首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Prothymosin α (ProT) is involved in regulating expression of the oxidative stress-protective genes and it also exerts immunomodulatory activities. In this study, we investigated the therapeutic effects of ProT gene transfer on atherosclerosis in endothelial cells and in ApoE-deficient mice. Adenoviruses encoding mouse ProT (AdProT) were used for the management of atherosclerosis. In vitro, the effects of ProT on antioxidant gene expressions and the protection effect against oxidant-mediated injury in endothelial cells were examined. In vivo, AdProT were administered intraventricularly into the heart of ApoE-/- mice. Histopathological and immunohistochemical assessments of the aortic tissues were performed. Expressions of HO-1 and antioxidant genes in the aortic tissues were also determined. Our results demonstrated that ProT gene transfer increased antioxidant gene expressions, eNOS expression and NO release, as well as reduced the reactive oxygen species production in endothelial cells. Intraventricular administration of AdProT reduced the lesion formation, increased expressions of HO-1 and SOD genes, and reduced infiltrating macrophages in the aorta of ApoE-/- mice. This study suggests that ProT gene transfer may have the therapeutic potential for the management of atherosclerosis via inducing antioxidant gene expressions, eNOS expression and NO release, reducing ROS production and macrophage infiltration in endothelium.  相似文献   

2.
Generation of reactive oxygen species (ROS) and activities of antioxidant enzymes (catalase, peroxidase, ascorbate peroxidase) in pea (Pisum sativum L.) and soybean (Glycine max L.) under hypoxia (3–24 h) and high CO2 concentration in medium were studied. In sensitive to hypoxia pea seedlings, hypoxia enhanced markedly production of superoxide anion-radical, hydroperoxides, and especially hydrogen peroxide. In more tolerant soybean plants, these changes were less pronounced. During first hours of hypoxia, activity of lipoxygenase in plant cells increased. This allows a suggestion that this enzyme is involved in the processes of hydroperoxide accumulation in plant tissues under oxygen deficit. In pea and soybean plants, a correlation between tolerance to hypoxia, the rate of ROS generation, and antioxidant enzyme activities was established. During the first hours of hypoxia, the catalase activity in soybean plants increased stronger than in sensitive to hypoxia pea plants. At longer exposure to hypoxia (24 h), peroxidases started to play the higher role in cell defense against hypoxia, but only in soybean plants. The medium with the higher CO2 content induced higher changes in the processes of ROS accumulation and activities of lipoxygenase and antioxidant enzymes. This permits us to refer CO2, accumulated as a product of respiration in the cells, to low-molecular signal molecules switching on plant adaptation to hypoxic stress.  相似文献   

3.
The efficacy of volatiles evolved from tissues of nine cruciferous plants against resting propagules of Fusarium oxysporum var radicis f. sp. lycopersici, Sclerotium cepivorum, and Sclerotinia sclerotiorum was tested. The cruciferous plants released biocidal compounds, mainly isothiocyanates, produced during the enzymatic degradation of glucosinolates present in the plant cells. Among the plants investigated, the highest fungicidal activity and also the highest concentration of isothiocyanates were found in Brassica juncea. The resting propagules of tested fungi differed significantly in their sensitivity towards volatiles released from plant tissues.  相似文献   

4.
Constant production of reactive oxygen species (ROS) during aerobic metabolism is balanced by antioxidant defense system of an organism. Although low level of ROS is important for various physiological functions, its accumulation has been implicated in the pathogenesis of age-related diseases such as cancer and coronary heart disease and neurodegenerative disorders such as Alzheimer’s disease. It is generally assumed that frequent consumption of phytochemicals derived from vegetables, fruits, tea and herbs may contribute to shift the balance towards an adequate antioxidant status. The present study is aimed to investigate the effect of aqueous extract of medicinal plant Terminalia arjuna on antioxidant defense system in lymphoma bearing AKR mice. Antioxidant action of T. arjuna is monitored by the activities of catalase, superoxide dismutase and glutathione S transferase which constitute major antioxidant defense system by scavenging ROS. These enzyme activities are low in lymphoma bearing mice indicating impaired antioxidant defense system. Oral administration of different doses of aqueous extract of T. arjuna causes significant elevation in the activities of catalase, superoxide dismutase and glutathione S transferase. T. arjuna is found to down regulate anaerobic metabolism by inhibiting the activity of lactate dehydrogenase in lymphoma bearing mice, which was elevated in untreated cancerous mice. The results indicate the antioxidant action of aqueous extract of T. arjuna, which may play a role in the anti carcinogenic activity by reducing the oxidative stress along with inhibition of anaerobic metabolism.  相似文献   

