首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Isoprene is a highly reactive gas, and is emitted in such large quantities from the biosphere that it substantially affects the oxidizing potential of the atmosphere. Relatively little is known about the control of isoprene emission at the molecular level. Using transgenic tobacco lines harbouring a poplar isoprene synthase gene, we examined control of isoprene emission. Isoprene synthase required chloroplastic localization for catalytic activity, and isoprene was produced via the methyl erythritol (MEP) pathway from recently assimilated carbon. Emission patterns in transgenic tobacco plants were remarkably similar to naturally emitting plants under a wide variety of conditions. Emissions correlated with photosynthetic rates in developing and mature leaves, and with the amount of isoprene synthase protein in mature leaves. Isoprene synthase protein levels did not change under short-term increase in heat/light, despite an increase in emissions under these conditions. A robust circadian pattern could be observed in emissions from long-day plants. The data support the idea that substrate supply and changes in enzyme kinetics (rather than changes in isoprene synthase levels or post-translational regulation of activity) are the primary controls on isoprene emission in mature transgenic tobacco leaves.  相似文献   

2.
3.
Understanding regulation of phenolic metabolism underpins attempts to engineer plants for diverse properties such as increased levels of antioxidant flavonoids for dietary improvements or reduction of lignin for improvements to fibre resources for industrial use. Previous attempts to alter phenolic metabolism at the level of the second enzyme of the pathway, cinnamate 4-hydroxylase have employed antisense expression of heterologous sequences in tobacco. The present study describes the consequences of homologous sense expression of tomato CYP73A24 on the lignin content of stems and the flavonoid content of fruits. An extensive number of lines were produced and displayed four developmental variants besides a normal phenotype. These aberrant phenotypes were classified as dwarf plants, plants with distorted (curly) leaves, plants with long internodes and plants with thickened waxy leaves. Nevertheless, some of the lines showed the desired increase in the level of rutin and naringenin in fruit in a normal phenotype background. However this could not be correlated directly to increased levels of PAL and C4H expression as other lines showed less accumulation, although all lines tested showed increases in leaf chlorogenic acid which is typical of Solanaceous plants when engineered in the phenylpropanoid pathway. Almost all transgenic lines analysed showed a considerable reduction in stem lignin and in the lines that were specifically examined, this was correlated with partial sense suppression of C4H. Although not the primary purpose of the study, these reductions in lignin were amongst the greatest seen in plants modified for lignin by manipulation of structural genes. The lignin showed higher syringyl to coniferyl monomeric content contrary to that previously seen in tobacco engineered for downregulation of cinnamate 4-hydroxylase. These outcomes are consistent with placing CYP73A24 more in the lignin pathway and having a role in flux control, while more complex regulatory processes are likely to be involved in flavonoid and chlorogenic acid accumulation.  相似文献   

4.
The tumour-inducing T-DNA gene 4 (T-cyt gene) of the nopaline Ti plasmid pTiC58 was cloned and introduced into tobacco cells by leaf disc transformation using Agrobacterium plasmid vectors. Tobacco shoots exposed to elevated cytokinin levels were unable to develop roots and lacked apical dominance. Using exogenously applied phytohormone manipulations we were able to regenerate morphologically normal transgenic tobacco plants which differed in endogenous cytokinin levels from normal untransformed plants. Although T-cyt gene mRNA levels, as revealed by dot-blot hybridization data, in these rooting plants were only about half those in primary transformed shoots the total amount of cytokinins was much lower than in crown gall tissue or cytokinin-type transformed shoots as reported by others. Nevertheless the cytokinin content in T-cyt plants was about 3 times greater than in control tobacco plants.Elevated cytokinin levels have been shown to change the expression of several plant genes, including some nuclear genes encoding chloroplast proteins. Our results show that the mRNA levels of chloroplast rbcL gene increase in cytokinin-type transgenic tobacco plants as compared with untransformed plants. Data obtained suggest that T-cyt transgenic plants are a good model for studying plant gene activity in different parts of the plant under endogenous cytokinin stress.  相似文献   

5.
6.
7.
Hop is an important source of secondary metabolites, such as flavonoids. Some of these are pharmacologically active. Nevertheless, the concentration of some classes as flavonoids in wild-type plants is rather low. To enhance the production in hop, it would be interesting to modify the regulation of genes in the flavonoid biosynthetic pathway. For this purpose, the regulatory factor PAP1/AtMYB75 from Arabidopsis thaliana L. was introduced into hop plants cv. Tettnanger by Agrobacterium-mediated genetic transformation. Twenty kanamycin-resistant transgenic plants were obtained. It was shown that PAP1/AtMYB75 was stably incorporated and expressed in the hop genome. In comparison to the wild-type plants, the color of female flowers and cones of transgenic plants was reddish to pink. Chemical analysis revealed higher levels of anthocyanins, rutin, isoquercitin, kaempferol-glucoside, kaempferol-glucoside-malonate, desmethylxanthohumol, xanthohumol, α-acids and β-acids in transgenic plants compared to wild-type plants.  相似文献   

