首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Therapeutic strategies designed to inhibit the activation of microglia may lead to significant advancement in the treatment of most neurodegenerative diseases. Dalesconols B, also termed as TL2, is a newly found polyketide from a mantis-associated fungus and has been reported to exert potent immunosuppressive effects. In the present study, the anti-inflammatory effects of TL2 was investigated in lipopolysaccharide (LPS)-treated BV2 microglia and primary microglia cells. Our observations indicated that pretreatment with TL2 significantly inhibited the production of NO and PGE2 and suppressed the expression of pro-inflammatory mediators such as inducible nitric oxide synthase (iNOS), COX-2, TNF-α, IL-1β, IL-6, MCP-1 and MIP-1α in LPS-stimulated BV2 microglia. The nuclear translocation of NF-κB and the phosphorylation level of Akt, p38 and JNK MAP kinase pathways were also inhibited by TL2 in LPS-treated BV2 microglia. Moreover, TL2 also decreased Aβ-induced production of TNF-α, IL-1β and IL-6 in BV2 microglia. Additionally, TL2 protected primary cortical neurons against microglia-mediated neurotoxicity. Overall, our findings suggested that TL2 might be a promising therapeutic agent for alleviating the progress of neurodegenerative diseases associated with microglia activation.  相似文献   

2.
Neopterin production is induced in human monocyte-derived macrophages and dendritic cells upon stimulation with Th1-type cytokine interferon-γ (IFN-γ). In parallel, IFN-γ induces the tryptophan-(trp)-degrading enzyme indoleamine 2,3-dioxygenase (IDO) and triggers the formation of reactive oxygen species (ROS). Translocation of the signal transduction element nuclear factor-κB (NF-κB) is induced by ROS and accelerates the pro-inflammatory response by activation of other pro-inflammatory pathways. Therefore, a close relationship between NF-κB expression, the production of neopterin and the degradation of trp can be assumed, although this has not been demonstrated so far. In the present in vitro study we compared the influence of lipopolysaccharide (LPS) on NF-κB activation, neopterin formation and the degradation of trp in THP-1Blue cells, which represent the human myelomonocytic cell line THP-1 stably transfected with an NF-κB inducible reporter system.In cells stimulated with LPS, a significant induction of NF-κB was observed, and this was paralleled by an increase of kynureunine (kyn) and neopterin concentrations and a decline of trp. The increase of the kyn to trp quotient indicates accelerated IDO activity. Higher LPS concentrations and longer incubation of cells were associated with higher activities of all three biochemical pathways and significant correlations existed between NF-κB activation, neopterin release and trp degradation (all p < 0.001). We conclude that there is a parallel induction of NF-κB, neopterin formation and trp degradation in monocytic THP-1 cells, which is elicited by pro-inflammatory triggers like LPS during innate immune responses.  相似文献   

3.
4.
Previously, we demonstrated that protein kinase D (PKD) plays a protective role during H2O2-induced intestinal cell death. Here, we sought to determine whether this effect is mediated by nuclear factor-κB (NF-κB) and mitogen-activated protein kinases (MAPKs). Treatment with H2O2 activated NF-κB in RIE-1 cells; H2O2 also induced the translocation of NF-κB p65 as well as phosphorylation of IκB-α. PKD1 siRNA inhibited H2O2-induced activation, translocation of NF-κB, and phosphorylation of IκB-α. We also found that overexpression of wild type PKD1 attenuated H2O2-induced phosphorylation of p38 MAPK and its upstream activator, MAPK kinase (MKK) 3/6, whereas the phosphorylation was increased by PKD1 siRNA or kinase-dead PKD1. Phosphorylation of neither extracellular signal-regulated kinases (ERK) 1/2 nor c-Jun N-terminal kinases (JNK) was altered by PKD1 plasmids or siRNA. Our findings suggest that PKD protects intestinal cells through up-regulation of NF-κB and down-regulation of p38 MAPK.  相似文献   