5.
The pea leafminer, Liriomyza huidobrensis, is an important pest species affecting ornamental crops worldwide. Plant damage consists of oviposition and feeding punctures created by female adult flies as well as larva-bored mines in leaf mesophyll tissues. How plants indirectly defend themselves from these two types of leafminer damage has not been sufficiently investigated. In this study, we compared the indirect defense responses of bean plants infested by either female adults or larvae. Puncturing of leaves by adults released green leaf volatiles and terpenoids, while larval feeding caused plants to additionally emit methyl salicylate and (E,E)-4,8,12-trimethyl-1,3,7,11-tridecatetraene (TMTT). Puncturing of plants by female adults induced increases in jasmonic acid (JA) and JA-related gene expressions but reduced the expressions of salicylic acid (SA)-related genes. In contrast, JA and SA and their-related gene expression levels were increased significantly by larval feeding. The exogenous application of JA+SA significantly triggered TMTT emission, thereby significantly inducing the orientation behavior of parasitoids. Our study has confirmed that larval feeding can trigger TMTT emission through the activation of both JA and SA pathways to attract parasitoids; however, TMTT alone is less attractive than the complete blend of volatiles released by infested plants.  相似文献   

6.
Kong X  Sun L  Zhou Y  Zhang M  Liu Y  Pan J  Li D 《Plant cell reports》2011,30(11):2097-2104
Mitogen-activated protein kinase kinase (MAPKKs) are important components of MAPK cascades, which are universal signal transduction modules and play important role in regulating both plant development and biotic or abiotic stress responses. In this study, we identified the group C MAPKK gene, ZmMKK4, in maize (Zea mays L.). Overexpression of ZmMKK4 in tobacco enhanced tolerance to osmotic stress by increased proline content and antioxidant enzyme (POD) activities compared with wild-type plants. RT-PCR revealed that one peroxidase (POX) gene, NtPOX1, was higher in ZmMKK4-overexpressing plants than in the wild-type plants. In addition, the accumulation of reactive oxygen species (ROS) in ZmMKK4-overexpressing plants is much less than that of wild-type plants. These results suggest that ZmMKK4 may be involved in ROS signaling. Taken together, these results indicate that ZmMKK4 is a positive regulator of osmotic stress by regulating scavenging of ROS in plants.  相似文献   

7.
Herbivory is known to increase the emission of volatiles, which attract natural enemies to herbivore‐damaged plants in laboratory and agricultural systems. We report on signalling through volatiles induced by Euschistus heros (F.) (Heteroptera: Pentatomidae) in two legumes that influence the attraction and retention of the egg parasitoid Telenomus podisi (Ashmead) (Hymenoptera: Scelionidae). Air‐borne extracts obtained from two host plants of E. heros, soybean, Glycine max, and pigeon pea, Cajanus cajan (Leguminosae), produce a different blend of emitted volatiles when attacked by adult males or females and nymphs of the pest species, compared with the undamaged plants. The same results were obtained when the plants were treated with extracted saliva of E. heros which had been mechanically introduced into the plants. This indicates that some substance in the saliva contributed to the release of the volatiles. Bioassays in a Y‐tube olfactometer with female T. podisi and treated plants confirmed the significant preference of the egg parasitoid for plants attacked by either males, females, or fourth instar nymphs of the pest species. On the other hand, volatile extracts obtained from soybean subjected to the velvetbean caterpillar, Anticarsia gemmatalis, a non‐host species for T. podisi, showed a different blend of volatiles compared to those obtained from plants subjected to E. heros. Additionally, the volatiles obtained from this plant–host complex were not attractive to T. podisi. These results indicate that E. heros causes an increase in the emission of specific plant volatiles, and that the induction is possibly caused by an elicitor present in the pest saliva. The possibility that these plant volatiles play an important role in the attraction and retention of the egg parasitoid T. podisi is discussed.  相似文献   

