首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Abstract

Cholecystokinin (CCK) is one of the most studied neuropeptides in the brain. In this study, we investigated the effects of CCK-8s and LY225910 (CCK2 receptor antagonist) on properties of neuronal response to natural stimuli (whisker deflection) in deep layers of rat barrel cortex. This study was done on 20 male Wistar rats, weighing 230–260?g. CCK-8s (300?nmol/rat) and LY225910 (1?µmol/rat) were administered intracerebroventricularly (ICV). Neuronal responses to deflection of principal (PW) and adjacent (AW) whiskers were recorded in the barrel cortex using tungsten microelectrodes. Computer controlled mechanical displacement was used to deflect whiskers individually or in combination at 30?ms inter-stimulus intervals. ON and OFF responses for PW and AW deflections were measured. A condition-test ratio (CTR) was computed to quantify neuronal responses to whisker interaction. ICV administration of CCK-8s and LY225910 had heterogeneous effects on neuronal spontaneous activity, ON and OFF responses to PW and/or AW deflections, and CTR for both ON and OFF responses. The results of this study demonstrated that CCK-8s can modulate neuronal response properties in deep layers of rat barrel cortex probably via CCK2 receptors.  相似文献   

2.
We have constructed a molecular model of the ligand-binding domain of the GABA(C) receptor, which is a member of the Cys-loop ligand-gated ion channel family. The extracellular domains of these receptors share similar sequence homology (20%) with Limnaea acetylcholine-binding protein for which an X-ray crystal structure is available. We used this structure as a template for homology modeling of the GABA(C) receptor extracellular domain using FUGUE and MODELLER software. FlexX was then used to dock GABA into the receptor ligand-binding site, resulting in three alternative energetically favorable orientations. Residues located no more than 5 A from the docked GABA were identified for each model; of these, three were found to be common to all models with 14 others present only in certain models. Using data from experimental studies, we propose that the most likely orientation of GABA is with its amine close to Y198, and its carboxylate close to R104. These studies have therefore provided a model of the ligand-binding domain, which will be useful for both GABA(C) and GABA(A) receptor studies, and have also yielded an experimentally testable hypothesis of the location of GABA in the binding pocket. [Figure: see text].  相似文献   

3.
In the central nervous system (CNS), the inhibitory transmitter GABA interacts with three subtypes of GABA receptors, type A, type B, and type C. Historically, GABA receptors have been classified as either the inotropic GABAA receptors or the metabotropic GABAB receptors. Over the past 10 yr, studies have shown that a third class, called the GABAC receptor, also exists. GABAC receptors are found primarily in the vertebrate retina and to some extent in other parts of the CNS. Although GABAA and GABAC receptors both gate chloride channels, they are pharmacologically, molecularly, and functionally distinct. The ρ subunit of the GABAC receptor, which has about 35% amino acid homology to GABAA receptor subunits, was cloned from the retina and, when expressed inXenopus oocytes, has properties similar to retinal GABAC receptors. There are probably distinct roles for GABAC receptors in the retina, because they are found on only a subset of neurons, whereas GABAA receptors are ubiquitous. This article reviews recent electrophysiological and molecular studies that have characterized the unique properties of GABAC receptors and describes the roles that these receptors may play in visual information processing in the retina.  相似文献   

4.
Various studies implicate the anterior cingulate cortex (ACC) in processing pain. Combining whole-cell patch clamp recordings in rat ACC slices and a formalin-induced conditioned place avoidance (F-CPA) behavioral model, the present study was to address the effect of GABA(A) receptors on excitatory transmission to ACC layer V neurons and its possible functional significance related to pain. Removal of GABA(A) inhibition by bicuculline (10 microM) induced a novel long-lasting response in layer V neurons, which could be blocked by high divalent extracellular solution and was sensitive to relatively higher rate stimuli. Co-application of NMDA receptor antagonist APV (50 microM) and non-NMDA receptor antagonist DNQX (10 microM) completely blocked the responses. Enhancement of inhibition by intra-ACC microinjection of muscimol abolished the acquisition of F-CPA without affecting formalin-induced acute nociceptive responses. These results suggest that GABA(A) inhibition may be involved in pain-related aversion by modulating glutamate-mediated excitatory transmission in the ACC.  相似文献   

