首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Indole-3-carbinol (I3C), a dietary compound found in cruciferous vegetables, induces a robust inhibition of CDK2 specific kinase activity as part of a G1 cell cycle arrest of human breast cancer cells. Treatment with I3C causes a significant shift in the size distribution of the CDK2 protein complex from an enzymatically active 90 kDa complex to a larger 200 kDa complex with significantly reduced kinase activity. Co-immunoprecipitations revealed an increased association of both a 50 kDa cyclin E and a 75 kDa cyclin E immunoreactive protein with the CDK2 protein complex under I3C-treated conditions, whereas the 90 kDa CDK2 protein complexes detected in proliferating control cells contain the lower molecular mass forms of cyclin E. I3C treatment caused no change in the level of CDK2 inhibitors (p21, p27) or in the inhibitory phosphorylation states of CDK2. The effects of I3C are specific for this indole and not a consequence of the cell cycle arrest because treatment of MCF-7 breast cancer cells with either the I3C dimerization product DIM or the anti-estrogen tamoxifen induced a G1 cell cycle arrest with no changes in the associated cyclin E or subcellular localization of the CDK2 protein complex. Taken together, our results have uncovered a unique effect of I3C on cell cycle control in which the inhibition of CDK2 kinase activity is accompanied by selective alterations in cyclin E composition, size distribution, and subcellular localization of the CDK2 protein complex.  相似文献   

2.
How cyclic AMP (cAMP) could positively or negatively regulate G1 phase progression in different cell types or in cancer cells versus normal differentiated counterparts has remained an intriguing question for decades. At variance with the cAMP-dependent mitogenesis of normal thyroid epithelial cells, we show here that cAMP and cAMP-dependent protein kinase activation inhibit S-phase entry in four thyroid carcinoma cell lines that harbor a permanent activation of the Raf/ERK pathway by different oncogenes. Only in Ret/PTC1-positive TPC-1 cells did cAMP markedly inhibit the Raf/ERK cascade, leading to mTOR pathway inhibition, repression of cyclin D1 and p21 and p27 accumulation. p27 knockdown did not prevent the DNA synthesis inhibition. In the other cells, cAMP little affected these signaling cascades and levels of cyclins D or CDK inhibitors. However, cAMP differentially inhibited the pRb-kinase activity and T172-phosphorylation of CDK4 complexed to cyclin D1 or cyclin D3, whereas CDK-activating kinase activity remained unaffected. At variance with current conceptions, our studies in thyroid carcinoma cell lines and previously in normal thyrocytes identify the activating phosphorylation of CDK4 as a common target of opposite cell cycle regulations by cAMP, irrespective of its impact on classical mitogenic signaling cascades and expression of CDK4 regulatory partners.  相似文献   

3.
p16/INK4A/CDKN2A is an important tumor suppressor gene that arrests cell cycle in G1 phase inhibiting binding of CDK4/6 with cyclin D1, leaving the Rb tumor suppressor protein unphosphorylated and E2F bound and inactive. We hypothesized that p16 has a role in exit from cell cycle that becomes defective in cancer cells. Well characterized p16‐defective canine mammary cancer cell lines (CMT28, CMT27, and CMT12), derived stably p16‐transfected CMT cell clones (CMT27A, CMT27H, CMT28A, and CMT28F), and normal canine fibroblasts (NCF), were used to investigate expression of p16 after serum starvation into quiescence followed by re‐feeding to induce cell cycle re‐entry. The parental CMT cell lines used lack p16 expression either at the mRNA or protein expression levels, while p27 and other p16‐associated proteins, including CDK4, CDK6, cyclin D1, and Rb, were expressed. We have successfully demonstrated cell cycle arrest and relatively synchronous cell cycle re‐entry in parental CMT12, CMT28 and NCF cells as well as p16 transfected CMT27A, CMT27H, CMT28A, and CMT28F cells and confirmed this by 3H‐thymidine incorporation and flow cytometric analysis of cell cycle phase distribution. p16‐transfected CMT27A and CMT27H cells exited cell cycle post‐serum‐starvation in contrast to parental CMT27 cells. NCF, CMT27A, and CMT28F cells expressed upregulated levels of p27 and p16 mRNA, post‐serum starvation, as cells exited cell cycle and entered quiescence. Because quiescence and differentiation are associated with increased levels of p27, our data demonstrating that p16 was upregulated along with p27 during quiescence, suggests a potential role for p16 in maintaining these non‐proliferative states. J. Cell. Biochem. 114: 1355–1363, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