5.
Epigallocatechin gallate (EGCG), the major polyphenol in green tea, acutely stimulates production of nitric oxide (NO) from vascular endothelium to reduce hypertension and improve endothelial dysfunction in spontaneously hypertensive rats. Herein, we explored additional mechanisms whereby EGCG may mediate beneficial cardiovascular actions. When compared with vehicle-treated controls, EGCG treatment (2.5 μM, 8 h) of human aortic endothelial cells (HAEC) caused a ~three-fold increase in heme oxygenase-1 (HO-1) mRNA and protein with comparable increases in HO-1 activity. This was unaffected by pretreatment of cells with wortmannin, LY294002, PD98059 or L-NAME (PI 3-kinase, MEK and NO synthase inhibitors, respectively). Pretreatment of HAEC with SB203580 (p38 MAPK inhibitor) or siRNA knockdown of p38 MAPK completely blocked EGCG-stimulated induction of HO-1. EGCG treatment also inhibited tumor-necrosis-factor-α-stimulated expression of vascular cell adhesion molecule (VCAM)-1 and decreased adhesion of monocytes to HAEC. siRNA knockdown of HO-1, p38 MAPK or Nrf-2 blocked these inhibitory actions of EGCG. In HAEC transiently transfected with a human HO-1 promoter luciferase reporter (or an isolated Nrf-2 responsive region), luciferase activity increased in response to EGCG. This was inhibitable by SB203580 pretreatment. EGCG-stimulated expression of HO-1 and Nrf-2 was blocked by siRNA knockdown of Nrf-2 or p38 MAPK. Finally, liver from mice chronically treated with EGCG had increased HO-1 and decreased VCAM-1 expression. Thus, in vascular endothelium, EGCG requires p38 MAPK to increase expression of Nrf-2 that drives expression of HO-1, resulting in increased HO-1 activity. Increased HO-1 expression may underlie anti-inflammatory actions of EGCG in vascular endothelium that may help mediate beneficial cardiovascular actions of green tea.  相似文献   

6.

Background

Among a variety of inflammatory mediators, visfatin is a proinflammatory adipocytokine associated with inflammatory reactions in obesity, metabolic syndrome, chronic inflammatory disease, and autoimmune disease. However, the biological role of visfatin in secretion of major mucins in human airway epithelial cells has not been reported. Therefore, this study was conducted in order to investigate the effect and the brief signaling pathway of visfatin on MUC8 and MUC5B expression in human airway epithelial cells.

Results

Visfatin significantly induced MUC8 and MUC5B expression. Visfatin significantly activated phosphorylation of p38 MAPK. Treatment with SB203580 (p38 MAPK inhibitor) and knockdown of p38 MAPK by siRNA significantly blocked visfatin-induced MUC8 and MUC5B expression.Visfatin significantly increased ROS formation. Treatment with SB203580 significantly attenuated visfatin-induced ROS formation. Treatment with NAC (ROS scavenger) and DPI (NADPH oxidase inhibitor) significantly attenuated visfatin-induced MUC8 and MUC5B expression. However, treatment with NAC and DPI did not attenuate visfatin-activated phosphorylation of p38 MAPK. Visfatin significantly activated the phosphorylation of NF-κB. Treatment with PDTC (NF-κB inhibitor) significantly attenuated visfatin-induced MUC8 and MUC5B expression.

Conclusions

These results suggest that visfatin induces MUC8 and MUC5B expression through p38 MAPK/ROS/NF-κB signaling pathway in human airway epithelial cells.  相似文献   

7.
8.
9.
We isolated the phenolic glucoside salicortin from a Populus euramericana bark extract, and examined its ability to suppress inflammatory responses as well as the molecular mechanisms underlying these abilities, using lipopolysaccharide (LPS)-stimulated RAW264.7 cells. Salicortin inhibited iNOS expression and the subsequent production of NO in a dose-dependent manner in the LPS-stimulated RAW 264.7 cells. Salicortin significantly suppressed LPS-induced signal cascades of NF-κB activation, such as IKK activation, IκBα phosphorylation and p65 phosphorylation in RAW 264.7 cells. In addition, salicortin inhibited the LPS-induced activation of JNK, but not ERK or p38 MAPK. Furthermore, salicortin significantly inhibited production of pro-inflammatory cytokines, such as TNF-α, IL-1β and IL-6 in the LPS-stimulated RAW 264.7 cells. These findings suggest that salicortin may show its anti-inflammatory activity by suppressing the LPS-induced expression of pro-inflammatory mediators through inhibition of NF-κB and JNK MAPK signaling cascades in macrophages. [BMB Reports 2014; 47(6): 318-323]  相似文献   

