependent. Substrate saturation was not reached for either enzyme up to 5 mM mitomycin C. Electron paramagnetic resonance studies demonstrated the formation of mitomycin C radical anion as an intermediate during enzymatic activation. Our results indicate that either enzyme catalyzed the initial activation of mitomycin C to a radical anion intermediate. Subsequent spontaneous reactions, including the elimination of methanol and the opening of the aziridine ring, generate one active center at C-1 which facilitates nucleophilic attack. Simultaneous generation of two reactive centers was not observed. All five primary metabolites were metabolized further by either flavoenzyme. The secondary metabolites exhibited similar changes in their absorbance spectra and were unlike the primary metabolites, suggesting that a second alkylating center other than C-1 was generated during secondary activation. We propose that secondary activation of monofunctionally bound mitomycin C is probably a main route for the bifunctional binding of mitomycin C to macromolecules and that the cytotoxic actions of mitomycin C result from multiple metabolic activations and reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号