首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In Corynebacterium glutamicum, the activity of the 2-oxoglutarate dehydrogenase complex was shown to be controlled by the phosphorylation of a 15-kDa protein OdhI by different serine/threonine protein kinases. In this paper, the phosphorylation status and kinetics of OdhI dephosphorylation were assessed during glutamate producing processes triggered by either a biotin limitation or a temperature upshock from 33°C to 39°C. A dephosphorylation of OdhI in C. glutamicum 2262 was observed during the biotin-limited as well as the temperature-induced glutamate-producing process. Deletion of pknG in C. glutamicum 2262 did not affect the phosphorylation status of OdhI during growth and glutamate production phases triggered by a temperature upshock, though a 40% increase in the specific glutamate production rate was measured. These results suggest that, under the conditions analyzed, PknG is not the kinase responsible for the phosphorylation of OdhI in C. glutamicum 2262. The phosphorylation status of OdhI alone is, as expected, not the only parameter that determines the performance of a specific strain, as no clear relation between the specific glutamate production rate and OdhI phosphorylation level was demonstrated.  相似文献   

2.
We found that penicillin-induced glutamate production by Corynebacterium glutamicum is inhibited when a de novo protein synthesis inhibitor, chloramphenicol, is added simultaneously with penicillin. When chloramphenicol was added 4 h after penicillin addition, glutamate production was essentially unaffected. 3H-Leucine incorporation experiments revealed that protein synthesis continued for 1 h after penicillin addition and then gradually decreased. These results suggest that de novo protein synthesis within 4 h of penicillin treatment is required for the induction of glutamate production. To identify the protein(s) necessary for penicillin-induced glutamate production, proteome analysis of penicillin-treated C. glutamicum cells was performed with two-dimensional gel electrophoresis. Of more than 500 proteins detected, the amount of 13 proteins, including OdhI (an inhibitory protein for 2-oxoglutarate dehydrogenase complex), significantly increased upon penicillin treatment. Artificial overexpression of the odhI gene resulted in the decreased specific activity of the 2-oxoglutarate dehydrogenase complex and increased glutamate production without any triggers. These results suggest that the de novo synthesis of OdhI is the necessary factor for penicillin-induced glutamate overproduction by C. glutamicum. Moreover, continuous glutamate production was achieved by overexpression of odhI without any triggers. Thus, the odhI-overexpressing strain of C. glutamicum can be useful for efficient glutamate production.  相似文献   

3.
We recently showed that the activity of the 2-oxoglutarate dehydrogenase complex (ODHC) in Corynebacterium glutamicum is controlled by a novel regulatory mechanism that involves a 15-kDa protein called OdhI and serine/threonine protein kinase G (PknG). In its unphosphorylated state, OdhI binds to the E1 subunit (OdhA) of ODHC and, thereby, inhibits its activity. Inhibition is relieved by phosphorylation of OdhI at threonine-14 by PknG under conditions requiring high ODHC activity. In this work, evidence is provided that the dephosphorylation of phosphorylated OdhI is catalyzed by a phospho-Ser/Thr protein phosphatase encoded by the gene cg0062, designated ppp. As a decreased ODHC activity is important for glutamate synthesis, we investigated the role of OdhI and PknG for glutamate production under biotin limitation and after addition of Tween-40, penicillin, or ethambutol. A ΔodhI mutant formed only 1–13% of the glutamate synthesized by the wild type. Thus, OdhI is essential for efficient glutamate production. The effect of a pknG deletion on glutamate synthesis was dependent on the induction conditions. Under strong biotin limitation and in the presence of ethambutol, the ΔpknG mutant showed significantly increased glutamate production, offering a new way to improve production strains. Dedicated to Prof. Dr. Hermann Sahm on the occasion of his 65th birthday  相似文献   

