首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The nuclear hormone receptors liver X receptor α (LXRα) and peroxisome proliferator-activated receptor γ (PPARγ) play key roles in the development of fatty liver. To determine the link between hepatic PPARγ and LXRα signaling and the development of fatty liver, a LXRα-specific ligand, T0901317, was administered to normal OB/OB and genetically obese (ob/ob) mice lacking hepatic PPARγ (PparγΔH). In ob/ob-PparγΔH and OB/OB-PparγΔH mice, as well as ob/ob-PparγWT and OB/OB-PparγWT mice, the liver weights and hepatic triglyceride levels were markedly increased in response to T0901317 treatment. These results suggest that hepatic PPARγ and LXRα signals independently contribute to the development of fatty liver.  相似文献   

2.
Sulfatides, a type of glycosphingolipid, are associated with carcinogenesis. Peroxisome proliferator-activated receptor α (PPARα) is involved in the regulation of sulfatide metabolism as well as in cancer development. We previously reported that transgenic (Tg) mice expressing hepatitis C virus core protein (HCVcp) exhibited age-dependent PPARα activation and carcinogenesis in liver. However, the metabolism of sulfatides in hepatocellular carcinoma is unknown. To examine the relationship between sulfatide metabolism, carcinogenesis, HCVcp, and PPARα, age-dependent changes of these factors were examined in HCVcpTg, PPARα inhibitor-treated HCVcpTg, and non-Tg mice. The sulfatide content in liver, the hepatic expression of two key enzymes catalyzing the initial and last reactions in sulfatide synthesis, the hepatic expression of known sulfatide-transferring protein, oxidative stress, and hepatic PPARα expression and its activation were age-dependently increased in HCVcpTg mice. The increased synthesis and accumulation of sulfatides and PPARα activation were significantly enhanced in liver cancer lesions. These changes were attenuated by PPARα inhibitor treatment and not observed in non-Tg mice. These results suggest that HCVcp-induced age-dependent PPARα activation increases synthesis of sulfatides and the resulting sulfatide accumulation affects HCV-related liver cancer. The monitoring of hepatic sulfatide content and the modulation of sulfatide generation by intervention using a PPARα inhibitor might be useful for the prediction and prevention of HCV-related hepatocarcinogenesis, respectively.  相似文献   

3.
Pulmonary alveolar proteinosis (PAP) is a lung disease characterized by a deficiency of functional granulocyte macrophage colony-stimulating factor (GM-CSF) resulting in surfactant accumulation and lipid-engorged alveolar macrophages. GM-CSF is a positive regulator of PPARγ that is constitutively expressed in healthy alveolar macrophages. We previously reported decreased PPARγ and ATP-binding cassette transporter G1 (ABCG1) levels in alveolar macrophages from PAP patients and GM-CSF knockout (KO) mice, suggesting PPARγ and ABCG1 involvement in surfactant catabolism. Because ABCG1 represents a PPARγ target, we hypothesized that PPARγ restoration would increase ABCG1 and reduce macrophage lipid accumulation. Upregulation of PPARγ was achieved using a lentivirus expression system in vivo. GM-CSF KO mice received intratracheal instillation of lentivirus (lenti)-PPARγ or control lenti-eGFP. Ten days postinstillation, 79% of harvested alveolar macrophages expressed eGFP, demonstrating transduction. Alveolar macrophages showed increased PPARγ and ABCG1 expression after lenti-PPARγ instillation, whereas PPARγ and ABCG1 levels remained unchanged in lenti-eGFP controls. Alveolar macrophages from lenti-PPARγ-treated mice also exhibited reduced intracellular phospholipids and increased cholesterol efflux to HDL, an ABCG1-mediated pathway. In vivo instillation of lenti-PPARγ results in: 1) upregulating ABCG1 and PPARγ expression of GM-CSF KO alveolar macrophages, 2) reducing intracellular lipid accumulation, and 3) increasing cholesterol efflux activity.  相似文献   