4.
Abstract. Objectives: This article is to study the role of G1/S regulators in differentiation of pluripotent embryonic cells. Materials and methods: We established a P19 embryonal carcinoma cell‐based experimental system, which profits from two similar differentiation protocols producing endodermal or neuroectodermal lineages. The levels, mutual interactions, activities, and localization of G1/S regulators were analysed with respect to growth and differentiation parameters of the cells. Results and Conclusions: We demonstrate that proliferation parameters of differentiating cells correlate with the activity and structure of cyclin A/E–CDK2 but not of cyclin D–CDK4/6–p27 complexes. In an exponentially growing P19 cell population, the cyclin D1–CDK4 complex is detected, which is replaced by cyclin D2/3–CDK4/6–p27 complex following density arrest. During endodermal differentiation kinase‐inactive cyclin D2/D3–CDK4–p27 complexes are formed. Neural differentiation specifically induces cyclin D1 at the expense of cyclin D3 and results in predominant formation of cyclin D1/D2–CDK4–p27 complexes. Differentiation is accompanied by cytoplasmic accumulation of cyclin Ds and CDK4/6, which in neural cells are associated with neural outgrowths. Most phenomena found here can be reproduced in mouse embryonic stem cells. In summary, our data demonstrate (i) that individual cyclin D isoforms are utilized in cells lineage specifically, (ii) that fundamental difference in the function of CDK4 and CDK6 exists, and (iii) that cyclin D–CDK4/6 complexes function in the cytoplasm of differentiated cells. Our study unravels another level of complexity in G1/S transition‐regulating machinery in early embryonic cells.  相似文献   

5.
Restitution of lost tumor-suppressor activities may be a promising strategy to target specifically cancer cells. However, the action of ectopically expressed tumor-suppressor genes depends on genetic background of tumoral cells. Ectopic expression of p16(INK4a) induces either cell cycle arrest or apoptosis in different pancreatic cancer cell lines. We examined the molecular mechanisms mediating these two different cellular responses to p16 overexpression. Ectopic expression of p16 leads to G1 arrest in NP-9 cells by redistributing p21/p27 CKIs and inhibiting cyclin-dependent kinase CDK2 activity. In contrast, in NP-18 cells cyclin E (CycE)/CDK2 activity is significantly higher and is not downregulated by p16-mediated redistribution of p21/p27. Moreover, inhibition of CDK4 activity with fascaplysine, which does not affect CycE/CDK2 activity, reduces pocket protein phosphorylation in both cell lines, but fails to induce growth arrest. Like overexpression of p16, fascaplysine induces apoptosis in NP-18 cells, suggesting that inhibition of D-type cyclin/CDK activity in cells with high levels of CycE/CDK2 activity activates an apoptotic pathway. Inhibition of CycE/CDK2 activity via ectopic expression of p21 in NP-18 cells overexpressing p16 induces growth arrest and prevents p16-mediated apoptosis. Accordingly, silencing of p21 expression by using small interfering RNA switches the fate of p16-expressing NP-9 cells from cell cycle arrest to apoptosis. Our data suggest that, after CDK4/6 inactivation, the fate of pancreatic tumor cells depends on the ability to modulate CDK2 activity.  相似文献   