4.
Glutamate overproduction by Corynebacterium glutamicum is triggered by treatment with penicillin or Tween 40 and is accompanied by a decrease in 2-oxoglutarate dehydrogenase complex (ODHC) activity. We have reported that de novo synthesis of OdhI, which inhibits ODHC activity by interacting specifically with the E1o subunit of ODHC (OdhA), is induced by penicillin, and that odhI overexpression induces glutamate overproduction in the absence of any triggers for glutamate overproduction. In this study, to determine the function of OdhI in glutamate overproduction by C. glutamicum, changes in OdhI levels and phosphorylation status during penicillin- and Tween 40-induced glutamate overproduction were examined by western blot. The synthesis of both unphosphorylated and phosphorylated OdhI was increased by addition of Tween 40 or penicillin and the levels of unphosphorylated OdhI, which can inhibit ODHC activity, was significantly higher than those of phosphorylated OdhI, which is unable to inhibit ODHC activity. Meanwhile, the OdhA levels were maintained throughout the culture. These results indicate that OdhI synthesis is induced by additions of penicillin and Tween 40 and most synthesized OdhI is unphosphorylated, resulting in the decrease in ODHC activity and glutamate overproduction. Similarly, in the odhI-overexpressing strain, both unphosphorylated and phosphorylated OdhI were synthesized, while the levels of OdhA were nearly constant throughout culture. Our results suggest that high level of unphosphorylated OdhI regulates glutamate overproduction by C. glutamicum.  相似文献   

5.
A novel regulatory mechanism for control of the ubiquitous 2-oxoglutarate dehydrogenase complex (ODH), a key enzyme of the tricarboxylic acid cycle, was discovered in the actinomycete Corynebacterium glutamicum, a close relative of important human pathogens like Corynebacterium diphtheriae and Mycobacterium tuberculosis. Based on the finding that a C. glutamicum mutant lacking serine/threonine protein kinase G (PknG) was impaired in glutamine utilization, proteome comparisons led to the identification of OdhI as a putative substrate of PknG. OdhI is a 15-kDa protein with a forkhead-associated domain and a homolog of mycobacterial GarA. By using purified proteins, PknG was shown to phosphorylate OdhI at threonine 14. The glutamine utilization defect of the delta pknG mutant could be abolished by the additional deletion of odhI, whereas transformation of a delta odhI mutant with a plasmid encoding OdhI-T14A caused a defect in glutamine utilization. Affinity purification of OdhI-T14A led to the specific copurification of OdhA, the E1 subunit of ODH. Because ODH is essential for glutamine utilization, we assumed that unphosphorylated OdhI inhibits ODH activity. In fact, OdhI was shown to strongly inhibit ODH activity with a Ki value of 2.4 nM. The regulatory mechanism described offers a molecular clue for the reduced ODH activity that is essential for the industrial production of 1.5 million tons/year of glutamate with C. glutamicum. Moreover, because this signaling cascade is likely to operate also in mycobacteria, our results suggest that the attenuated pathogenicity of mycobacteria lacking PknG might be caused by a disturbed tricarboxylic acid cycle.  相似文献   

6.
Protein Nε‐acylation is emerging as a ubiquitous post‐translational modification. In Corynebacterium glutamicum, which is utilized for industrial production of l ‐glutamate, the levels of protein acetylation and succinylation change drastically under the conditions that induce glutamate overproduction. Here, the acylation of phosphoenolpyruvate carboxylase (PEPC), an anaplerotic enzyme that supplies oxaloacetate for glutamate overproduction was characterized. It was shown that acetylation of PEPC at lysine 653 decreased enzymatic activity, leading to reduced glutamate production. An acetylation‐mimic (KQ) mutant of K653 showed severely reduced glutamate production, while the corresponding KR mutant showed normal production levels. Using an acetyllysine‐incorporated PEPC protein, we verified that K653‐acetylation negatively regulates PEPC activity. In addition, NCgl0616, a sirtuin‐type deacetylase, deacetylated K653‐acetylated PEPC in vitro. Interestingly, the specific activity of PEPC was increased during glutamate overproduction, which was blocked by the K653R mutation or deletion of sirtuin‐type deacetylase homologues. These findings suggested that deacetylation of K653 by NCgl0616 likely plays a role in the activation of PEPC, which maintains carbon flux under glutamate‐producing conditions. PEPC deletion increased protein acetylation levels in cells under glutamate‐producing conditions, supporting the hypothesis that PEPC is responsible for a large carbon flux change under glutamate‐producing conditions.  相似文献   