8.
9.
Under cold stress, reactive oxygen species (ROS) are considered the main source of damage to plant cells. Mechanisms of ROS scavenging in wheat are very important during stress and the antioxidant enzymes superoxide dismutase, Catalase and Glutathione peroxidase are key to facilitating ROS scavenging. Molybdenum (Mo) is involved in many plant physiological and biochemical processes including antioxidant enzymes. This study reports research to investigate the effect of Mo application in enhancing antioxidant enzymes in two wheat cultivars. The results confirmed that antioxidant defense is important in wheat that is exposed to abiotic stress and that changes in activities of antioxidant enzymes occurred during exposure of plants to low non-freezing temperatures and by adding Mo. Mo application had a positive effect on gene expression of both Cbf14 and COR15a protein expression, indicating upregulation of the stress response regulon. In addition, Mo enhanced antioxidant enzymes activity and improved frost tolerance.  相似文献   

10.
BackgroundNaringenin is naturally isolated from citrus fruits possessing many pharmacological activities. However, little is known about the effect of naringenin on nonalcoholic steatohepatitis (NASH) in the model of metabolic syndrome.PurposeThe present study is aimed to investigate the effect of naringenin on NASH in 12-mo-old male ApoE−/− mice and its possible underlying mechanism.MethodsIn vivo, 12-mo-old male ApoE−/− mice were administrated with naringenin by intragastric gavage for 12 weeks. At the end of experiment, the blood samples and liver tissues were collected. Metabolic parameters in serum, levels of triglyceride, cholesterol and hydroxyproline, activities of antioxidant enzymes, and content of inflammatory cytokines (TNF-α and IL-6) in liver were examined by corresponding assay kits. Pathological changes in liver were observed by hematoxylin-eosin, oil red O, masson's trichrome, picro-sirius red and senescence β-galactosidase staining. Dihydroethidium was used for detection of reactive oxygen species (ROS). In vitro, AML-12 cells were treated with oleic acid in the presence or absence of naringenin for 24 h. Transfection of SIRT1 siRNA was also conducted in vitro. Lipid accumulation, cellular ROS generation, malondialdehyde content, antioxidant enzyme activities and secretion levels of TNF-α and IL-6 were examined. Both in vivo and in vitro, gene expressions were detected by real-time PCR or western blot.ResultsNaringenin administration improved metabolic parameters, suppressed hepatic steatosis, regulated expression of genes involved in lipid metabolism (FASN, SCD1, PPARα and CPT1α), reduced hepatic fibrosis and cell senescence, inhibited hepatic inflammation as evidenced by the decreased macrophage recruitment and content of TNF-α and IL-6, and reduced hepatic oxidative stress by suppressing ROS generation and normalizing activities of antioxidant enzymes. Notably, naringenin administration increased hepatic SIRT1 protein expression and activity along with the increased deacetylation of liver kinase B1 (LKB1), PGC1α and NF-κB. In vitro study, the benefits of naringenin on lipid accumulation, oxidative stress and inflammation were diminished by SIRT1 siRNA transfection.ConclusionsThese results indicate that naringenin administration may be a potential curative therapy for NASH treatment and the activation of hepatic SIRT1-mediated signaling cascades is involved in its beneficial effects.  相似文献   

11.
Objectives: The in vivo radio-protective effect of total triterpenes isolated from Ganoderma lucidum (Fr.) P. Karst was evaluated using Swiss albino mice, by pre-treatment with total triterpenes for 14 days, followed by a whole body exposure to γ-radiation.

Methods: The activities of the antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx), and the level of reduced glutathione (GSH) were analysed in liver and brain homogenates. The extent of lipid and protein peroxidation was also estimated in liver and brain homogenates after irradiation. Protection of radiation-induced DNA strand breaks in peripheral blood lymphocytes and bone marrow cells was assessed using the comet assay.