10.
Hippophae rhamnoides has been extensively used in oriental traditional medicines for treatment of asthma, skin diseases, gastric ulcers, and lung disorders. In this study, we isolated casuarinin from the leaves of H.rhamnoides and examined the effect of casuarinin on the TNF-α-induced ICAM-1 expression in a human keratinocytes cell line HaCaT. Pretreatment with casuarinin inhibited TNF-α-induced protein and mRNA expression of ICAM-1 and subsequent monocyte adhesiveness in HaCaT cells. Casuarinin significantly inhibited TNF-α-induced NF-κB activation. In addition, casuarinin inhibited activation of ERK and p38 MAPK in a dose-dependent manner. Furthermore, pretreatment with casuarinin decreased TNF-α-induced pro-inflammatory mediators, such as IL-1β, IL-6, IL-8, and MCP-1. These results demonstrated that casuarinin exerts its anti-inflammatory activity by suppressing TNF-α-induced expression of ICAM-1 and pro-inflammatory cytokines/chemokines via blockage of activation of NF-κB and ERK/p38 MAPK and can be used as a therapeutic agent against inflammatory skin diseases.  相似文献   

11.
The GRB2 associated binder 1 (GAB1) is an essential docking/adaptor protein for transmitting intracellular signals of the MET tyrosine kinase receptor activated by hepatocyte growth factor/scatter factor (HGF/SF). We found that in response to hours of HGF/SF treatment, the GAB1 protein level is degraded by a mechanism involving MET activity and the proteasomal machinery. We also showed that GAB1 is both multi- and poly-ubiquitinated in a CBL-dependent manner. A long term exposure to HGF/SF caused a more sustained down-regulation of GAB1 than of MET, associated with a loss of reactivation of the ERK MAP kinases to subsequent acute ligand treatment. These data demonstrate that GAB1 is ubiquitinated by CBL and degraded by the proteasome, and plays a role in negative-feedback regulation of HGF/SF–MET signaling.  相似文献   

12.
13.
Wong CH  Mak GW  Li MS  Tsui SK 《Cytokine》2012,59(2):286-293
Interleukin 6 (IL-6) is pleiotropic cytokine playing an important role in inflammatory response. Other than classical immune tissues, IL-6 is also produced in muscle cells under specific conditions. Four-and-a-half LIM-only protein 2 (FHL2) is preferentially expressed in skeletal and cardiac muscle cells compared to other tissues indicating it has an important role in skeletal muscle and cardiovascular system. In this report, the regulation of IL-6 by FHL2 in muscle cells was investigated. We demonstrated that FHL2 overexpression increased IL-6 mRNA level and its protein secretion in skeletal myoblasts. In contrast, the IL-6 secretion was significantly decreased after FHL2-knockdown by siRNA in response to TNFα stimulation. We further showed that FHL2-mediated induction of IL-6 was regulated by the activation of IL-6 promoter through stimulating NF-κB and p38 MAPK signaling pathway. Our results further illustrated the molecular mechanisms of IL-6 production, which provides new insights in the roles of FHL2 in post-injury inflammation or cytoprotection of muscle cells.  相似文献   

14.
Inflammation is characterized by early influx of polymorphonuclear neutrophils (PMNs), followed by a second wave of monocyte recruitment. PMNs mediate monocyte recruitment via their release of heparin binding protein (HBP), which activates CCR2 (CC-chemokine receptor 2) on monocytes. However, the pathways for such signal transmission remain unknown. Accumulating evidences have highlighted the importance of leukocyte-endothelial cell interactions in the initiation of inflammation. In this study, an interesting finding is that HBP enhances the secretion of monocyte chemotactic protein 1(MCP-1), ligand of CCR2, from a third party, the endothelial cells (ECs). HBP-induced increase in MCP-1 production was demonstrated at the protein, mRNA and secretion levels. Exposure of ECs to HBP elicited rapid phosphorylation of FAK/PI3K/AKT and p38 MAPK/NF-κB signaling. MCP-1 levels were attenuated during the response to HBP stimulation by pretreatment with a FAK inhibitor (or siRNA), a PI3K inhibitor, an AKT inhibitor, a p38 inhibitor (or siRNA) and two NF-κB inhibitors. Additionally, pretreatment with inhibitors to FAK, PI3K and AKT led to a decrease in HBP-induced phosphorylation of p38/NF-κB axis. These results showed that HBP induced MCP-1 expression via a sequential activation of the FAK/PI3K/AKT pathway and p38 MAPK/NF-κB axis. Interestingly, the patterns of HBP regulation of the expression of the adhesion molecular VCAM-1 were similar to those seen in MCP-1 after pretreatment with inhibitors (or not). These findings may help to determine key pharmacological points of intervention, thus slowing the progress of inflammatory-mediated responses in certain diseases where inflammation is detrimental to the host.  相似文献   

15.