7.
We recently proposed a metabolic engineering strategy for l-ornithine production based on the hypothesis that an increased intracellular supply of N-acetylglutamate may further enhance l-ornithine production in a well-defined recombinant strain of Corynebacterium glutamicum. In this work, an argJ-deficient arginine auxotrophic mutant of C. glutamicum is suppressed by a different locus of C. glutamicum ATCC13032. Overexpression of the NCgl1469 open reading frame (ORF), exhibiting N-acetylglutamate synthase (NAGS) activity, was able to complement the C. glutamicum arginine-auxotrophic argJ strain and showed increased NAGS activity from 0.03 to 0.17 units mg−1 protein. Additionally, overexpression of the NCgl1469 ORF resulted in a 39% increase in excreted l-ornithine. These results indicate that the intracellular supply of N-acetylglutamate is a rate-limiting step during l-ornithine production in C. glutamicum.  相似文献   

8.
Oxoglutarate dehydrogenase (ODH) and pyruvate dehydrogenase (PDH) complexes catalyze key reactions in central metabolism, and in Corynebacterium glutamicum there is indication of an unusual supercomplex consisting of AceE (E1), AceF (E2), and Lpd (E3) together with OdhA. OdhA is a fusion protein of additional E1 and E2 domains, and odhA orthologs are present in all Corynebacterineae, including, for instance, Mycobacterium tuberculosis. Here we show that deletion of any of the individual domains of OdhA in C. glutamicum resulted in loss of ODH activity, whereas PDH was still functional. On the other hand, deletion of AceF disabled both PDH activity and ODH activity as well, although isolated AceF protein had solely transacetylase activity and no transsuccinylase activity. Surprisingly, the isolated OdhA protein was inactive with 2-oxoglutarate as the substrate, but it gained transsuccinylase activity upon addition of dihydrolipoamide. Further enzymatic analysis of mutant proteins and mutant cells revealed that OdhA specifically catalyzes the E1 and E2 reaction to convert 2-oxoglutarate to succinyl-coenzyme A (CoA) but fully relies on the lipoyl residues provided by AceF involved in the reactions to convert pyruvate to acetyl-CoA. It therefore appears that in the putative supercomplex in C. glutamicum, in addition to dihydrolipoyl dehydrogenase E3, lipoyl domains are also shared, thus confirming the unique evolutionary position of bacteria such as C. glutamicum and M. tuberculosis.Pyruvate dehydrogenase (PDH) and 2-oxoglutarate dehydrogenase (ODH) activities catalyze key reactions in central metabolism. They exist as huge enzyme complexes of up to 11 MDa to convert a 2-oxoacid to an acyl-coenzyme A (CoA) derivative, which is acetyl- or succinyl-CoA, respectively (for reviews, see references 28 and 29 and references therein). The reaction requires distinct enzyme activities and involves the sequential actions of thiamine-pyrophosphate-dependent oxidative decarboxylation (E1, EC 1.2.4.2), with the concomitant transfer of the respective acyl group to a lipoamide residue. This is followed by the acyl group transfer to CoA, catalyzed by dihydrolipoyl transacylase activity (E2, EC 2.3.1.6), and, finally, the last step is dihydrolipoamide reoxidation to lipoamide by an FAD-dependent dihydrolipoyl dehydrogenase (E3, EC 1.8.1.4), thus enabling the initiation of a new catalytic cycle. As a result, the energy