Results: Total triterpenes were highly effective in reducing the levels of lipid peroxidation and protein oxidation to near normal values in both liver and brain tissues. Total triterpenes, when administered in vivo, were also found to be successful in restoring the antioxidant enzyme activities and GSH level in liver and brain of irradiated mice. Administration of total triterpenes, prior to radiation exposure, significantly decreased the DNA strand breaks.

Discussion: The results of the present study thus revealed the potential therapeutic use of Ganoderma total triterpenes as an adjuvant in radiation therapy.  相似文献   

12.
The present study was performed to assess the HPLC‐DAD analysis as well as antioxidant and protective effects of Tunisian Rhanterium suaveolens (Rs) against acetamiprid (ACT) induced oxidative stress on mice erythrocytes. The in vitro assays showed that the methanolic extract of Rs has an impressive antioxidant effect proved by testing the total antioxidant and scavenging activities using BCB, DPPH and ABTS assays, respectively. Moreover, qualitative and quantitative analysis using HPLC‐DAD revealed the richness of Rs in polyphenols where p‐Coumaric, Apigenin‐7‐glucoside and Ferulic acid were detected as the most abundant polyphenols. In the in vivo experiment, ACT, used as a toxicity model, was given to mice at a dose of 20 mg/kg. The latter was the origin of hemolytic anemia characterized by a significant decrease in red blood cells, hemoglobin and hematocrit levels and an increase in bilirubin, LDH, osmotic fragility, reticulocytes and white blood cells number. Characteristic erythrocyte morphological alterations were also determined as spherocytosis, schistocytosis and dacryocystitis. The oxidative status of ACT‐treated mice was also altered manifested by a significant increase in MDA and GSH levels and a decrease in SOD, CAT and GPx activities. When receiving the Rs methanolic extract at a dose of 300 mg/kg, all the parameters cited above were restored in mice. These remarkable corrections could only confirm the important antioxidant effect and the noticeable protective properties that possess Rs owing to its broad range of secondary bioactive metabolites.  相似文献   

13.
Tissue-specific changes in antioxidant defenses and lipid peroxidation damage were analyzed in spadefoot toads, Scaphiopus couchii, to determine how these responded during estivation, a state of suppressed oxygen consumption. Maximal activities of glutathione-S-transferase, glutathione reductase, glutathione peroxidase, superoxide dismutase and catalase were measured in six organs from 2-month-estivated toads and compared with activities in animals awakened for 10 days after estivation. Activities of many enzymes, particularly the glutathione-linked enzymes, were significantly lower in tissues of estivating toads than in awake toads. This indicates that enzymatic antioxidant defenses are probably modulated in response to the rate of reactive oxygen species generation in tissues, which is proportional to oxygen consumption. Antioxidant enzyme activities were largely insensitive to high urea, which accumulates during estivation, but were inhibited by elevated KCl. Levels of reduced glutathione were also significantly lower in three organs during estivation and all organs, except skeletal muscle, exhibited a higher oxidized/reduced glutathione ratio, indicating a more oxidized state during estivation. Products of lipid peroxidation (conjugated dienes, lipid hydroperoxides) were higher in tissues of estivated than control toads, suggesting accumulated oxidative damage to lipids during dormancy. One enzymatic source of free radical generation, xanthine oxidase, appeared to have little impact because its activity was detectable only in liver and was significantly lower in estivated toads. The data indicate that both enzymatic and metabolite antioxidant defenses in toads are adaptable systems that are modulated in estivating versus awake states. Accepted: 21 October 1997  相似文献   

