首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Tissue & cell》2016,48(5):533-543
We investigated the regenerative effects and regulatory mechanisms of human umbilical cord mesenchymal stem cells (UC-MSCs)-derived conditioned medium (CM) in atrophied muscles using an in vivo model. To determine the appropriate harvest point of UC-CM, active factor content was analyzed in the secretome over time. A muscle atrophy model was induced in rats by hindlimb suspension (HS) for 2 weeks. Next, UC-CM was injected directly into the soleus muscle of both hind legs to assess its regenerative efficacy on atrophy-related factors after 1 week of HS. During HS, muscle mass and muscle fiber size were significantly reduced by over 2-fold relative to untreated controls. Lactate accumulation within the muscles was similarly increased. By contrast, all of the above analytical factors were significantly improved in HS-induced rats by UC-CM injection compared with saline injection. Furthermore, the expression levels of desmin and skeletal muscle actin were significantly elevated by UC-CM treatment. Importantly, UC-CM effectively suppressed expression of the atrophy-related ubiquitin E3-ligases, muscle ring finger 1 and muscle atrophy F-box by 2.3- and 2.1-fold, respectively. UC-CM exerted its actions by stimulating the phosphoinositol-3-kinase (PI3K)/Akt signaling cascade. These findings suggest that UC-CM provides an effective stimulus to recover muscle status and function in atrophied muscles.  相似文献   

2.
Chronic exposure to solar radiation is the primary cause of photoaging and benign and malignant skin tumors. A conditioned serum-free medium (SFM) was prepared from umbilical cord mesenchymal stem cells (UC-MSCs) and its anti-photoaging effect, following chronic UV irradiation in vitro and in vivo, was evaluated. UC-MSC SFM had a stimulatory effect on human dermal fibroblast proliferation and reduced UVA-induced cell death. In addition, UC-MSC SFM blocked UVA inhibition of superoxide dismutase activity. Topical application of UC-MSC SFM to mouse skin prior to UV irradiation blocked the inhibition of superoxide dismutase and glutathione peroxidase activities, and prevented the upregulation of malonaldehyde. UC-MSC SFM thus protects against photoaging induced by UVA and UVB radiation and is a promising candidate for skin anti-photoaging treatments.  相似文献   

3.
4.
Developing treatments that inhibit skin aging is an important research project. Rejuvenation, which focuses on prevention of skin aging, is one of the major issues. Recent studies suggested that mesenchymal stem cells (MSCs) secrete many cytokines, which are important in wound healing. In this study, we investigated the effect of human umbilical cord blood-derived mesenchymal stem cells conditioned media (USC-CM) in cutaneous wound healing and collagen synthesis. We found that USC-CM has many useful growth factors associated with skin rejuvenation, such as Epithelial Growth Factor (EGF), basic Fibroblast Growth Factor (bFGF), Platelet Derived Growth Factor (PDGF), Hepatocyte Growth Factor (HGF), Collagen type 1, and especially, one of the rejuvenation factors, the growth differentiation factor-11 (GDF-11). Our in vitro results showed that USC-CM stimulate growth and extracellular matrix (ECM) production of Human Dermal Fibroblasts (HDFs) compared to those of other MSCs conditioned media (CM) from different origins. Moreover, we evaluated the roles of GDF-11. The results showed that GDF-11 accelerates growth, migration and ECM production of HDFs. Our In vivo results showed that topical treatment of USC-CM showed anti-wrinkle effect and significantly increased dermal density in women. In conclusion, USC-CM has various useful growth factors including GDF-11 that can stimulate skin rejuvenation by increasing growth and ECM production of HDFs.  相似文献   

5.
Human mesenchymal stem cells isolated from the umbilical cord   总被引:16,自引:0,他引:16  
Mesenchymal stem cells (MSCs) are known as a population of multi-potential cells able to proliferate and differentiate into multiple mesodermal tissues including bone, cartilage, muscle, ligament, tendon, fat and stroma. In this study human MSCs were successfully isolated from the umbilical cords. The research characteristics of these cells, e.g., morphologic appearance, surface antigens, growth curve, cytogenetic features, cell cycle, differentiation potential and gene expression were investigated. After 2weeks of incubation, fibroblast-like cells appeared to be dominant. During the second passage the cells presented a homogeneous population of spindle fibroblast-like cells. After more than 4months (approximately 26 passages), the cells continued to retain their characteristics. Flow cytometry analysis revealed that CD29, CD44, CD95, CD105 and HLA-I were expressed on the cell surface, but there was no expression of hematopoietic lineage markers, such as CD34, CD38, CD71 and HLA-DR. Chromosomal analysis showed the cells kept a normal karyotype. The cell cycle at the third passage showed the percentage of G(0)/G(1), G(2)/M and S phase were 88.86%, 5.69% and 5.45%, respectively. The assays in vitro demonstrated the cells exhibited multi-potential differentiation into osteogenic and adipogenic cells. Both BMI-1 and nucleostemin genes, expressed in adult MSCs from bone marrow, were also expressed in umbilical cord MSCs. Here we show that umbilical cords may be a novel alternative source of human MSCs for experimental and clinical applications.  相似文献   