8.
Plant ageing and senescence are associated with increased levels of reactive oxygen species. Level of cytokinins, the apparent inhibitors of plant senescence, is controlled by their irreversible degradation catalysed by cytokinin oxidase/dehydrogenase (CKX). We investigated the CKX activity, cytokinin concentration, and activities of antioxidative enzymes in tobacco (Nicotiana tabacum L. cv. Samsun NN) overexpressing the Arabidopsis gene for AtCKX2, targeted for extracellular secretion pathway. The control and AtCKX2 plants differed substantially in their phenotypes. When the lowest leaves in controls became yellow all leaves in AtCKX2 tobacco still remained green. Activities of antioxidant enzymes decreased with leaf age in both tobacco plants except for ascorbate peroxidase (APX) in the old leaves and glutathione reductase (GR) in young leaves. Enhancement of GR activity at all leaf stages, an increase of superoxide dismutase and a decline of catalase in young leaves, as well as an increase of APX in the oldest leaves were observed in AtCKX2 plant compared to control. Similar changes were detected after determination of isoenzymes on zymograms. It is evident that AtCKX2 plants had postponed onset of senescence despite the significantly lowered level of cytokinins. Enhanced antioxidant protection, especially in the oldest leaves, could subsidise this phenomenon.  相似文献   

9.
This study generated transgenic tobacco plants expressing trehalose phosphorylase of Pleurotus sajor-caju (PsTP) constitutively under the control of the cauliflower mosaic virus (CaMV) 35S promoter. Sixteen transgenic lines were selected by genomic Southern blot analysis for further study. Unlike yeast TPS1-transformed or Escherichia coli TPS1-transformed tobacco or potato, all of the PsTP transgenic tobacco lines showed normal growth phenotypes both in the culture tubes and soil mixture. The study measured the trehalose contents of PsTP-transformed tobacco plants as well as the wild type and empty vector-transformed control plants. Results showed that the PsTP transformant contained 6.3molg–1 of plant tissues, while the wild type and the control plants had only minimal levels of trehalose. Because this study detected a significant amount of trehalose in PsTP transgenic tobacco plants, it decided to carry out a bioanalysis of the PsTP transgenic tobacco plants by drought treatment by not watering the plants for over 10days. A significant difference in drought resistance was observed from the second nonwatering day between the transgenic and the control tobacco plants. The transgenic tobacco plants had normal growth and did not wither, while the wild type and the only empty vector-transformed control plants withered severely. Among all the transgenic lines, line 10-4 showed the strongest resistance to drought stress. It did not wither even after 10days without watering. In addition, when the drought resistance of PsTP transgenic tobacco plants was tested using detached leaves, most transgenic plants, except one line, showed better capacity to retain water than the empty vector-transformed transgenic plant.  相似文献   

10.
We developed a site-directed integration (SDI) system for Agrobacterium-mediated transformation to precisely integrate a single copy of a desired gene into a predefined target locus by recombinase-mediated cassette exchange (RMCE). We produced site-specific transgenic tobacco plants from four target lines and examined expression of the transgene in T1 site-specific transgenic tobacco plants, which were obtained by backcrossing. We found that site-specific transgenic plants from the same target lines showed approximately the same level of expression of the transgene. Moreover, we demonstrated that site-specific transgenic plants showed much less variability of transgene expression than random-integration transgenic plants. Interestingly, transgenes in the same direction at the same target locus showed the same level of activity, but transgenes in different directions showed different levels of activity. The expression levels of transgene did not correlate with those of the target gene. Our results showed that the SDI system could benefit the precise comparisons between different gene constructs, the characterization of different chromosomal regions and the cost-effective screening of reliable transgenic plants.  相似文献   

