首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Changwei Z  Mingyong X  Ranran W 《FEBS letters》2007,581(14):2670-2674
Afr1p functions to promote adaptation to pheromone-induced growth arrest and morphogenesis. We show here that Afr1p regulates polarized localization of the Mpk1p MAP kinase in shmooing cells. Deletion of AFR1 results in mislocalization of Mpk1p although the scaffold protein Spa2p localizes normally at shmoo tip, and overexpression of Spa2 cannot rescue this defect, indicating Afr1p in required for Spa2p to recruit Mpk1 to the site of polarized growth during mating. Overexpression of SPA2 partially suppresses the morphogenetic defect of afr1Delta cells upon alpha-factor induction, suggesting the two proteins function in the same genetic pathway with Spa2p acts downstream of Afr1p.  相似文献   

2.
INTRODUCTIONDNA replication is a fundamenial process thatmust occur only once at each ce1l cycle. This restrictcontrol appears to be achieved through the coordi-nated actiVities of numerous proteins. The buddingyeast Saccharompes cerevhaae provides an excellenteukaryotic model fOr study of proteins invo1ved inthe control of DNA replication.In the budding yeast, minichromosome mainte-nance (MCM) proteins, MCM2-7, are a family of strsequence-related proteins that play crucia1 roles inr…  相似文献   

3.
4.
5.
Thermal damage, high osmolarity, and ethanol toxicity in the yeast Saccharomyces cerevisiae limit titer and productivity in fermentation to produce ethanol. We show that long-term adaptive laboratory evolution at 39.5°C generates thermotolerant yeast strains, which increased ethanol yield and productivity by 10% and 70%, in 2% glucose fermentations. From these strains, which also tolerate elevated-osmolarity, we selected a stable one, namely a strain lacking chromosomal duplications. This strain (TTY23) showed reduced mitochondrial metabolism and high proton efflux, and therefore lower ethanol tolerance. This maladaptation was bolstered by reestablishing proton homeostasis through increasing fermentation pH from 5 to 6 and/or adding potassium to the media. This change allowed the TTY23 strain to produce 1.3–1.6 times more ethanol than the parental strain in fermentations at 40°C with glucose concentrations ~300 g/L. Furthermore, ethanol titers and productivities up to 93.1 and 3.87 g·L −1·hr −1 were obtained from fermentations with 200 g/L glucose in potassium-containing media at 40°C. Albeit the complexity of cellular responses to heat, ethanol, and high osmolarity, in this study we overcome such limitations by an inverse metabolic engineering approach.  相似文献   

6.
Abstract Leflunomide is a novel immunomodulatory drug representing a new small molecule class of substances which are structurally unrelated to previously described immunomodulatory/immunosuppressive compounds. The effect of leflunomide on the cell cycle of Saccharomyces cerevisiae was investigated to elucidate the molecular mechanism of its action in eukaryotic organisms. When yeast cells were treated with leflunomide, unbudded cells were accumulated, suggesting that leflunomide may arrest the cell cycle in the G☎ase. When leflunomide-treated cells were subjected to heat shock treatment, the cells became resistant to heat shock treatment, implying that leflunomide-mediated block to cell division results in entry from the proliferative cycle into the alternative developmental g0 phase.  相似文献   

7.
8.
 高渗透性甘油促分裂原激酶信号转导途径(high osmolarity glycerol mitogen activated protein kinase signaling transduction pathway,HOG-MAPK)是调控酿酒酵母对外界高渗透压胁迫环境应答的主要途径,促分裂原蛋白激酶Hog1p(MAPK Hog1p)是其中的关键性作用因子.在高渗透压刺激时,MAPK Hog1p接受信号被特异性激活并进入核内,调控相关胁迫应答基因的表达,并介导该时期细胞周期的阻滞,从而增强细胞对外界不利环境的适应能力.对胁迫条件下酿酒酵母中MAPK Hog1p作用机制的进一步研究,有利于更深入地了解哺乳动物体内逆境激发促分裂原蛋白激酶途径的功能和调控机制.  相似文献   

9.
BRCA1 tumor suppressor gene is found mutated in familial breast and ovarian cancer. Most cancer related mutations were found located at the RING (Really Interesting New Gene) and at the BRCT (BRca1 C-Terminal) domain. However, 20 y after its identification, the biological role of BRCA1 and which domains are more relevant for tumor suppression are still being elucidated. We previously reported that expression of BRCA1 cancer related variants in the RING and BRCT domain increases spontaneous homologous recombination in yeast indicating that BRCA1 may interact with yeast DNA repair/recombination. To finally demonstrate whether BRCA1 interacts with yeast DNA repair, we exposed yeast cells expressing BRCA1wt, the cancer-related variants C-61G and M1775R to different doses of the alkylating agent methyl methane-sulfonate (MMS) and then evaluated the effect on survival and homologous recombination. Cells expressing BRCA1 cancer variants were more sensitive to MMS and less inducible to recombination as compared to cell expressing BRCA1wt. Moreover, BRCA1-C61G and -M1775R did not change their nuclear localization form as compared to the BRCA1wt or the neutral variant R1751Q indicating a difference in the DNA damage processing. We propose a model where BRCA1 cancer variants interact with the DNA double strand break repair pathways producing DNA recombination intermediates, that maybe less repairable and decrease MMS-induced recombination and survival. Again, this study strengthens the use of yeast as model system to characterize the mechanisms leading to cancer in humans carrying the BRCA1 missense variant.  相似文献   