6.

Background  

There are no published studies on stem cells from equine cord blood although commercial storage of equine cord blood for future autologous stem cell transplantations is available. Mesenchymal stem cells (MSC) have been isolated from fresh umbilical cord blood of humans collected non-invasively at the time of birth and from sheep cord blood collected invasively by a surgical intrauterine approach. Mesenchymal stem cells isolation percentage from frozen-thawed human cord blood is low and the future isolation percentage of MSCs from cryopreserved equine cord blood is therefore expectedly low. The hypothesis of this study was that equine MSCs could be isolated from fresh whole equine cord blood.  相似文献   

7.
目的 从脐带中分离培养脐带间充质干细胞(mesenchymal stem cell, MSC) 并进行鉴定,阐明其多向分化的潜在作用.方法 收集健康胎儿脐带,分离培养脐带中的间充质干细胞,以流式细胞仪对培养的间充质干细胞进行细胞表面标志检测,多种成分联合诱导其向脂肪、成骨方向分化,细胞化学染色检测诱导后的细胞变化.结果 脐带中分离培养的间充质干细胞不表达造血细胞系的标志CD34、CD45、HLA-DR,强表达CD105、CD44、CD90,在适当的诱导条件下可向脂肪及成骨方向分化.结论 脐带中存在具有多向分化潜能的间充质干细胞.  相似文献   

8.
Numerous papers have reported that mesenchymal stem cells (MSCs) can be isolated from various sources such as bone marrow, adipose tissue and others. Nonetheless it is an open question whether MSCs isolated from different sources represent a single cell lineage or if cells residing in different organs are separate members of a family of MSCs. Subendothelial tissue of the umbilical cord vein has been shown to be a promising source of MSCs. The aim of this study was to isolate and characterize cells derived from the subendothelial layer of umbilical cord veins as regards their clonogenicity and differentiation potential. The results from these experiments show that cells isolated from the umbilical cord vein displayed fibroblast-like morphology and grew into colonies. Immunophenotyping by flow cytometry revealed that the isolated cells were negative for the hematopoietic line markers HLA-DR and CD34 but were positive for CD29, CD90 and CD73. The isolated cells were also positive for survivin, Bcl-2, vimentin and endoglin, as confirmed by RT-PCR and immunofluorescence. These cells can be induced to differentiate into osteogenic and adipogenic cells, but a new finding is that these cells can be induced to differentiate into endothelial cells expressing CD31, vWF and KDR-2, and also form vessel-like structures in Matrigel. The differentiated cells stopped expressing survivin, thus showing a diminished proliferative potential. It can be assumed that the subendothelial layer of the umbilical cord vein contains a population of cells with the overall characteristics of MSCs, with the additional capability to transform into endothelial cells.  相似文献   

9.
Objectives: Mesenchymal–epithelial interactions play a pivotal role in tubular morphogenesis and in maintaining the integrity of the kidney. During renal repair, similar mechanisms may regulate cellular reorganization and differentiation. We have hypothesized that soluble factors from proximal tubular epithelial cells (PTC) induce differentiation of adipose-derived adult mesenchymal stem cells (ASC). This hypothesis has been tested using cultured ASC and PTC.
Material and methods: Conditioned medium was prepared from injured PTC and transferred to ASC cultures. ASC proliferation was analysed by a fluorometric and photometric assay. Signal transduction was analysed by phosphorylation of extracellular signal-regulated kinase 1 and 2 (ERK1/ERK2). Grade of ASC differentiation was assessed by morphological analysis and cell expression of characteristic markers.
Results: Conditioned medium significantly induced proliferation and phosphorylation of ERK1/ERK2 of ASC. After 12 days of incubation, cell morphology changed to an epithelial-like monolayer. Expression of cytokeratin 18 was induced by conditioned medium, while α-smooth muscle actin, CD49a and CD90 expression decreased. These alterations strongly indicate onset of the differentiation process to the epithelial lineage. In summary, soluble factors from PTC induce signal transduction and differentiation of ASC.
Conclusions: Our study shows that conditioned medium from renal tubular epithelial cells provides a convenient source of inductive signals to initiate differentiation of ASC towards epithelial lineage. We deduce that these interactions may play an important role during renal repair mechanisms.  相似文献   