11.
12.
Pokeweed antiviral protein (PAP), a ribosome-inactivating protein isolated from Phytolacca americana, is characterized by its ability to depurinate the sarcin/ricin (S/R) loop of the large rRNA of prokaryotic and eukaryotic ribosomes. In this study, we present evidence that PAP is associated with ribosomes and depurinates tobacco ribosomes in vivo by removing more than one adenine and a guanine. A mutant of pokeweed antiviral protein, PAPn, which has a single amino acid substitution (G75D), did not bind ribosomes efficiently, indicating that Gly-75 in the N-terminal domain is critical for the binding of PAP to ribosomes. PAPn did not depurinate ribosomes and was non-toxic when expressed in transgenic tobacco plants. Unlike wild-type PAP and a C-terminal deletion mutant, transgenic plants expressing PAPn did not have elevated levels of acidic pathogenesis-related (PR) proteins. PAPn, like other forms of PAP, did not trigger production of salicylic acid (SA) in transgenic plants. Expression of the basic PR proteins, the wound-inducible protein kinase and protease inhibitor II, was induced in PAPn-expressing transgenic plants and these plants were resistant to viral and fungal infection. These results demonstrate that PAPn activates a particular SA-independent, stress-associated signal transduction pathway and confers pathogen resistance in the absence of ribosome binding, rRNA depurination and acidic PR protein production.  相似文献   

13.
With the objective of studying the role of glutathione reductase (GR) in the accumulation of cysteine and methionine, we generated transgenic tobacco and Arabidopsis lines overexpressing the cytosolic AtGR1 and the plastidic AtGR2 genes. The transgenic plants had higher contents of cysteine and glutathione. To understand why cysteine levels increased in these plants, we also used gr1 and gr2 mutants. The results showed that the transgenic plants have higher levels of sulfite, cysteine, glutathione and methionine, which are downstream to adenosine 5′ phosphosulfate reductase (APR) activity. However, the mutants had lower levels of these metabolites, while the sulfate content increased. A feeding experiment using 34SO42– also showed that the levels of APR downstream metabolites increased in the transgenic lines and decreased in gr1 compared with their controls. These findings, and the results obtained from the expression levels of several genes related to the sulfur pathway, suggest that GR plays an essential role in the sulfur assimilation pathway by supporting the activity of APR, the key enzyme in this pathway. GR recycles the oxidized form of glutathione (GSSG) back to reduce glutathione (GSH), which serves as an electron donor for APR activity. The phenotypes of the transgenic plants and the mutants are not significantly altered under non‐stress and oxidative stress conditions. However, when germinating on sulfur‐deficient medium, the transgenic plants grew better, while the mutants were more sensitive than the control plants. The results give substantial evidence of the yet unreported function of GR in the sulfur assimilation pathway.  相似文献   

14.
Cytokinin (CK) content and activities of several antioxidant enzymes were examined during plant ontogeny with the aim to elucidate their role in delayed senescence of transgenic Pssu-ipt tobacco. Control Nicotiana tabacum L. (cv. Petit Havana SR1) and transgenic tobacco with the ipt gene under the control of the promoter of small subunit of Rubisco (Pssu-ipt) were both grown either as grafts on control rootstocks or as rooted plants. Both control plant types showed a decline in total content of CKs with proceeding plant senescence. Contrary to this both transgenic plant types exhibited at least ten times higher content of CKs than controls and a significant increase of CK contents throughout the ontogeny with maximal values in the later stages of plant development. Significantly higher portion of O-glucosides was found in both transgenic plant types compared to control ones. In transgenic plants, zeatin and zeatin riboside were predominant type of CKs. Generally, Pssu-ipt tobacco exhibited elevated activities of antioxidant enzymes compared to control tobacco particularly in the later stages of plant development. While in control tobacco activity of glutathione reductase (GR) and superoxide dismutase (SOD) showed increasing activity up to the onset of flowering and then gradually decreased, in both transgenic types GR increased and SOD activity showed only small change throughout the plant ontogeny. Ascorbate peroxidase (APOD) was stimulated in both transgenic types. The manifold enhancement of syringaldazine and guaiacol peroxidase activities was observed in transgenic grafts throughout plant ontogeny in contrast to control and transgenic rooted plants, where the increase was found only in the late stages. Electron microscopic examination showed higher number of crystallic cores in peroxisomes and abnormal interactions among organelles in transgenic tobacco in comparison with control plant. The overproduction of cytokinins resulted in the stimulation of activities of AOE throughout the plant ontogeny of transgenic Pssu-ipt tobacco.  相似文献   