5.
A selection of highly potent analogues based on the gabazine structure is described. Their syntheses are carried out in just four steps, and their potencies for antagonism at the GABAA receptor were measured. All antagonists showed significantly higher potencies compared to the parent competitive antagonist, gabazine.  相似文献   

6.
Regulators of G-protein signaling (RGS) proteins regulate certain G-protein-coupled receptor (GPCR)-mediated signaling pathways. The GABAB receptor (GABABR) is a GPCR that plays a role in the stress response. Previous studies indicate that acute immobilization stress (AIS) decreases RGS4 in the prefrontal cortex (PFC) and hypothalamus (HY) and suggest the possibility of a signal complex composed of RGS4 and GABABR. Therefore, in the present study, we tested whether RGS4 associates with GABABR in these brain regions. We found the co-localization of RGS4 and GABABR subtypes in the PFC and HY using double immunohistochemistry and confirmed a direct association between GABAB2R and RGS4 proteins using co-immunoprecipitation. Furthermore, we found that AIS decreased the amount of RGS4 bound to GABAB2R and the number of double-positive cells. These results indicate that GABABR forms a signal complex with RGS4 and suggests that RGS4 is a regulator of GABABR. [BMB Reports 2014; 47(6): 324-329]  相似文献   

7.
Cannabinoid CB(1) and the metabotropic GABA(B) receptors have been shown to display similar pharmacological effects and co-localization in certain brain regions. Previous studies have reported a functional link between the two systems. As a first step to investigate the underlying molecular mechanism, here we show cross-inhibition of G-protein signaling between GABA(B) and CB(1) receptors in rat hippocampal membranes. The CB(1) agonist R-Win55,212-2 displayed high potency and efficacy in stimulating guanosine-5'-O-(3-[(35)S]thio)triphosphate, [(35)S]GTPgammaS binding. Its effect was completely blocked by the specific CB(1) antagonist AM251 suggesting that the signaling was via CB(1) receptors. The GABA(B) agonists baclofen and SKF97541 also elevated [(35)S]GTPgammaS binding by about 60%, with potency values in the micromolar range. Phaclofen behaved as a low potency antagonist with an ED(50) approximately 1mM. However, phaclofen at low doses (1 and 10nM) slightly but significantly attenuated maximal stimulation of [(35)S]GTPgammaS binding by the CB(1) agonist R-Win55,212-2. The observation that higher concentrations of phaclofen had no such effect rule out the possibility of its direct action on CB(1) receptors. The pharmacologically inactive stereoisomer S-Win55,212-3 had no effect either alone or in combination with phaclofen establishing that the interaction is stereospecific in hippocampus. The specific CB(1) antagonist AM251 at a low dose (1 nM) also inhibited the efficacy of G-protein signaling of the GABA(B) receptor agonist SKF97541. Cross-talk of the two receptor systems was not detected in either spinal cord or cerebral cortex membranes. It is speculated that the interaction might occur via an allosteric interaction between a subset of GABA(B) and CB(1) receptors in rat hippocampal membranes. Although the exact molecular mechanism of the reciprocal inhibition between CB(1) and GABA(B) receptors will have to be explored by future studies it is intriguing that the cross-talk might be involved in balance tuning the endocannabinoid and GABAergic signaling in hippocampus.  相似文献   

8.
目的:研究外周去胡须后大鼠行为及桶状皮层(barrel cortex,BC)的可塑性变化。方法:SD大鼠随机分组(n=4):正常对照(A组),出生后第2天去除双侧颊脂垫组(B组),出生后第2天去除右侧颊脂垫组(C组),出生后1~5d每天剪右侧胡须,从出生后第5天起不剪由其胡须自由生长组(D组)。出生后第30天时称体重,测量左侧D2胡须长度,观测行为学变化(如狭缝实验、自由探索行为和趋壁行为)。采用细胞色素氧化酶组织化学法研究barrel排列与发育情况。结果:A组能迅速辨别出正确狭缝并钻入,平均用时(5.6±2.3)s;B组大鼠只有当鼻尖碰到狭缝壁时才会钻入狭缝。C组大鼠当其右侧脸颊靠近狭缝时,不能辨别出狭缝,只有当其掉转身体,用左侧胡须探测时才可能迅速钻入正确的狭缝。D组的表现同C组,B、C、D组大鼠进入正确狭缝的所用时间均显著长于A组(P0.01,P0.05,P0.01)。去除双侧颊脂垫的大鼠其左趋壁时间、右趋壁时间以及总趋壁时间均较正常大鼠短。去除右侧颊脂垫组的大鼠右趋壁时间也显著短于正常(P0.05)。四组大鼠左侧D2胡须长度以及体重均无显著差异。从出生后第2天时一直剪除右侧胡须的小鼠在出生后第30天时发现其barrel变小,排列较混乱,barrel之间的界限不清,皮层细胞色素氧化酶(CO)反应的灰度明显变淡。结论:外周去传入不引起大鼠体重改变及残留胡须长度的代偿性改变,但可引起其趋触及探索行为方面的改变。外周去传入可导致barrel形状及排列的可塑性变化。  相似文献   