10.
11.
12.
《Autophagy》2013,9(9):1300-1311
Inositol phosphates are implicated in the regulation of autophagy; however, the exact role of each inositol phosphate species is unclear. In this study, we systematically analyzed the highly conserved inositol polyphosphate synthesis pathway in S. cerevisiae for its role in regulating autophagy. Using yeast mutants that harbored a deletion in each of the genes within the inositol polyphosphate synthesis pathway, we found that deletion of KCS1, and to a lesser degree IPK2, led to a defect in autophagy. KCS1 encodes an inositol hexakisphosphate/heptakisposphate kinase that synthesizes 5-IP7 and IP8; and IPK2 encodes an inositol polyphosphate multikinase required for synthesis of IP4 and IP5. We characterized the kcs1Δ mutant strain in detail. The kcs1Δ yeast exhibited reduced autophagic flux, which might be caused by both the reduction in autophagosome number and autophagosome size as observed under nitrogen starvation. The autophagy defect in kcs1Δ strain was associated with mislocalization of the phagophore assembly site (PAS) and a defect in Atg18 release from the vacuole membrane under nitrogen deprivation conditions. Interestingly, formation of autophagosome-like vesicles was commonly observed to originate from the plasma membrane in the kcs1Δ strain. Our results indicate that lack of KCS1 interferes with proper localization of the PAS, leads to reduction of autophagosome formation, and causes the formation of autophagosome-like structure in abnormal subcellular locations.  相似文献   

13.
Both terminators and promoters regulate gene expression. In Saccharomyces cerevisiae, the TPS1 terminator (TPS1t), coupled to a gene encoding a fluorescent protein, produced more transgenic mRNA and protein than did similar constructs containing other terminators, such as CYC1t, TDH3t, and PGK1t. This suggests that TPS1t can be used as a general terminator in the development of metabolically engineered yeast in high-yield systems.  相似文献   

14.
AIMS: Artificial genes, which encode 48 or 64 repeats of a tripeptide, glutamyl-tryptophanyl-lysine have been cloned to the yeast expression vector pAM82 containing the PHO5 promoter and expressed in Saccharomyces cerevisiae AH22. METHODS AND RESULTS: When the yeast cells harbouring recombinant plasmids pALTG6-2 and pALTG4-4 were derepressed in Burkholder minimal medium (Toh-e, A., Ueda, Y., Kakimoto, S.I. and Oshima, Y. (1973) Journal of Bacteriology113, 727-738) containing low phosphate (0.03 g l-1 KH2PO4 and 1.5 g l-1 KCl), the expression was the highest after 24 h induction and the artificial polypeptides were synthesized to about 10% (pALTG6-2) and 14% (pALTG4-4) of the total cell protein. CONCLUSIONS: The artificial polypeptides produced in yeast were made to react with the rabbit antiserum against the polypeptide purified from Escherichia coli and found only in the pellet fraction of cell lysates, indicating the formation of inclusion body. Artificial polypeptide consisting of Glu-Trp-Lys may be useful as partial supplement in food and feeds. SIGNIFICANCE AND IMPACT OF THE STUDY: The production of single cell enriched with homopolymers of an essential amino acid in yeast might be an important tool of supplementing cereal diets and feed grain rations and could be used as means for improvement of the amino acid profile of single cell protein and production of pharmaceutical peptides.  相似文献   

15.
We developed an efficient screening method for Saccharomyces cerevisiae strains from environmental isolates. MultiPlex PCR was performed targeting four brewing S. cerevisiae genes (SSU1, AWA1, BIO6, and FLO1). At least three genes among the four were amplified from all S. cerevisiae strains. The use of this method allowed us to successfully obtain S. cerevisiae strains.  相似文献   

16.
Xylose is a second‐most abounded sugar after glucose in lignocellulosic hydrolysates and should be efficiently fermented for economically viable second‐generation ethanol production. Despite significant progress in metabolic and evolutionary engineering, xylose fermentation rate of recombinant Saccharomyces cerevisiae remains lower than that for glucose. Our recent study demonstrated that peroxisomedeficient cells of yeast Ogataea polymorpha showed a decrease in ethanol production from xylose. In this work, we have studied the role of peroxisomes in xylose alcoholic fermentation in the engineered xylose‐utilizing strain of S. cerevisiae. It was shown that peroxisome‐less pex3Δ mutant possessed 1.5‐fold decrease of ethanol production from xylose. We hypothesized that peroxisomal catalase Cta1 may have importance for hydrogen peroxide, the important component of reactive oxygen species, detoxification during xylose alcoholic fermentation. It was clearly shown that CTA1 deletion impaired ethanol production from xylose. It was found that enhancing the peroxisome population by modulation the peroxisomal biogenesis by overexpression of PEX34 activates xylose alcoholic fermentation.  相似文献   