Objectives  

Natural products have played a significant role in drug discovery and development. Inflammatory mediators such as inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) have been suggested to connect with various inflammatory diseases. In this study, we explored the anti-inflammatory potential of aciculatin (8-((2R,4S,5S,6R)-tetrahydro-4,5-dihydroxy-6-methyl-2H-pyran-2-yl)-5-hydroxy-2-(4-hydroxyphenyl)-7-methoxy-4H-chromen-4-one), one of main components of Chrysopogon aciculatis, by examining its effects on the expression and activity of iNOS and COX-2 in lipopolysaccharide (LPS)-activated macrophages.  相似文献   

16.
Macrophage accumulation has been implicated in the pathogenesis of inflammatory glomerular disease. Monocyte chemoattractant protein-1 (MCP-1) plays a central role in recruiting monocytes to the glomeruli. Tumor necrosis factor-α (TNF-α) has been shown to induce MCP-1 expression in mesangial cells, although the precise mechanisms remain unclear. We previously demonstrated that RhoA and its effector, Rho-kinase (Rho-associated coiled-coil containing protein kinase, ROCK), are involved in the pathogenesis of diabetic nephropathy. However, its role in MCP-1 induction by TNF-α has not been elucidated. In the present study, we investigated whether the Rho/Rho-kinase signaling pathway regulates the TNF-α-mediated induction of MCP-1 in mesangial cells. Exposure of mouse mesangial cells (MES-13) to TNF-α resulted in an increase of MCP-1 expression (by RT-PCR) and secretion into the medium (by ELISA). Pull down and Western blot analysis revealed that TNF-α activated RhoA and Rho-kinase. Based on these observations, we speculated that the Rho/Rho-kinase signaling pathway may be involved in MCP-1 induction by TNF-α. In agreement with this concept, Y-27632, a specific Rho-kinase inhibitor, attenuated TNF-α-mediated induction of MCP-1. We demonstrated that Y-27632 inhibited TNF-α-mediated monocyte migration and attenuated TNF-α-mediated p38 MAPK activation. Based on these data we infer that Y-27632 inhibits TNF-α-induced MCP-1 expression, secretion and function through inhibition of Rho-kinase and p38 MAPK activity. Our study suggests that Rho/Rho-kinase is an important therapeutic target of monocyte recruitment and accumulation within the glomerulus in inflammatory renal disease.  相似文献   

17.
Thrombin has been shown to increase expression of chemokines such as monocyte chemoattractant protein 1 (MCP-1) in endothelial cells, leading to the development of atherosclerosis. However, the precise mechanism of this induction remains unknown. In the present study, we investigated whether the small G protein RhoA, and its effector, Rho-kinase are involved in MCP-1 induction by thrombin in endothelial cells. Y-27632, a specific Rho-kinase inhibitor, potently inhibited MCP-1 induction by thrombin. Y-27632 significantly decreased the chemotactic activity of thrombin-stimulated supernatants of endothelial cells on monocytes. Importantly, fasudil, a specific Rho-kinase inhibitor, attenuated MCP-1 gene expression in the aorta of db/db mice. Y-27632 attenuated thrombin-mediated phosphorylation of p38MAPK and p65, indicating that Rho-kinase mediates thrombin-induced MCP-1 expression through p38MAPK and NF-κB activation. Our findings demonstrate that the Rho/Rho-kinase signaling pathway plays a critical role in thrombin-mediated MCP-1 expression and function, and suggest that Rho/Rho-kinase may be an important target in the development of new therapeutic strategies for atherosclerosis.  相似文献   