6.
The cyclin-dependent kinase (CDK) inhibitor p27(Kip1) (p27) is an important regulator of cell cycle progression controlling the transition from G to S-phase. Low p27 levels or accelerated p27 degradation correlate with excessive cell proliferation and poor prognosis in several forms of cancer. Phosphorylation of p27 at Thr187 by cyclin E-CDK2 is required to initiate the ubiquitination-proteasomal degradation of p27. Protecting p27 from ubiquitin-mediated proteasomal degradation may increase its potential in cancer gene therapy. Here we constructed a non-phosphorylatable, proteolysis-resistant p27 mutant containing a Thr187-to-Ala substitution (T187A) which is not degraded by ubiquitin-mediated proteasome pathway, and compared its effects on cell growth, cell-cycle control, and apoptosis with those of wild-type p27. In muristerone A-inducible cell lines overexpressing wild-type or mutant p27, the p27 mutant was more resistant to proteolysis in vivo and more potent in inducing cell-cycle arrest and other growth-inhibitory effects such as apoptosis. Transduction of p27(T187A) in breast cancer cells with a doxycycline-regulated adenovirus led to greater inhibition of proliferation, more extensive apoptosis, with a markedly reduced protein levels of cyclin E and increased accumulation of cyclin D1, compared with wild-type p27. These findings support the potential effectiveness of a degradation-resistant form of p27 in breast cancer gene therapy.  相似文献   

7.
The cyclin-dependent kinase (CDK) inhibitor p27, the regulator of the cell cycle, is required for proper functioning of luteinizing/luteinized cells in vivo. Since different members of the CDK family may be targeted by p27 during luteinization-associated cell cycle exit, this in vivo study further analyzed the organization of the network of cell cycle regulators that may underlie both the establishment and maintenance of the luteal phenotype. Most importantly, it shows that the luteinization process is associated with down-regulation of CDK2 and cyclin D1, and up-regulation of p27 and cyclin D3. Both p27 and cyclin D3 proteins not only accumulated during initial phases of luteinization, but they remained elevated until termination of the luteal function. Along with its accumulation, p27 lost physical contact with CDK2 and instead became associated with CDK4. In fully luteinized cells, all cyclin D3 was incorporated into complexes with p27, some complexes being p27/cyclin D3/CDK4 trimers. Despite the significant amounts of CDK4 and CDK6, only nonphosphorylated forms of retinoblastoma protein were detectable in fully luteinized cells. Together, our data indicate that while inhibition of proliferation is underlaid by the progressive loss of positive regulators of the cell cycle, including cyclins and CDK2, maintenance of the luteal phenotype is driven by up-regulated levels of p27 and cyclin D3, at least partially owing to formation of p27/cyclin D3/CDK4 trimers.  相似文献   

8.
The cell cycle-regulatory protein, cyclin D1, is the sensor that connects the intracellular cell cycle machinery to external signals. Given this central role in the control of cell proliferation, it was surprising that mice lacking the cyclin D1 gene were viable and fertile. Fertility requires 17beta-estradiol (E2)-induced uterine luminal epithelial cell proliferation. In these cells E2 causes the translocation of cyclin D1/cyclin-dependent kinase 4 (CDK4) from the cytoplasm into the nucleus with the consequent phosphorylation of the retinoblastoma protein. In cyclin D1 null mice, E2 also induces retinoblastoma protein phosphorylation and DNA synthesis in a normal manner. CDK4 activity was slightly reduced in the D1 null mice compared with wild-type mice. This CDK4 activity was due to complexes of cyclin D2/CDK4. Cyclin D2 was translocated into the nucleus in response to E2 in the cyclin D1-/- mice to a much greater degree than in wild-type mice. This cyclin D2/CDK4 complex was also able to bind p27kip1 in cyclin D1-/- uterine luminal epithelial cells, allowing for the activation of CDK2. Our data show that in vivo cyclin D2 can completely compensate for the loss of cyclin D1 and reinforces the conclusions that cyclin Ds are the central regulatory point in the proliferative responses of epithelial cells to estrogens.  相似文献   