9.
The purpose of this study was to investigate the role of central 5-HT2C receptor binding in rat model of pancreatic regeneration using 60–70% pancreatectomy. The 5-HT and 5-HT2C receptor kinetics were studied in cerebral cortex and brain stem of sham operated, 72 h pancreatectomised and 7 days pancreatectomised rats. Scatchard analysis with [3H] mesulergine in cerebral cortex showed a significant decrease (p < 0.05) in maximal binding (Bmax) without any change in Kd in 72 h pancreatectomised rats compared with sham. The decreased Bmax reversed to sham level by 7 days after pancreatectomy. In brain stem, Scatchard analysis showed a significant decrease (p < 0.01) in Bmax with a significant increase (p < 0.01) in Kd. Competition analysis in brain stem showed a shift in affinity towards a low affinity. These parameters were reversed to sham level by 7 days after pancreatectomy. Thus the results suggest that 5-HT through the 5-HT2C receptor in the brain has a functional regulatory role in the pancreatic regeneration.  相似文献   

10.
Chronic exposure to morphine can impair performance in tasks which need sensory processing. Using single unit recordings we investigate the effect of chronic morphine exposure on the firing properties of neurons in layers IV and V of the whisker-related area of rat primary somatosensory cortex. In urethane-anesthetized animals, neuronal activity was recorded in response to principal and adjacent whisker deflections either stimulated independently or in a conditioning test paradigm. A condition test ratio (CTR) was calculated for assessing the inhibitory receptive field. In layer IV, chronic morphine treatment did not change the spontaneous discharge activity. On responses to principal and adjacent whisker deflections did not show any significant changes following chronic morphine exposure. The magnitude Off responses to adjacent whisker deflection decreased while its response latency increased. In addition, there was a significant increase in the latency of Off responses to principal whisker deflection. CTR did not change significantly following morphine exposure. Layer V neurons, on the other hand, did not show any significant changes in their spontaneous activity or their evoked responses following morphine exposure. Our results suggest that chronic morphine exposure has a subtle modulatory effect on response properties of neurons in barrel cortex.  相似文献   

11.
The present work was undertaken to characterize kinetics, including activation, desensitization and deactivation, of responses mediated by GABAA and GABAC receptors on carp retinal bipolar cells, using the whole-cell patch-clamp technique. It was revealed that the GABAC response was generally slower in kinetics than the GABAA response. Activation kinetics of both the receptors could be well fit by monoexponential functions with time constants t, being 44.57 ms (GABAC) and 10.86 ms (GABAA) respectively. Desensitization of the GABAAresponse was characterized by a fast and a slow exponential component with time constants of τfast = 2.16 s and τslow = 19.78 s respectively, whereas desensitization of the GABAC response was fit by a monoexponential function of the time constant τ = 6.98 s. Deactivation at both the receptors was adequately described by biexponential functions with time constants being much higher for the GABAC response (τfast= 674.8 ms; τslow = 2 090 ms) than those for the GABAA response (τfast = 42.07 ms; τslow = 275.1 ms). These differences in kinetics suggest that GABAC and GABAA receptors may be involved in processing signals in different frequency domains.  相似文献   