4.
5.
6.
Obesity, a major health concern, results from an imbalance between energy intake and expenditure. Leptin-deficient ob/ob mice are paradigmatic of obesity, resulting from excess energy intake and storage. Mice lacking acyl-CoA oxidase 1 (Acox1), the first enzyme of the peroxisomal fatty acid β-oxidation system, are characterized by increased energy expenditure and a lean body phenotype caused by sustained activation of peroxisome proliferator-activated receptor α (PPARα) by endogenous ligands in liver that remain unmetabolized in the absence of Acox1. We generated ob/ob mice deficient in Acox1 (Acox1(-/-)) to determine how the activation of PPARα by endogenous ligands might affect the obesity of ob/ob mice. In contrast to Acox1(-/-) (14.3±1.2 g at 6 mo) and the Acox1-deficient (ob/ob) double-mutant mice (23.8±4.6 g at 6 mo), the ob/ob mice are severely obese (54.3±3.2 g at 6 mo) and had significantly more (P<0.01) epididymal fat content. The resistance of Acox1(-/-)/ob/ob mice to obesity is due to increased PPARα-mediated up-regulation of genes involved in fatty acid oxidation in liver. Activation of PPARα in Acox1-deficient ob/ob mice also reduces serum glucose and insulin (P<0.05) and improves glucose tolerance and insulin sensitivity. Further, PPARα activation reduces hepatic steatosis and increases hepatocellular regenerative response in Acox1(-/-)/ob/ob mice at a more accelerated pace than in mice lacking only Acox1. However, Acox1(-/-)/ob/ob mice manifest hepatic endoplasmic reticulum (ER) stress and also develop hepatocellular carcinomas (8 of 8 mice) similar to those observed in Acox1(-/-) mice (10 of 10 mice), but unlike in ob/ob (0 of 14 mice) and OB/OB (0 of 6 mice) mice, suggesting that superimposed ER stress and PPARα activation contribute to carcinogenesis in a fatty liver. Finally, absence of Acox1 in ob/ob mice can impart resistance to high-fat diet (60% fat)-induced obesity, and their liver had significantly (P<0.01) more cell proliferation. These studies with Acox1(-/-)/ob/ob mice indicate that sustained activation of lipid-sensing nuclear receptor PPARα attenuates obesity and restores glucose homeostasis by ameliorating insulin resistance but increases the risk for liver cancer development, in part related to excess energy combustion.  相似文献   

7.
Calorie restriction (CR) extends lifespans in a wide variety of species. CR induces an increase in the NAD+/NADH ratio in cells and results in activation of SIRT1, an NAD+-dependent protein deacetylase that is thought to be a metabolic master switch linked to the modulation of lifespans. CR also affects the expression of peroxisome proliferator-activated receptors (PPARs). The three subtypes, PPARα, PPARγ, and PPARβ/δ, are expressed in multiple organs. They regulate different physiological functions such as energy metabolism, insulin action and inflammation, and apparently act as important regulators of longevity and aging. SIRT1 has been reported to repress the PPARγ by docking with its co-factors and to promote fat mobilization. However, the correlation between SIRT1 and other PPARs is not fully understood. CR initially induces a fasting-like response. In this study, we investigated how SIRT1 and PPARα correlate in the fasting-induced anti-aging pathways. A 24-h fasting in mice increased mRNA and protein expression of both SIRT1 and PPARα in the livers, where the NAD+ levels increased with increasing nicotinamide phosphoribosyltransferase (NAMPT) activity in the NAD+ salvage pathway. Treatment of Hepa1-6 cells in a low glucose medium conditions with NAD+ or NADH showed that the mRNA expression of both SIRT1 and PPARα can be enhanced by addition of NAD+, and decreased by increasing NADH levels. The cell experiments using SIRT1 antagonists and a PPARα agonist suggested that PPARα is a key molecule located upstream from SIRT1, and has a role in regulating SIRT1 gene expression in fasting-induced anti-aging pathways.  相似文献   