9.
Regulation of Exit from Quiescence by p27 and Cyclin D1-CDK4   总被引:13,自引:9,他引:4       下载免费PDF全文
The synthesis of cyclin D1 and its assembly with cyclin-dependent kinase 4 (CDK4) to form an active complex is a rate-limiting step in progression through the G1 phase of the cell cycle. Using an activated allele of mitogen-activated protein kinase kinase 1 (MEK1), we show that this kinase plays a significant role in positively regulating the expression of cyclin D1. This was found both in quiescent serum-starved cells and in cells expressing dominant-negative Ras. Despite the observation that cyclin D1 is a target of MEK1, in cycling cells, activated MEK1, but not cyclin D1, is capable of overcoming a G1 arrest induced by Ras inactivation. Either wild-type or catalytically inactive CDK4 cooperates with cyclin D1 in reversing the G1 arrest induced by inhibition of Ras activity. In quiescent NIH 3T3 cells expressing either ectopic cyclin D1 or activated MEK1, cyclin D1 is able to efficiently associate with CDK4; however, the complex is inactive. A significant percentage of the cyclin D1-CDK4 complexes are associated with p27 in serum-starved activated MEK1 or cyclin D1 cell lines. Reduction of p27 levels by expression of antisense p27 allows for S-phase entry from quiescence in NIH 3T3 cells expressing ectopic cyclin D1, but not in parental cells.  相似文献   

10.
Cyclin-dependent kinases 4 and 6 are complexed with many small cellular proteins in vivo. We have isolated cDNA sequences, INK4d, encoding a 19-kDa protein that is associated with CDK6 in several hematopoietic cell lines. p19 shares equal similarity and a common ancestor with other identified inhibitors of the p16/INK4 family. p19 interacts with and inhibits the activity of both CDK4 and CDK6 and exhibits no detectable interaction with the other known CDKs. p19 protein is present in both cell nuclei and cytoplasm. The p19 gene has been mapped to chromosome 19p13.2, and the level of its mRNA expression varies widely between different tissues. In contrast to p21 and p27 whose interaction with CDK subunits is dependent on or stimulated by the cyclin subunit, the interaction of p19 and p18 with CDK6 is hindered by the cyclin protein. Binary cyclin D1-p18/p19 or cyclin D1-CDK6 complexes are highly stable and cannot be dissociated by excess amounts of cyclin D1 or p19/p18 proteins, suggesting that p16 inhibitors and D cyclins may interact with CDKs 4 and 6 in a competing or potentially mutually exclusive manner.  相似文献   

11.
BACKGROUND: The ability of cyclin-dependent kinases (CDKs) to promote cell proliferation is opposed by cyclin-dependent kinase inhibitors (CKIs), proteins that bind tightly to cyclin-CDK complexes and block the phosphorylation of exogenous substrates. Mice with targeted CKI gene deletions have only subtle proliferative abnormalities, however, and cells prepared from these mice seem remarkably normal when grown in vitro. One explanation may be the operation of compensatory pathways that control CDK activity and cell proliferation when normal pathways are inactivated. We have used mice lacking the CKIs p21(Cip1) and p27(Kip1) to investigate this issue, specifically with respect to CDK regulation by mitogens. RESULTS: We show that p27 is the major inhibitor of Cdk2 activity in mitogen-starved wild-type murine embryonic fibroblasts (MEFs). Nevertheless, inactivation of the cyclin E-Cdk2 complex in response to mitogen starvation occurs normally in MEFs that have a homozygous deletion of the p27 gene. Moreover, CDK regulation by mitogens is also not affected by the absence of both p27 and p21. A titratable Cdk2 inhibitor compensates for the absence of both CKIs, and we identify this inhibitor as p130, a protein related to the retinoblastoma gene product Rb. Thus, cyclin E-Cdk2 kinase activity cannot be inhibited by mitogen starvation of MEFs that lack both p27 and p130. In addition, cell types that naturally express low amounts of p130, such as T lymphocytes, are completely dependent on p27 for regulation of the cyclin E-Cdk2 complex by mitogens. CONCLUSIONS: Inhibition of Cdk2 activity in mitogen-starved fibroblasts is usually performed by the CKI p27, and to a minor extent by p21. Remarkably p130, a protein in the Rb family that is not related to either p21 or p27, will directly substitute for the CKIs and restore normal CDK regulation by mitogens in cells lacking both p27 and p21. This compensatory pathway may be important in settings in which CKIs are not expressed at standard levels, as is the case in many human tumors.  相似文献   