15.
16.
Cytokinins play important roles in regulating plant growth and development. A new genetic construct for regulating cytokinin content in plant cells was cloned and tested. The gene coding for isopentenyl transferase (ipt) was placed under the control of a 0.821 kb fragment of the 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase gene promoter from Lycopersicon esculentum (LEACO1) and introduced into Nicotiana tabacum (cv. Havana). Some LEACO10.821 kb-ipt transgenic plant lines displayed normal shoot morphology but with a dramatic increase in the number of flower buds compared to nontransgenic plants. Other transgenic lines produced excessive lateral branch development but no change in flower bud number. Isolated leaves of transgenic tobacco plants showed a significantly prolonged retention of chlorophyll under dark incubation (25°C for 20 days). Leaves of nontransformed plants senesced gradually under the same conditions. Experiments with LEACO10.821 kb-gus transgenic tobacco plants suggested auxin and ethylene involvement in induction of LEACO10.821 kb promoter activity. Multiple copies of nucleotide base sequences associated with either ethylene or auxin response elements were identified in the LEACO10.821 kb promoter fragment. The LEACO10.821 kb-ipt fusion gene appears to have potential utility for improving certain ornamental and agricultural crop species by increasing flower bud initiation and altering branching habit.  相似文献   

17.
18.
该研究根据已克隆的华南象草(Pennisetum purpureum cv.Huanan)肉桂醇脱氢酶(CAD)基因PpCAD的cDNA序列,构建亚细胞定位载体pAN580-PpCAD,用PEG介导法转化象草原生质体,以探究PpCAD蛋白在细胞内的定位;同时构建植物过表达载体pBA002-PpCAD,通过农杆菌介导法在烟草中异源表达,以研究PpCAD基因与植物木质素合成的关系。结果显示:(1)PpCAD定位在象草原生质体的细胞质内;(2)过表达载体pBA002-PpCAD转化烟草后获得27株转基因烟草,其中25株PCR鉴定为阳性;(3)半定量RT-PCR检测6株转基因烟草后发现,PpCAD基因在不同植株的表达量存在差异,通过Southern杂交检测后发现该差异与目的基因插入的拷贝数有关;(4)6株转基因烟草和野生型烟草表型上没有明显差异,除目的基因多拷贝插入的植株OEC6外,木质素含量有不同程度的提高,最高比野生型提高了56.50%。研究表明,PpCAD是一个细胞质蛋白,在烟草中过表达PpCAD能够提高植株木质素含量,表明PpCAD基因参与了植物的木质素合成,可用于象草的木质素调控研究。  相似文献   

19.
The auxin-inducible gene ARGOS from Arabidopsis thaliana is expressed in growing tissues and controls the plant organ size by regulating cell proliferation and meristematic competence. The promoter of the dahlia (Dahlia pinnata Cav.) mosaic virus (DMV) resembles the well-known cauliflower mosaic virus 35S promoter but shows a higher activity in transgenic tobacco plants (Nicotiana tabacum L.). We obtained transgenic tobacco plants expressing the Arabidopsis ARGOS gene under the control of the DMV promoter. Several of the T0 generation plants exhibited an accelerated transition to flowering, a slight increase in flower size, and a significant increase in the leaf size. The T1 transgenic plants were characterized by faster growth, the increased leaf size, and somewhat enlarged flowers as compared with control plants. These phenotypic traits, as well as stability and inheritance of the transgene were demonstrated also in T2 transgenic plants.  相似文献   

20.
Three types of transgenic plants of Solanum tuberosum cvs. Kamyk and Oreb, and Nicotiana tabacum cvs. Maryland Mammoth and Trapezond were selected according to intensity of introduced ipt gene expression and resulting amount of synthesised cytokinins (CKs). In comparison with controls, original transgenic regenerants grown in vitro showed a massive increase of CK contents, in tobacco by 379 % and in potato by 159 % (MAS). Potato grown in soil from tubers of transgenic plants demonstrated a moderate increase (44 %) of CK contents (MOD). Transgenic tobacco grown from seeds in vitro did not show any significant change in CK contents (NOT). Initial (RuBPCi and RuBPOi) and total (RuBPCt) activities of ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBPCO), and the activity of phosphoenolpyruvate carboxylase (PEPC) were not significantly affected by the transformation in the NOT plants. In the MOD plants, the RuBPCO activities were stimulated by up to 34 % whereas the PEPC activity was decreased by 17 %. On the other hand, all the measured enzyme activities were 32 – 91 % lower in the MAS. Leaf area, fresh and dry masses, and chlorophyll and soluble protein contents also went down with increasing CK amounts in the transformants. Dependence of RuBPCi/RuBPOi and RuBPCt/PEPC ratios on the relative CK amounts in transgenic plants revealed that the individual enzyme activities were not affected uniformly. Endogenous CK contents in the MAS thus apparently exceeded an optimum needed for positive effects on many physiological traits and became a stress factor for such plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号