of the C1-C2 bond of an α-oxoacid is preserved in acetyl-CoA and succinyl-CoA, respectively, and NADH.PDH and ODH are structurally closely related assemblies. Structural data for the three-dimensional organization of PDH of Bacillus stearothermophilus have culminated in the current view that the complex consists of an E2 core, to which E1 and E3 are flexibly tethered (20-22). This has similarly been disclosed for the PDH of Escherichia coli (23), as well as for components of ODH (6, 8, 18, 37). The PDH possesses specific E1p and E2p proteins, and ODH possesses specific E1o and E2o proteins, whereas the dihydrolipoyl dehydrogenase component E3 is shared by the two multienzyme complexes (28, 29). Thus, PDH and ODH complexes share one identical polypeptide plus very similar polypeptides, and they also have a similar overall quaternary structure (21, 23).Within the Gram-positives, the Corynebacterineae, such as Mycobacterium tuberculosis and Corynebacterium glutamicum, have a number of distinctive features. This includes the synthesis of mycolic acids enabling the formation of a periplasmic space as in Gram-negatives (15) and the possession of unusual glycans and lipoylated glycans in their cell wall (1). It now has become clear that also the PDH and ODH of these organisms have unique properties, with respect to their protein components, three-dimensional organization, and regulation (25, 36). There is only one E2 protein present and with the isolated protein, it is shown to reconstitute PDH activity together with E1 and E3 proteins (35). An E2 protein specific to ODH is absent in M. tuberculosis, as is the case with C. glutamicum as well. Instead, Corynebacterineae possess one large fusion protein, termed OdhA in C. glutamicum and Kgd in M. tuberculosis, consisting of an E2 domain plus an E1 domain (36). However, as a lipoylated protein in Mycobacterium, only the E2 protein, which confers PDH activity in the reconstitution assay, is known, and no ODH activity is detectable in M. tuberculosis (35). A further remarkable feature found for C. glutamicum is the formation of a mixed 2-oxoacid dehydrogenase complex, since tagged OdhA copurified with the E2, E3, and E1p proteins, and vice versa, tagged E1p copurified with the E2 and E3 proteins together with OdhA (25). Another conspicuous feature shared by the OdhA and Kgd proteins is their interaction with a small regulatory protein which contains a phosphopeptide recognition domain (FHA domain) well characterized for many eukaryotic regulatory proteins. The protein is termed OdhI for C. glutamicum and GarA for M. tuberculosis (4, 25), and the structure of OdhI has recently been resolved (3). These proteins themselves are phosphorylated by one or several serine/threonine protein kinases present in the Corynebacterineae (25, 32), and they interact in their unphosphorylated form with OdhA or Kgd, respectively, to inhibit the activity of these proteins (25, 26).Due to these remarkable features of activities and structures enabling pyruvate and 2-oxoglutarate conversion in the Corynebacterineae, we decided to study PDH and ODH as well as features of their constituent polypeptides in C. glutamicum in somewhat more detail, leading to the detection of the unprecedented structural and functional organization of these important enzyme complexes within central metabolism.  相似文献   