18.
Guo F  Zhou Z  Dou Y  Tang J  Gao C  Huan J 《Cytokine》2012,57(3):417-428
The purpose of study is to investigate the effects of GEF-H1/RhoA pathway in regulating intercellular adhesion molecule-1 (ICAM-1) expression in lipopolysaccharide (LPS)-activated endothelial cells. Exposure of human umbilical vein endothelial cells (HUVECs) to LPS induced GEF-H1 and ICAM-1 expression in dose- and time-dependent up-regulating manners. Pretreatment with Clostridium difficile toxin B-10463 (TcdB-10463), an inhibitor of Rho activity, reduced LPS-related phosphorylation of p65 at Ser 536 in a dose-dependent manner. Inhibition of TLR4 expression significantly blocked LPS-induced RhoA activity, NF-κB transactivation, GEF-H1 and ICAM-1 expression. Coimmunoprecipitation assay indicated that LPS-activated TLR4 and GEF-H1 formed a signalling complex, suggesting that LPS, acting through TLR4, stimulates GEF-H1 expression and RhoA activity, and thereby induces NF-κB transactivation and ICAM-1 gene expression. However, GEF-H1/RhoA regulates LPS-induced NF-κB transactivation and ICAM-1 expression in a MyD88-independent pathway because inhibition of MyD88 expression could not block LPS-induced RhoA activity. Furthermore, pretreatment with Y-27632, an inhibitor of ROCK, significantly reduced LPS-induced p38, ERK1/2 and p65 phosphorylation, indicating that ROCK acts as an upstream effector of p38 and ERK1/2 to promote LPS-induced NF-κB transactivation and ICAM-1 expression. What is more, the p38 inhibitor (SB203580) but not ERK1/2 inhibitor (PD98059) blocked LPS-induce NF-κB transactivation and ICAM-1 expression, which demonstrates that RhoA mediates LPS-induced NF-κB transactivation and ICAM-1 expression dominantly through p38 but not ERK1/2 activation. In summary, our data suggest that LPS-induced ICAM-1 synthesis in HUVECs is regulated by GEF-H1/RhoA-dependent signaling pathway via activation of p38 and NF-κB.  相似文献   

19.
p38γ is a member of p38 MAPK family which contains four isoforms p38α, p38β, p38γ, and p38δ. p38γ MAPK has unique function and is less investigated. Recent studies revealed that p38γ MAPK may be involved in tumorigenesis and cancer aggressiveness. However, the underlying cellular/molecular mechanisms remain unclear. Epithelial-mesenchymal transition (EMT) is a process that epithelial cancer cells transform to facilitate the loss of epithelial features and gain of mesenchymal phenotype. EMT promotes cancer cell progression and metastasis, and is involved in the regulation of cancer stem cells (CSCs) which have self-renewal capacity and are resistant to chemotherapy and target therapy. We showed that p38γ MAPK significantly increased EMT in breast cancer cells; over-expression of p38γ MAPK enhanced EMT while its down-regulation inhibited EMT. Meanwhile, p38γ MAPK augmented CSC population while knock down of p38γ MAPK decreased CSC ratio in breast cancer cells. MicroRNA-200b (miR-200b) was down-stream of p38γ MAPK and inhibited by p38γ MAPK; miR-200b mimics blocked p38γ MAPK-induced EMT while miR-200b inhibitors promoted EMT. p38γ MAPK regulated miR-200b through inhibiting GATA3. p38γ MAPK induced GATA3 ubiquitination, leading to its proteasome-dependent degradation. Suz12, a Polycomb group protein, was down-stream of miR-200b and involved in miR-200b regulation of EMT. Thus, our study established an important role of p38γ MAPK in EMT and identified a novel signaling pathway for p38γ MAPK–mediated tumor promotion.  相似文献   

20.
Carabrol, isolated from Carpesium macrocephalum, showed anti-inflammatory potential in LPS-induced RAW 264.7 murine macrophages. In present study, carabrol demonstrated the inhibitory activity on pro-inflammatory cytokines such as IL-1β, IL-6 and TNF-α. In addition, mRNA and protein levels of iNOS and COX-2 were reduced by carabrol. Molecular analysis revealed that these suppressive effects were correlated with the inactivation of p38 and JNK via inhibition of NF-κB activation. Immunoblotting showed that carabrol suppressed LPS-induced degradation of I-κBα and decreased nuclear translocation of p65. Taken together, these results suggest that carabrol can be a modulator of pro-inflammatory signal transduction pathway in RAW 264.7 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号