17.
Du L  Su Y  Sun D  Zhu W  Wang J  Zhuang X  Zhou S  Lu Y 《FEMS yeast research》2008,8(4):531-539
Formic acid disrupts mitochondrial electron transport and sequentially causes cell death in mammalian ocular cells by an unidentified molecular mechanism. Here, we show that a low concentration of formic acid induces apoptosis-like cell death in the budding yeast Saccharomyces cerevisiae, with several morphological and biochemical changes that are typical of apoptosis, including chromatin condensation, DNA fragmentation, externalization of phosphatidylserine, reactive oxygen species (ROS) production, loss of mitochondrial membrane potential and mitochondrion destruction. This process may not be dependent on the activation of Yca1p, the yeast caspase counterpart. In addition, the cell death induced by formic acid is associated with ROS burst,while intracellular ROS accumulate more rapidly and to a higher level in the YCA1 disruptant than in the wild-type strain during the progression of cell death. Our data indicate that formic acid induces yeast apoptosis via an Yca1p-independent pathway and it could be used as an extrinsic inducer for identifying the regulators downstream of ROS production in yeast.  相似文献   

18.
Chicken embryo fibroblasts (CEFs) localize beta-actin mRNA to their lamellae, a process important for the maintenance of cell polarity and motility. The localization of beta-actin mRNA requires a cis localization element (zipcode) and involves zipcode binding protein 1 (ZBP1), a protein that specifically binds to the zipcode. Both localize to the lamellipodia of polarized CEFs. ZBP1 and its homologues contain two NH2-terminal RNA recognition motifs (RRMs) and four COOH-terminal hnRNP K homology (KH) domains. By using ZBP1 truncations fused to GFP in conjunction with in situ hybridization analysis, we have determined that KH domains three and four were responsible for granule formation and cytoskeletal association. When the NH2 terminus was deleted, granules formed by the KH domains alone did not accumulate at the leading edge, suggesting a role for the NH2 terminus in targeting transport granules to their destination. RNA binding studies were used to show that the third and fourth KH domains, not the RRM domains, bind the zipcode of beta-actin mRNA. Overexpression of the four KH domains or certain subsets of these domains delocalized beta-actin mRNA in CEFs and inhibited fibroblast motility, demonstrating the importance of ZBP1 function in both beta-actin mRNA localization and cell motility.  相似文献   

19.
Phospholipase D1 (PLD1) is an important enzyme involved in lipid signal transduction in eukaryotes. A role for PLD1 in signaling in Saccharomyces cerevisiae was examined. Pheromone response in yeast is controlled by a well-characterized protein kinase cascade. Loss of PLD1 activity was found to impair pheromone-induced changes in cellular morphology that result in formation of mating projections. The rate at which projections appeared following pheromone treatment was delayed, suggesting that PLD1 facilitates the execution of a rate-limiting step in morphogenesis. Mutants were found to be less sensitive to pheromone, again arguing that PLD1 is acting at a rate-limiting step. The fact that morphogenesis is most dramatically affected indicates that PLD1 functions primarily in the morphogenic branch of the pheromone response pathway.  相似文献   

20.
Saccharomyces cerevisiae Gup1p and its homologue Gup2p, members of the superfamily of membrane-bound O-acyl transferases, were previously associated with glycerol-mediated salt-stress recovery and glycerol symporter activity. Several other phenotypes suggested Gup1p involvement in processes connected with cell structure organization and biogenesis. The gup1Delta mutant is also thermosensitive and exhibits an altered plasma membrane lipid composition. The present work shows that the thermosensitivity is independent of glycerol production and retention. Furthermore, the mutant grows poorly on salt, ethanol and weak carboxylic acids, suggestive of a malfunctioning membrane potential. Additionally, gup1Delta is sensitive to cell wall-perturbing agents, such as Calcofluor white, Zymolyase, lyticase and sodium dodecyl sulphate and exhibits a sedimentation/aggregation phenotype. Quantitative analysis of cell wall components yielded increased contents of chitin and beta-1,3-glucans and lower amounts of mannoproteins. Consistently, scanning electron microscopy showed a strikingly rough surface morphology of the mutant cells. These results suggest that the gup1Delta is affected in cell wall assembly and stability, although the Slt2p/MAP kinase from the PKC pathway was phosphorylated during hypo-osmotic shock to a normal extent. Results emphasize the pleiotropic nature of gup1Delta, and are consistent with a role of Gulp1p in connection with several pathways for cell maintenance and construction/remodelling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号