10.
Cho H  Seo YK  Jeon S  Yoon HH  Choi YK  Park JK 《Life sciences》2012,90(15-16):591-599
AimsAdult stem cells, such as umbilical cord-derived mesenchymal stem cells (UC-MSCs), have the potential to differentiate into various types of cells, including neurons. Research has shown that mechanical stimulation induces a response in MSCs, specifically, low and high intensity sub-sonic vibration (SSV) has been shown to facilitate wound healing. In this study, the effects of SSV were examined by assessing the proliferation and differentiation properties of MSCs.Main methodshUC-MSCs were isolated from Wharton's jelly, including the smooth muscle layer of the umbilical cord. During subculture, the cells were passaged every 5–6 days using nonhematopoietic stem cell media. To measure the effect of sonic vibration, SSV was applied to these cells continuously for 5 days.Key findingsIn this study, the morphology of hUC-MSCs was altered to resemble neurons by SSV. Further, the mRNA and protein levels of neuron-specific markers, including MAP2, NF-L, and NeuroD1, increased. In addition, other neural cell markers, such as GFAP and O4, were increased. These results suggest that hUC-MSCs differentiated into neural cells upon SSV nonselectively. In a mechanism study, the ERK level increased in a time-dependent manner upon SSV for 12 h.SignificanceThe results of this study suggest that SSV caused hUC-MSCs to differentiate into neural cells via ERK activation.  相似文献   

11.
12.
13.
《Tissue & cell》2016,48(6):653-658
Cord tissue fills the umbilical cord around the blood vessels and contains types of stem cells (mesenchymal stem cells or MSCs) that are not generally found in cord blood. MSCs are the stem cells that give rise to many of the “support tissues” in the body, including bone, cartilage, fat and muscle. Umbilical Cord Tissue cells (UCTs) possessing the capacity to differentiate into various cell types such as osteoblasts, chondrocytes and adipocytes have been previously isolated from different species including human, canine, murine, avian species etc. The present study documents the existence of similar multipotential stem cells in caprine UCTs having similar growth and morphological characteristics. The cells were isolated from caprine umbilical cord and cultivated in DMEM (low glucose) supplemented with 15% FBS, L-glutamine and antibiotics. Primary culture achieved confluence in 5–7 days having spindle shaped morphology. The cells were morphologically homogeneous, showed robust proliferation ability with a population doubled time of 92.07 h as well as normal karyotype. In vitro self-renewal capacity was demonstrated by colony-forming unit assay (CFU). The cells expressed MSC specific markers and showed multi-differentiation capability into adipogenic and osteogeneic. The results indicated that caprine UCTs (cUCTs) were isolated and characterized from umbilical cord tissue which can be used for tissue regeneration.  相似文献   

14.
一种大量快速分离脐带间充质干细胞的新方法   总被引:1,自引:0,他引:1  
目的:探讨体外快速大量分离脐带间充质干细胞的新方法。方法:采用复合胶原NB4、dispaseII、透明质酸酶三种酶消化3h,加入PBSA溶液稀释,离心获得脐带间充质干细胞,培养;用流式细胞仪对P3代细胞进行表面标记的鉴定,用化学诱导的方法使第3代细胞向脂肪、骨、软骨细胞分化,2~4周后,分别行oilred、Safranin'O和茜素红染色,倒置显微镜下观察诱导结果。结果:经3种酶消化和PBSA稀释,短时间内从脐带中获得了大量间充质干细胞;伴随着细胞的传代,形态逐渐均一,传至第3代,细胞的形态已基本相似;流式细胞仪鉴定,细胞强表达间充质细胞的特异性标记CD90,CD73,CD105,而不表达造血系或内皮系细胞的标记CD45、CD14、CD11、CD34、CD19,也不表达主要组织相容性抗原HLA-DR;向脂肪细胞诱导后第4周,oilred染色见细胞内大量红染的脂滴;向软骨细胞诱导后第4周,Safranin'O染色见多数切片呈阳性,细胞团块中存在大量软骨特异性的陷窝样结构;向骨细胞诱导后第4周,茜素红染色发现肉眼可见的广泛散在的红色阳性钙结节。结论:本研究所采用的3种酶消化结合PBSA稀释的方法可以快速获得脐带间...  相似文献   