9.
Sabine Krawczyk 《FEBS letters》2010,584(8):1463-1020
In Corynebacterium glutamicum, the unphosphorylated 15-kDa OdhI protein inhibits the activity of the 2-oxoglutarate dehydrogenase complex (ODHc) by binding to OdhA, which in corynebacteria and mycobacteria is a large fusion protein with two major domains exhibiting structural features of E1o and E2 proteins. Using copurification and surface plasmon resonance experiments with different OdhI and OdhA length variants it was shown that the entire forkhead-associated (FHA) domain of OdhI and the C-terminal dehydrogenase domain of OdhA are required for interaction. The FHA domain was also sufficient for inhibition of ODHc activity. Phosphorylated OdhI was binding-incompetent and did not inhibit ODHc activity.

Structured summary

MINT-7713362:OdhI (uniprotkb:Q8NQJ3) binds (MI:0407) to OdhA (uniprotkb:Q8NRC3) by surface plasmon resonance (MI:0107)MINT-7713261:OdhI (uniprotkb:Q8NQJ3) physically interacts (MI:0915) with OdhA (uniprotkb:Q8NRC3) by pull down (MI:0096)  相似文献   

10.
Here, we demonstrated the one-step production of cadaverine from starch using a Corynebacterium glutamicum strain coexpressing Streptococcus bovis 148 α-amylase (AmyA) and Escherichia coli K-12 lysine decarboxylase (CadA). We constructed the E. coliC. glutamicum shuttle vector, which produces CadA under the control of the high constitutive expression (HCE) promoter, and transformed this vector into C. glutamicum CSS secreting AmyA. The engineered C. glutamicum expressed both CadA and AmyA, which retained their activity. We performed cadaverine fermentation using 50 g/l soluble starch as the sole carbon source without pyridoxal-5’-phosphate, which is the coenzyme for CadA. C. glutamicum coexpressing AmyA and CadA successfully produced cadaverine from soluble starch and the yield of cadaverine was 23.4 mM after 21 h. CadA expression levels under the control of the HCE promoter were assumed to be sufficient to convert l-lysine to cadaverine, as there was no accumulation of l-lysine in the culture medium during fermentation. Thus, we demonstrated that C. glutamicum has great potential to produce cadaverine from biomass resources.  相似文献   

11.
With the purpose of generating a microbial strain for l-ornithine production in Corynebacterium glutamicum, genes involved in the central carbon metabolism were inactivated so as to modulate the intracellular level of NADPH, and to evaluate their effects on l-ornithine production in C. glutamicum. Upon inactivation of the 6-phosphoglucoisomerase gene (pgi) in a C. glutamicum strain, the concomitant increase in intracellular NADPH concentrations from 2.55 to 5.75?mmol?g?1 (dry cell weight) was accompanied by reduced growth rate and l-ornithine production, suggesting that l-ornithine production is not solely limited by NADPH availability. In contrast, inactivation of the gluconate kinase gene (gntK) led to a 51.8?% increase in intracellular NADPH concentration, which resulted in a 49.9?% increase in l-ornithine production. These results indicate that excess NADPH is not necessarily rate-limiting, but is required for increased l-ornithine production in C. glutamicum.  相似文献   

12.
Potassium accumulation is an essential aspect of bacterial response to diverse stress situations; consequently its uptake plays a pivotal role. Here, we show that the Gram-positive soil bacterium Corynebacterium glutamicum which is employed for the large-scale industrial production of amino acids requires potassium under conditions of ionic and non-ionic osmotic stress. Besides the accumulation of high concentrations of potassium contributing significantly to the osmotic potential of the cytoplasm, we demonstrate that glutamate is not the counter ion for potassium under these conditions. Interestingly, potassium is required for the activation of osmotic stress-dependent expression of the genes betP and proP. The Kup-type potassium transport system which is present in C. glutamicum in addition to the potassium channel CglK does not contribute to potassium uptake at conditions of hyperosmotic stress. Furthermore, we established a secondary carrier of the KtrAB type from C. jeikeium in C. glutamicum thus providing an experimental comparison of channel- and carrier-mediated potassium uptake under osmotic stress. While at low potassium availability, the presence of the KtrAB transporter improves both potassium accumulation and growth of C. glutamicum upon osmotic stress, at proper potassium supply, the channel CglK is sufficient.  相似文献   

13.
A 24-kb plasmid with 21 open reading frames (ORFs) was newly isolated from Corynebacterium glutamicum ATCC 14997 and named pCGR2. Three of its ORFs were indispensable for stable autonomous replication of pCGR2 in C. glutamicum: in the absence of selective pressure, deletion derivatives of pCGR2 containing the three ORFs showed stability in C. glutamicum for over 50 generations. The first of these ORFs encoded replicase repA whose gene product revealed high amino acid sequence similarity to corresponding gene products of C. glutamicum pCG1-family plasmids in general, and to that of pTET3 plasmid repA in particular. The other two ORFs were located upstream of repA and exhibited high sequence similarity to pTET3 parA and parB, respectively. Interestingly, plasmids based on the pCGR2 were compatible not only with those based on different family plasmids (pBL1, pCASE1) but also with those based on pCG1-family plasmid. Plasmids comprising pCGR2 repA showed a copy number of four in C. glutamicum. The number increased to 240 upon introduction of a mutation within the repA origin of the putative promoter for counter-transcribed RNA. This 60-fold increase in copy number should immensely contribute towards enhanced expression of desired genes in C. glutamicum.  相似文献   