12.
EB1089, a 1,25-dihydroxyvitamin D(3) analog, has been known to have potent antiproliferative properties in a variety of malignant cells in vitro and in vivo. In the present study, we analyzed the effect of EB1089 on human myeloma cell lines. EB1089 inhibited the proliferation of NCI-H929 cells and RPMI8226 cells in a dose-dependent manner among three myeloma cell lines tested. The antiproliferative effect of EB1089 on myeloma cells was related to the expression level of vitamin D receptor. To investigate the mechanism of the antiproliferative effect of EB1089, cell cycle analysis was attempted in EB1089-sensitive NCI-H929 cells. EB1089 (1 x 10(-8) M) efficiently induced G(1) arrest of the cell cycle. Analysis of G(1) regulatory proteins demonstrated that protein levels of CDK2, CDK4, cyclin D1, and cyclin A were decreased in a time-dependent manner, but not those of CDK6 and cyclin E, by EB1089. In addition, EB1089 (1 x 10(-8) M, 72 h) increased the protein level of the CDKI p27 and markedly enhanced the binding of p27 with CDK2 compared to EB1089-untreated cells. Furthermore, the activity of CDK2-associated cyclin kinase was decreased, which was accompanied by the reduction of cyclin-D1-, cyclin-E-, and cyclin-A-associated kinase activities, resulting in the hypophosphorylation of Rb protein. These results suggest that EB1089 can inhibit the proliferation of human myeloma cells, especially NCI-H929 cells, via a G(1) block in association with the induction of p27 and the reduction of CDK2 activity.  相似文献   

13.
Transforming growth factor-beta (TGF-beta) induces a potent G(1)/S-phase cell cycle arrest of epithelial cells by inhibiting the activities of cyclin D- and cyclin E-associated kinase complexes. Downregulation of the kinase activities is mediated by induction of cyclin dependent kinase (CDK) inhibitor p15(Ink4b) which blocks CDK4 and CDK6 kinases and leads to binding of p27(Kip1) to CDK2-cyclin E complex. Levels of several of these factors are controlled by the ubiquitin-proteasome pathway. We demonstrate here that proteasomal inhibitors release the cells from TGF-beta imposed G(1)-phase arrest and instigate the entry of the cells into S-phase. Proteasomal inhibitors are shown to specifically increase the activity of the cyclin D-kinase complex by increasing the levels of p27(Kip1) and cyclin D and by maintaining CDK4/6 protein levels leading to phosphorylation of the retinoblastoma protein without increasing cyclin E-associated kinase activity. The results indicate caution in the potential therapeutic use of the proteasome inhibitors due to unscheduled initiation of DNA replication in the presence of a physiological growth inhibitor.  相似文献   

14.
Lin P  Fu J  Zhao B  Lin F  Zou H  Liu L  Zhu C  Wang H  Yu X 《Molecular biology reports》2011,38(3):1741-1747
Fbxw8 is the F-box component of a SCF-like E3 ubiquitin ligase complex. Mice lacking Fbxw8 exhibit pathological defects in placenta and embryo similar to fetal growth retardation, suggesting a role of Fbxw8 in placentation. Proliferative capacity of trophoblast cells is very important in placental development. In this context, we revealed that Fbxw8 was expressed in four different human trophoblast cell lines. Silencing of Fbxw8 expression by siRNA inhibited the growth of choriocarcinoma JEG-3 cells. By Western blotting, cell cycle analysis, we showed that down-regulation of Fbxw8 by RNAi induced cell-growth arrest at G2/M phase through decreasing the levels of CDK1, CDK2, cyclin A and cyclin B1 and up-regulation of p27 at protein level. Conversely, over-expression of Fbxw8 led to the opposite effect. These results suggest that Fbxw8 plays an essential role in the proliferation of human trophoblast cells, especially JEG-3 cells, via G2/M phase transition in association with regulation of CDK1, CDK2, cyclin A, cyclin B1 and p27 expression.  相似文献   