15.
Increasing attention is being placed on the use of adult stem cells due to their potential therapeutic applications for unmet medical needs. Among all adult stem cell types, umbilical cord mesenchymal stem cells (UCMSCs) can be collected easily and does not harm newborns and the mothers. The excellent pluripotency and proliferation potential of UCMSCs has been previously demonstrated by many groups. However, little is known about the different characteristics of these cells due to diversity of donors (e.g., the mothers’ age). Regarding this, we examined the effect of mothers’ age-related variation on the basic properties (proliferation, colony forming and differentiation potential) of UCMSCs in vitro. The data evidenced that elder mother results in reduction of both proliferative and colony forming capacity of UCMSCs, and impacts proliferative potential more significantly. Data also evidenced that a decline in osteogenic potential, but an increase in adipogenic potential of UCMSCs from the elder donors. Additionally, no phenotypic differences were observed by flow cytometry analysis using a panel of 6 main surface antigen markers. We observed no differences in karyotyping and both UCMSCs populations exhibited diploid cells without chromosomal aberrations. The results of our study are the basis for banking UCMSCs, which may be labeled with donors’ information for different experiments, and the mother age-related differences in characteristics of UCMSCs should be taken into account when these cells are considered for further practical applications.  相似文献   

16.
17.
The umbilical cord represents the link between mother and fetus during pregnancy. This cord is usually discarded as a biological waste after the child’s birth; however, its importance as a “store house” of stem cells has been explored recently. We developed a method of simultaneous isolation of endothelial cells (ECs) from the vein and mesenchymal stem cells from umbilical cord Wharton’s jelly of the same cord. The isolation protocol has been simplified, modified, and improvised with respect to choice of enzyme and enzyme mixture, digestion time, cell yield, cell growth, and culture medium. Isolated human umbilical vascular ECs (hUVECs) were positive for von-Willibrand factor, a classical endothelial marker, and could form capillary-like structures when seeded on Matrigel, thus proving their functionality. The isolated human umbilical cord mesenchymal stem cells (hUCMSCs) were found positive for CD44, CD90, CD 73, and CD117 and were found negative for CD33, CD34, CD45, and CD105 surface markers; they were also positive for cytoskeleton markers of smooth muscle actin and vimentin. The hUCMSCs showed multilineage differentiation potential and differentiated into adipogenic, chondrogenic, osteogenic, and neuronal lineages under influence of lineage specific differentiation medium. Thus, isolating endothelial cells as well as mesenchymal cells from the same umbilical cord could lead to complete utilization of the available tissue for the tissue engineering and cell therapy.  相似文献   

18.
19.
20.
Mesenchymal stem cells (MSCs) offer promise as therapeutic aid in the repair of tendon and ligament injuries in race horses. Fetal adnexa is considered as an ideal source of MSCs due to many advantages, including non-invasive nature of isolation procedures and availability of large tissue mass for harvesting the cells. However, MSCs isolated from equine fetal adnexa have not been fully characterized due to lack of species-specific markers. Therefore, this study was carried out to isolate MSCs from equine umbilical cord blood (UCB) and characterize them using cross-reactive markers. The plastic-adherent cells could be isolated from 13 out of 20 (65 %) UCB samples. The UCB derived cells proliferated till passage 20 with average cell doubling time of 46.40 ± 2.86 h. These cells expressed mesenchymal surface markers but did not express haematopoietic/leucocytic markers by RT-PCR and immunocytochemistry. The phenotypic expression of CD29, CD44, CD73 and CD90 was shown by 96.36 ± 1.28, 93.40 ± 0.70, 73.23 ± 1.29 and 46.75 ± 3.95 % cells, respectively in flow cytometry, whereas, reactivity against the haematopoietic antigens CD34 and CD45 was observed only in 2.4 ± 0.20 and 0.1 ± 0.0 % of cells, respectively. Osteogenic and chondrogenic differentiation could be achieved using established methods, whereas the optimum adipogenic differentiation was achieved after supplementing media with 15 % rabbit serum and 20 ng/ml of recombinant human insulin. In this study, we optimized methodology for isolation, cultural characterization, differentiation and immunophenotyping of MSCs from equine UCB. Protocols and markers used in this study can be employed for unequivocal characterization of equine MSCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号