14.
Corynebacterium glutamicum (C. glutamicum) is a highly promising alternative prokaryotic host for recombinant protein expression, as it possesses several significant advantages over Escherichia coli (E. coli), the currently leading bacterial protein expression system. During the past decades, several experimental techniques and vector components for genetic manipulation of C. glutamicum have been developed and validated, including strong promoters for tightly regulating target gene expression, various types of plasmid vectors, protein secretion systems and methods of genetically modifying the host strain genome to improve protein production potential. This review critically discusses current progress in establishing C. glutamicum as a host for recombinant protein expression, and examines, in depth, some successful case studies of actual application of this expression system. The established “expression tool box” for developing novel constructs based on C. glutamicum as a host are also evaluated. Finally, the existing issues and solutions in process development with C. glutamicum as a host are specifically addressed.  相似文献   

15.
We analyzed 1,2-propanediol (1,2-PD) production in metabolically engineered Corynebacterium glutamicum. Wild-type C. glutamicum produced 93 μM 1,2-PD after 132 h incubation under aerobic conditions. No gene encoding the methylglyoxal synthase (MGS) which catalyzes the first step of 1,2-PD synthesis from the glycolytic pathway was detected on the C. glutamicum genome, but several genes annotated as encoding putative aldo-keto reductases (AKRs) were present. AKR functions as a methylglyoxal reductase in the 1,2-PD synthesis pathway. Expressing Escherichia coli mgs gene in C. glutamicum increased 1,2-PD yield 100-fold, suggesting that wild-type C. glutamicum carries the genes downstream of MGS in the 1,2-PD synthesis pathway. Furthermore, simultaneous overexpression of mgs and cgR_2242, one of the genes annotated as AKRs, enhanced 1,2-PD production to 24 mM. This work establishes that 1,2-PD synthesis by C. glutamicum, previously unknown, is possible.  相似文献   

16.
A critical factor in the biotechnological production of l-lysine with Corynebacterium glutamicum is the sufficient supply of NADPH. The membrane-integral nicotinamide nucleotide transhydrogenase PntAB of Escherichia coli can use the electrochemical proton gradient across the cytoplasmic membrane to drive the reduction of NADP+ via the oxidation of NADH. As C. glutamicum does not possess such an enzyme, we expressed the E. coli pntAB genes in the genetically defined C. glutamicum lysine-producing strain DM1730, resulting in membrane-associated transhydrogenase activity of 0.7 U/mg protein. When cultivated in minimal medium with 10% (w/v) carbon source, the presence of transhydrogenase slightly reduced glucose consumption, whereas the consumption of fructose, glucose plus fructose, and, in particular, sucrose was stimulated. Biomass was increased by pntAB expression between 10 and 30% on all carbon sources tested. Most importantly, the lysine concentration was increased in the presence of transhydrogenase by ∼10% on glucose, ∼70% on fructose, ∼50% on glucose plus fructose, and even by ∼300% on sucrose. Thus, the presence of a proton-coupled transhydrogenase was shown to be an efficient way to improve lysine production by C. glutamicum. In contrast, pntAB expression had a negative effect on growth and glutamate production of C. glutamicum wild type.  相似文献   

17.
Summary Hybrid plasmids were constructed by combining in vitro the Escherichia coli plasmid pGA22, which carries the genes determining resistance to kanamycin, tetracycline, chloramphenicol and ampicillin, with the cryptic plasmids, pCG1 and pCG2, of Corynebacterium glutamicum. The hybrid plasmids were introduced into C. glutamicum and E. coli and replicated in both hosts. They expressed all the E. coli resistance phenotypes except ampicillin resistance in C. glutamicum. The levels of antibiotic inactivating enzymes encoded on these plasmids were about four to ten times lower in C. glutamicum than in E. coli. Despite the lack of expression of ampicillin resistance, -lactamase activity was detected in C. glutamicum carrying hybrid plasmids.  相似文献   