15.
We have investigated the expression of cyclins, cyclin dependent kinases (CDK), and CDK inhibitors (CKI) at the mRNA level in a panel of small-cell lung cancer (SCLC) cell linesin vitro andin vivo as xenografts in nude mice. The results showed that the cell lines expressed varying amounts of most cyclin and CDK’s but only a few of the cell lines expressed cyclin D1 and/or D2 and some lacked expression of CDK6. Most cell lines expressed mRNA for the CKI’s but two cell lines lacked expression of p15INK4B and p16INK4A. The mRNA expression differed for a few of the cell lines regarding cyclin D2 and CDK6 whenin vitro andin vivo data were compared. Two of the cell lines that express the retinoblastoma (Rb) protein had no sign of a deregulated Rb pathway but further studies at the protein level are necessary to demonstrate whether these two cell lines should have a normal Rb pathway or whether they will join the majority of cell lines with deregulated Rb pathway.  相似文献   

16.

Berberine has shown anticancer properties and has potential for a chemopreventive and/or chemotherapeutic agent for breast cancer. Berberine showed cytotoxicity to breast cancer cells, with an increase in the levels of p21/cip1 and p27/kip1, cyclin-dependent kinase inhibitors (CDKI), but mechanisms involved in up-regulating these molecules are largely unknown. Herein, we studied the key regulatory mechanisms involved in berberine-mediated up-regulation of p21/cip1 and p27/kip1. Berberine treatment for 24 and 48 h decreased the number of cells by 44–84% (P?<?0.0001) and 38–78% (P?<?0.0001), and increased cell death by 12–17% (P?<?0.005) and 38–78% (P?<?0.0001) in MCF-7 and MDA-MB-231 cells, respectively. Cells were arrested in G1 phase by berberine which was accompanied with up-regulation of mRNA and protein level of both p21/cip1 and p27/kip1. Berberine decreased the expression of protein levels of cyclin D1, cyclin E, CDK2, CDK4, and CDK6 to cause G1 phase arrest. Berberine caused nuclear localization of p21/cip1 in both the cell lines. Our data for the first time showed that the post-translational stability of both the proteins was strongly increased by berberine as examined by cycloheximide chase assay. Inhibition of Akt was associated with berberine-mediated up-regulation of p21/cip1 and also led to a decrease in cell viability accompanied with significant G1 phase cell cycle arrest. Our study revealed that berberine not only up-regulates mRNA and protein levels of p21/cip1 and p27/kip1 but also increases their nuclear localization and post-translational protein stability. Further, Akt inhibition was found to mediate berberine-mediated up-regulation of p21/cip1 but not the p27/kip1.

  相似文献   

17.
We have recently shown that curcumin induces apoptosis in prostate cancer cells through Bax translocation to mitochondria and caspase activation, and enhances the therapeutic potential of TRAIL. However, the molecular mechanisms by which it causes growth arrest are not well-understood. We studied the molecular mechanism of curcumin-induced cell cycle arrest in prostate cancer androgen-sensitive LNCaP and androgen-insensitive PC-3 cells. Treatment of both cell lines with curcumin resulted in cell cycle arrest at G1/S phase and that this cell cycle arrest is followed by the induction of apoptosis. Curcumin induced the expression of cyclin-dependent kinase (CDK) inhibitors p16/INK4a, p21/WAF1/CIP1 and p27/KIP1, and inhibited the expression of cyclin E and cyclin D1, and hyperphosphorylation of retinoblastoma (Rb) protein. Lactacystin, an inhibitor of 26 proteasome, blocks curcumin-induced down-regulation of cyclin D1 and cyclin E proteins, suggesting their regulation at level of posttranslation. The suppression of cyclin D1 and cyclin E by curcumin may inhibit CDK-mediated phosphorylation of pRb protein. The inhibition of p21/WAF1/CIP1 by siRNA blocks curcumin-induced apoptosis, thus establishing a link between cell cycle and apoptosis. These effects of curcumin result in the proliferation arrest and disruption of cell cycle control leading to apoptosis. Our study suggests that curcumin can be developed as a chemopreventive agent for human prostate cancer.  相似文献   