12.
Effects of methylmercury (MetHg) on the specific [3H]flunitrazepam binding were studied in rat cortical and cerebellar P2-fractions in vitro. MetHg did not affect significantly the specific [3H]flunitrazepam binding in unwashed P2-fraction but increased it marginally (by 16%) at 100 M in washed P2-fraction, in both brain regions.Muscimol (3 M), a GABAA agonist, stimulated the [3H]flunitrazepam binding by 30% to 50% depending on the brain region. In washed cerebellar membranes the enhancing response of muscimol was 10 to 14% lower after preincubation of the tissue with MetHg but in cerebral cortex MetHg did not modulate the muscimol response at all. The results indicate that Met-Hg may have region specific effects on GABAA receptors in vitro and the effect may depend on the occupational state of the GABA binding domain of the receptor complex.  相似文献   

13.
GABA(B) receptor subunits are widely expressed on neurons throughout the central nervous system (CNS), at both pre- and postsynaptic sites, where they mediate the late and slow component of the inhibitory response to the major inhibitory neurotransmitter GABA. Recently, GABA(B) receptors have been reported to be expressed in astrocytes and microglia in the rat CNS by immunocytochemistry. However, there are few reports available for the functional characterization of GABA(B) receptors on astrocytes. In the present study, we therefore investigated the functional expression and characteristics of GABA(B) receptors in primary cultures of astrocytes from rat cerebral cortex. In the presence of 10 microM GTP, forskolin concentration-dependently increased adenylylcyclase (AC) activity in membranes prepared from rat astrocytes. The selective GABA(B) agonist (R)-baclofen concentration-dependently reduced forskolin-stimulated AC activity in the presence of 10 microM GTP. This effect was reversed by the selective GABA(B) antagonists, CGP-55845 and CGP-54626, and was completely abolished by treatment of astrocytic membranes with pertussis toxin. In addition, RT-PCR, Western blotting, and immunocytochemistry clearly showed that metabotropic GABA(B) receptor isoforms (GABA(B)R1 and GABA(B)R2) are expressed in rat cerebrocortical astrocytes. Taken collectively, these results demonstrate that functionally active metabotropic GABA(B) receptors are expressed in rat cerebrocortical astrocytes.  相似文献   

14.
Baur R  Minier F  Sigel E 《FEBS letters》2006,580(6):1616-1620
We show that the five subunits of a gamma-aminobutyric acid type A receptor (GABA(A) receptor) can be concatenated to yield a functional receptor. This concatenated receptor alpha(1)-beta(2)-alpha(1)-gamma(2)-beta(2) has the advantage of a known subunit arrangement. Most of its functional properties are not significantly different from a receptor formed by individual subunits. Extent of expression amounted to about 40% of that of non-concatenated receptors in Xenopus oocytes, after injection of oocytes with comparable amounts of cRNA coding for concatenated and non-concatenated receptors. The ability to express receptors consisting of five subunits enables detailed studies of GABA(A) receptor subtype selective compounds.  相似文献   

15.
Intracellular recordings were made from amacrine cells in the isolated, superfused carp retina, and the effects of γ-aminobutyric acid (GABA) on sustained and transient ON signals of these cells were studied. Exogenous GABA application partially suppressed the sustained response of ON amacrine cells, which could be completely reversed by picrotoxin (PTX), a chloride channel blocker, and by bicuculline (BCC), a specific GABA_A receptor antagonist. On the other hand, suppression by GABA of the ON response which was predominantly driven by rod signals in a certain portion of transient ON-OFF amacrine cells was completely blocked by PTX, but not by BCC, indicating that GABA_C receptors may be involved in the effect. These results suggest that GABA_A and GABA_C receptors may be respectively involved in mediating the transmission of sustained and transient signals in the carp inner retina.  相似文献   