18.
Corynebacterium glutamicum, a Gram-positive bacterium, has been widely used for the industrial production of amino acids, such as glutamate and lysine, for decades. Due to several characteristics – its ability to secrete properly folded and functional target proteins into culture broth, its low levels of endogenous extracellular proteins and its lack of detectable extracellular hydrolytic enzyme activity – C. glutamicum is also a very favorable host cell for the secretory production of heterologous proteins, important enzymes, and pharmaceutical proteins. The target proteins are secreted into the culture medium, which has attractive advantages over the manufacturing process for inclusion of body expression – the simplified downstream purification process. The secretory process of proteins is complicated and energy consuming. There are two major secretory pathways in C. glutamicum, the Sec pathway and the Tat pathway, both have specific signal peptides that mediate the secretion of the target proteins. In the present review, we critically discuss recent progress in the secretory production of heterologous proteins and examine in depth the mechanisms of the protein translocation process in C. glutamicum. Some successful case studies of actual applications of this secretory expression host are also evaluated. Finally, the existing issues and solutions in using C. glutamicum as a host of secretory proteins are specifically addressed.  相似文献   

19.
Site-directed mutations were introduced into PsbO protein of photosystem 2 to study the role of two lysine residues, 223 and 226 (LGAKPPK), in the green alga Chlamydomonas reinhardtii. Lysines 223 and 226 homologous to His228 and His231 from cyanobacteria are located on the protein side facing the lumen and can participate in formation of a channel connecting the Mn cluster with the intrathylakoid space. The K223E and K226E mutants were generated on the basis of the ΔpsbO strain of C. reinhardtii with the substitution of glutamic acid for the lysine residues. The K226E mutation leads to a decrease in stability of the protein and development of the ΔpsbO phenotype (the absence of both photosynthetic activity of photosystem 2 and photoautotrophic growth), with substantially decreased PsbO content in the cells. In the case of K223E, the mutant strain accumulated the normal level of PsbO protein and was able to grow photoautotrophically and to evolve oxygen. However, the rate of oxygen evolution and the F v/F m ratio were reduced by 15–20% compared to the control. Also, the time of the dark decay of F v in the presence of DCMU in the cells of the K223E mutant was increased, indicating impairment in the water-oxidizing complex. In general, our study shows the importance of amino acids K223 and K226 located at the lumenal surface of PsbO protein for the activity of the water-oxidizing complex.  相似文献   

20.
The twin-arginine translocation (Tat) system transports folded proteins across the cytoplasmic membrane of bacteria and the thylakoid membrane of plant chloroplasts. Escherichia coli and other Gram-negative bacteria possess a TatABC-type Tat translocase in which each of the three inner membrane proteins TatA, TatB, and TatC performs a mechanistically distinct function. In contrast, low-GC Gram-positive bacteria, such as Bacillus subtilis, use a TatAC-type minimal Tat translocase in which the TatB function is carried out by a bifunctional TatA. In high-GC Gram-positive Actinobacteria, such as Mycobacterium tuberculosis and Corynebacterium glutamicum, tatA, tatB, and tatC genes can be identified, suggesting that these organisms, just like E. coli, might use TatABC-type Tat translocases as well. However, since contrary to this view a previous study has suggested that C. glutamicum might in fact use a TatAC translocase with TatB only playing a minor role, we reexamined the requirement of TatB for Tat-dependent protein translocation in this microorganism. Under aerobic conditions, the misassembly of the Rieske iron-sulfur protein QcrA was identified as a major reason for the severe growth defect of Tat-defective C. glutamicum mutant strains. Furthermore, our results clearly show that TatB, besides TatA and TatC, is strictly required for unimpaired aerobic growth. In addition, TatB was also found to be essential for the secretion of a heterologous Tat-dependent model protein into the C. glutamicum culture supernatant. Together with our finding that expression of the C. glutamicum TatB in an E. coli ΔtatB mutant strain resulted in the formation of an active Tat translocase, our results clearly indicate that a TatABC translocase is used as the physiologically relevant functional unit for Tat-dependent protein translocation in C. glutamicum and, most likely, also in other TatB-containing Actinobacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号