14.
Here we examined whether Ca2+/Calmodulin (CaM) is involved in abscisic acid (ABA)-induced antioxidant defense and the possible relationship between CaM and H2O2 in ABA signaling in leaves of maize (Zea mays L.) plants exposed to water stress. An ABA-deficient mutant vp5 and its wild type were used for the experimentation. We found that water stress enhanced significantly the contents of CaM and H2O2, and the activities of chloroplastic and cytosolic superoxide dismutase (SOD), ascorbate peroxidase (APX) and glutathione reductase (GR), and the gene expressions of the CaM1, cAPX, GR1 and SOD4 in leaves of wild-type maize. However, the increases mentioned above were almost arrested in vp5 plants and in the wild-type plants pretreated with ABA biosynthesis inhibitor tungstate (T), suggesting that ABA is required for water stress-induced H2O2 production, the enhancement of CaM content and antioxidant defense. Besides, we showed that the up-regulation of water stress-induced antioxidant defense was almost completely blocked by pretreatment with Ca2+ inhibitors, CaM antagonists and reactive oxygen (ROS) manipulators. Moreover, the analysis of time course of CaM and H2O2 production under water stress showed that the increase in CaM content preceded that of H2O2. These results suggested that Ca2+/CaM and H2O2 were involved in the ABA-induced antioxidant defense under water stress, and the increases of Ca2+/CaM contents triggered H2O2 production, which inversely affected the contents of CaM. Thus, a cross-talk between Ca2+/CaM and H2O2 may play a pivotal role in the ABA signaling.  相似文献   

15.
Essential oils (EOs) are a promising group of natural products of the aromatic plants due to their various biological effects such as allelopathic, antioxidant, antimicrobial activities. The present study aimed to construct the detailed chemical profile of the EO derived from Deverra tortuosa aerial parts along with assessing its allelopathic, antimicrobial, and antioxidant potentialities. The EO was extracted by hydrodistillation and analyzed via gas chromatography-mass spectrometry (GC/MS). The allelopathic activity of the EO was assessed against the germination and seedling growth of the weed Chenopodium murale. Also, the EO was tested against five microbes. The antioxidant activity was determined using the free radical 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS). The GC/MS analysis of EO revealed the presence of 86 compounds with a preponderance of oxygenated sesquiterpenes and monoterpene hydrocarbons. Widdrol, β-phellandrene, piperitol, cubedol, α-terpinene, (E)-10-heptadecen-8-ynoic acid methyl ester, citronellyl tiglate, and m-cymene were the major compounds. A comparative profile was established between the EOs constituents of our study with the documented EOs of D. tortuosa and the other Deverra species around the world via agglomerative hierarchical clustering (AHC) and principal components analysis (PCA). The EO showed a substantial allelopathic activity against C. murale, as well as it showed considerable antimicrobial and antioxidant activities. Thereby, the EO of D. tortuosa could be considered as a promising environmental-friendly bioherbicide against weeds. Also, it could be integrated into food preservation due to its potent antimicrobial and antioxidant activities. However, further study is recommended for more characterization of the major compounds and evaluation of their activities, either singular or synergistic, and assess their efficiency and biosafety.  相似文献   

16.
The antioxidant activities of extracts from leaves of the medicinal plants growing in Siberia were examined. Total antioxidant activity was determined using in vitro methods including DPPH (2,2-diphenyl-1-picrylhydrazyl radical) free radical scavenging assay, chelating capacity assay with ferrozine, evaluation of capacity to protect plasmid DNA against oxidative damage, measurement of H2O2 production, and measurement of total flavonoid and tannin content as well. Using in vivo experiments, we also evaluated capacities of the plant extracts to protect bacteria Escherichia coli against bacteriostatic and bactericidal effects of H2O2, and influence of the plant extracts on expression of antioxidant gene katG, encoding catalase. The extracts from Chamerion angustifolium, Filipendula vulgaris and Pyrola rotundifolia indicated the highest levels of antioxidant activity both in vivo and in vitro. Our data suggest that the extracts of the tested plants may provide antioxidant effects on bacteria simultaneously through different pathways, including direct radical scavenging, iron chelation and induction of genes encoding antioxidant enzymes.  相似文献   