18.
The role of p27(Kip1) in maintaining the levels of D-type cyclins in vivo   总被引:7,自引:0,他引:7  
This in vivo study employs p27-deficient mice to investigate the significance of p27 for the metabolism of D-type cyclins in differentiated cells. The absence of p27 results in decreased levels of cyclins D2 and/or D3 in some organs. As demonstrated on Leydig cells of testis, such dependency is only restricted to certain cell types including terminally differentiated ones, and the absence of p27 in these cells can interfere with their differentiation. The decrease of cyclin D caused by the absence of p27 equals the amount of cyclin D physically associated with p27 in non-mutant animals. The data indicate that it is the proportion of p27-associated cyclin D that determines the response to p27 deficiency. Cells in which the level of D-type cyclin is dependent on p27 do not up-regulate the activity of their CDK2 and CDK4 upon loss of p27, and these cells have a negligible amount of p27 bound to CDK2 and/or cyclin A/E under normal conditions. Together, the findings suggest the existence of a dual role for p27, one being a classical regulation of cell cycle via inhibition of cyclin-dependent kinases (CDK), and the other being participation in the establishment and/or maintenance of differentiated status that is realized in conjunction with D-type cyclins.  相似文献   

19.
Cyclin-dependent kinases (CDKs) are regulated by cyclin proteolysis and CDK inhibitors (CKIs) during mitotic exit and G1 phase in yeast and Drosophila, and disruption of both regulatory pathways leads to genomic instability. Our study using mouse cell lines that constitutively express a stabilized mutant of cyclin A revealed that three CKIs, p21, p27, and Rb-related p107, are responsible for cyclin proteolysis-independent inactivation of CDK during mitotic exit and G1. Enforced expression of cyclin A in the cells lacking all three CKIs induced rapid tetraploidization. Thus, the redundant pathways consisting of cyclin proteolysis and CKIs control CDK activity during mitotic exit and contribute to maintenance of genome stability in mammalian cells.  相似文献   

20.
BACKGROUND: Cyclin-dependent kinases (CDKs) have a central role in cell-cycle control and are activated by complex formation with positive regulatory proteins called cyclins and by phosphorylation. The overexpression and mutation of cyclins and CDKs has been associated with tumorigenesis and oncogenesis. A virus-encoded cyclin (v-cyclin) from herpesvirus saimiri has been shown to exhibit highest sequence homology to type D cyclins and specifically activates CDK6 of host cells to a very high degree. RESULTS: We have determined the first X-ray structure of a v-cyclin to 3.0 A resolution. The structure of the core domains is very similar to those of cyclin A and cyclin H from human cells. To understand the structural basis for the v-cyclin specificity for CDK6 and the insensitivity of the complex to inhibitors of the p21 and INK4 families, a v-cyclin-CDK2 model was built on the basis of the known structures of human cyclin A in complex with CDK2 and the CDK inhibitor p27(Kip1). CONCLUSIONS: Although many critical interactions between cyclin A and CDK2 would be conserved in a v-cyclin-CDK2 complex, some appear sterically or electrostatically unfavorable due to shifts in the backbone conformation or sidechain differences and may contribute to v-cyclin selectivity for CDK6. The insensitivity of v-cyclin-CDK6 complexes to inhibitors of the p21 family is probably due to structural changes in v-cyclin that lead to a flatter surface area offering fewer potential contacts with the protein inhibitor. In addition, sequence changes in v-cyclin eliminate hydrogen-bonding partners for atoms of the p27(Kip1) inhibitor. This structure provides the first model for interactions between v-cyclins and host cell-cycle proteins; these interactions may be important for virus survival as well as oncogenic transformation of host cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号