16.
Formerly considered as an exclusively peripheral receptor, it is now accepted that CB(2) cannabinoid receptor is also present in limited amounts and distinct locations in the brain of several animal species, including mice. However, the possible roles of CB(2) receptors in the brain need to be clarified. The aim of our work was to study the mu-opioid receptor (MOR) mRNA expression level and functional activity after acute in vivo and in vitro treatments with the endocannabinoid noladin ether (NE) and with the CB(2) receptor antagonist SR144528 in brainstem of mice deficient in either CB(1) or CB(2) receptors. This study is based on our previous observations that noladin ether (NE) produces decrease in the activity of MOR in forebrain and this attenuation can be antagonized by the CB(2) cannabinoid antagonist SR144528, suggesting a CB(2) receptor mediated effect. We used quantitative real-time PCR to examine the changes of MOR mRNA levels, [(35)S]GTPgammaS binding assay to analyze the capability of mu-opioid agonist DAMGO to activate G-proteins and competition binding assays to directly measure the ligand binding to MOR in mice brainstem. After acute NE administration no significant changes were observed on MOR signaling. Nevertheless pretreatment of mice with SR144528 prior to the administration of NE significantly decreased MOR signaling suggesting the involvement of SR144528 in mediating the effect of MOR. mRNA expression of MORs significantly decreased both in CB(1) wild-type and CB(1) knockout mice after a single injection of SR144528 at 0.1mg/kg when compared to the vehicle treated controls. Consequently, MOR-mediated signaling was attenuated after acute in vivo treatment with SR144528 in both CB(1) wild-type and CB(1) knockout mice. In vitro addition of 1microM SR144528 caused a decrease in the maximal stimulation of DAMGO in [(35)S]GTPgammaS binding assays in CB(2) wild-type brainstem membranes whereas no significant changes were observed in CB(2) receptor knockouts. Radioligand binding competition studies showed that the noticed effect of SR144528 on MOR signaling is not mediated through MORs. Our data demonstrate that the SR144528 caused pronounced decrease in the activity of MOR is mediated via CB(2) cannabinoid receptors.  相似文献   

17.
1. Differential regulation, by dexamethasone, of glucocorticoid receptor gene expression was studied in three different neuronal cultures derived from hypothalamus amygdala, and cerebral cortex. 2. Cellular glucocorticoid receptor (GR) mRNA concentration was measured by hybridization using a 32P-labeled RNA probe complementary to a 2.2-kb fragment of the glucocorticoid receptor mRNA. Changes in the amount of GR mRNA were evaluated in relation to the content of beta-actin mRNA. 3. In cells derived from either hypothalamus or cerebral cortex, we observed a complex pattern of GR mRNA concentrations which were characterized by cyclic variations of GR mRNA content during continuous treatment with dexamethasone for up to 72 hr. 4. In contrast to cells derived from the hypothalamus where a persistent 30-40% reduction in GR mRNA levels was seen for up to a least 72 hr, we observed, in cells derived from the cerebral cortex, a sustained increased (1.4-fold) of the GR mRNA at this same time interval.  相似文献   

18.
19.
AMPA receptors (AMPAR) mediate the majority of fast excitatory neurotransmission in the central nervous system (CNS). Transmembrane AMPAR regulatory proteins (TARPs) have been identified as a novel family of proteins which act as auxiliary subunits of AMPARs to modulate AMPAR trafficking and function. The trafficking of AMPARs to regulate the number of receptors at the synapse plays a key role in various forms of synaptic plasticity, including long-term potentiation (LTP) and long-term depression (LTD). Expression of the prototypical TARP, stargazin/TARPγ2, is ablated in the stargazer mutant mouse, an animal model of absence epilepsy and cerebellar ataxia. Studies on the stargazer mutant mouse have revealed that failure to express TARPγ2 has widespread effects on the balance of expression of both excitatory (AMPAR) and inhibitory receptors (GABAA receptors, GABAR). The understanding of TARP function has implications for the future development of AMPAR potentiators, which have been shown to have therapeutic potential in both psychological and neurological disorders such as schizophrenia, depression and Parkinson's disease.  相似文献   

20.
Chorea-acanthocytosis (ChAc) is a hereditary neurodegenerative disorder caused by loss of function mutations in the VPS13A gene encoding chorein. Recently, using a gene-targeting technique to delete exons 60-61, we produced a ChAc-model mouse that corresponds to a human disease mutation. In this study, a comparative microarray analysis of gene expression in the striatum revealed an increased level of gephyrin gene expression in the ChAc-model mice compared with wild type mice. Since gephyrin is known as a GABA(A) receptor-anchoring protein, we compared the protein-level expression and localization of gephyrin and the GABA(A) receptor alpha1 (GABRA1) and gamma2 (GABRG2) subunits. Gephyrin and GABRG2 immunoreactivities in the striatum and hippocampus of the ChAc-model mice were significantly higher than those in the wild types. Our results suggest that chorein functional loss may lead to a compensatory upregulation of gephyrin and GABRG2 in the pathologic condition in ChAc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号