17.
To clarify the prey‐finding behavior of the predatory mite Neoseiulus womersleyi (Schicha) (Acari: Phytoseiidae), we studied its olfactory responses to volatiles from the prey‐infested plant on which the mites had been collected. We used a local N. womersleyi population called Kanaya collected from tea (Camellia sinensis L.) (Theaceae) plants infested by Tetranychus kanzawai Kishida (Acari: Tetranychidae) in Kanaya City, Japan. Neoseiulus womersleyi (Kanaya population) were more attracted to volatiles from tea plants infested with five female T. kanzawai per leaf for 7 days than to intact tea leaves in a Y‐tube olfactometer. Tetranychus kanzawai‐induced tea leaf volatiles were identified as (E)‐β‐ocimene, (E)‐4,8‐dimethyl‐1,3,7‐nonatriene, and (E,E)‐α‐farnesene. As olfactory responses are known to differ among local populations of N. womersleyi, we compared the responses of the Kanaya population with those of a Kikugawa population collected from tea plants infested by T. kanzawai in Kikugawa City. To test the influence of previous predation experience, we reared the two populations on tea plants infested by T. kanzawai or on kidney bean plants (Phaseolus vulgaris) infested by Tetranychus urticae Koch. The Kanaya population was more attracted to the volatiles from infested plants on which they had been reared. Because the Kanaya population was not attracted to the plant volatiles they had not previously experienced, the positive response to previously experienced volatiles might be the result of learning. By contrast, the Kikugawa population showed no preference for previously experienced volatiles from infested plants. The implications of this flexibility in foraging behavior are discussed.  相似文献   

18.
19.
Volatile‐oils chemical composition and bioactivity of the essentail oils from Plectranthus barbatus, P. neochilus, and P. ornatus (Lamiaceae) were assessed. Aerial parts from these three related Plectranthus species were collected from cultivated plants grown in Portugal, during vegetative and flowering phases. Volatiles, isolated by distillation? extraction, were analyzed by GC and GC/MS. Monoterpene hydrocarbons (12–74%) and sesquiterpene hydrocarbons (4–45%) constituted the main fractions in all volatiles. α‐Pinene ( 3 ; 12–67%), oct‐1‐en‐3‐ol ( 6 ; traces–28%), β‐pinene ( 7 ; 0.1–22%), and β‐caryophyllene ( 50 ; 7–12%) dominated P. barbatus volatiles. P. neochilus major volatile components were α‐terpenyl acetate ( 41 ; traces–48%), α‐thujone ( 2 ; 2–28%), β‐caryophyllene ( 50 ; 2–28%), β‐pinene ( 7 ; 1–25%), and α‐pinene ( 3 ; 1–19%). Oct‐1‐en‐3‐ol ( 6 ; 13–31%), β‐pinene ( 7 ; 11–24%), α‐pinene ( 3 ; 11–19%), and β‐caryophyllene ( 50 ; traces–11%) were the main constituents from P. ornatus volatiles. These chemical compositions were rather different from those previously found for specimens harvested in Africa and Brazil. Moreover, the volatiles from the flowers are herewith reported for the first time. Essential oils, isolated by hydrodistillation from leaves and stems, showed a yellowish color and unpleasant odor, with yields ranging from 0.08% to 0.84% (v/dry weight). Antioxidant and antimicrobial activities of the essential oils were evaluated by DPPH. and TBARS assays, and agar disc‐diffusion method, respectively. Results showed low or moderate antioxidant capacity and significant antimicrobial activity against Gram‐positive bacteria.  相似文献   

20.
《Free radical research》2013,47(11-12):1342-1353
Abstract

Ionizing radiation causes its biological effects mainly through oxidative damage induced by reactive oxygen species. During radiotherapy of cancer, one of the undesirable side-effects is toxicity to normal cells. Compounds with antioxidant activities are being tried as ‘prophylactic radioprotectants’ to overcome this problem. We evaluated the protective effect of an aminothiazole compound, in the form of dendrodoine analogue (DA) originally derived from a marine tunicate, against γ-radiation-induced damage to lipid, protein, and DNA besides its cytotoxicity. Oxidative damage was examined by different biochemcial assays. Our studies reveal that DA gave significant protection, in fairly low concentrations, against damage induced by γ-radiation to rat liver mitochondria, plasmid pBR322 DNA, and mouse splenic lymphocytes in vitro. It also protected against oxidative damage in whole-body irradiated mice exposed to therapeutic dose of radiation (2 Gy) in vivo. Spleen, a major target organ for radiation damage, of the irradiated mice showed significant protection when treated with DA, as examined by histopathology. In conclusion, due to the possible protective effects against normal cells/tissues both in vitro and in vivo, DA shows potential to be a radioprotector for possible use during radiotherapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号