8.
9.
10.
11.
Recent studies have demonstrated that commercially available lipid-lowering drugs cause various side effects; therefore, searching for anti-hyperlipidaemic compounds with lower toxicity is a research hotspot. This study was designed to investigate whether the marine-derived compound, 5-hydroxy-3-methoxy-5-methyl-4-butylfuran-2(5H)-one, has an anti-hyperlipidaemic activity, and the potential underlying mechanism in vitro. Results showed that the furanone had weaker cytotoxicity compared to positive control drugs. In RAW 264.7 cells, the furanone significantly lowered ox-LDL-induced lipid accumulation (~50%), and its triglyceride (TG)-lowering effect was greater than that of liver X receptor (LXR) agonist T0901317. In addition, it significantly elevated the protein levels of peroxisome proliferator-activated receptors (PPARα) and ATP-binding cassette (ABC) transporters, which could be partially inhibited by LXR antagonists, GSK2033 and SR9243. In HepG2 cells, it significantly decreased oleic acid-induced lipid accumulation, enhanced the protein levels of low-density lipoprotein receptor (LDLR), ABCG5, ABCG8 and PPARα, and reduced the expression of sterol regulatory element-binding protein 2 (~32%). PPARα antagonists, GW6471 and MK886, could significantly inhibit the furanone-induced lipid-lowering effect. Furthermore, the furanone showed a significantly lower activity on the activation of the expression of lipogenic genes compared to T0901317. Taken together, the furanone exhibited a weak cytotoxicity but had powerful TC- and TG-lowering effects most likely through targeting LXRα and PPARα, respectively. These findings indicate that the furanone has a potential application for the treatment of dyslipidaemia.  相似文献   

12.
13.
The thyroid hormone-binding protein μ-crystallin (CRYM) mediates thyroid hormone action by sequestering triiodothyronine in the cytoplasm and regulating the intracellular concentration of thyroid hormone. As thyroid hormone action is closely associated with glycolipid metabolism, it has been proposed that CRYM may contribute to this process by reserving or releasing triiodothyronine in the cytoplasm. We aimed to clarify the relationship between CRYM and glycolipid metabolism by comparing wild-type and CRYM knockout mice fed a high-fat diet. Each group was provided a high-fat diet for 10 weeks, and then their body weight and fasting blood glucose levels were measured. Although no difference in body weight was observed between the two groups with normal diet, the treatment with a high-fat diet was found to induce obesity in the knockout mice. The knockout group displayed increased dietary intake, white adipose tissue, fat cell hypertrophy, and hyperglycemia in the intraperitoneal glucose tolerance test. In CRYM knockout mice, liver fat deposits were more pronounced than in the control group. Enhanced levels of PPARγ, which is known to cause fatty liver, and ACC1, which is a target gene for thyroid hormone and is involved in the fat synthesis, were also detected in the livers of CRYM knockout mice. These observations suggest that CRYM deficiency leads to obesity and lipogenesis, possibly in part through increasing the food intake of mice fed a high-fat diet.  相似文献   

14.
Immune cell-mediated tissue injury is a common feature of different inflammatory diseases, yet the pathogenetic mechanisms and cell types involved vary significantly. Hypereosinophilic syndrome (HES) represents a group of inflammatory diseases that is characterized by increased numbers of pathogenic eosinophilic granulocytes in the peripheral blood and diverse organs. On the basis of clinical and laboratory findings, various forms of HES have been defined, yet the molecular mechanism and potential signaling pathways that drive eosinophil expansion remain largely unknown. In this study, we show that mice deficient of the serine/threonine-specific protein kinase NF-κB-inducing kinase (NIK) develop a HES-like disease, reflected by progressive blood and tissue eosinophilia, tissue injury, and premature death at around 25-30 wk of age. Similar to the lymphocytic form of HES, CD4(+) T cells from NIK-deficient mice express increased levels of Th2-associated cytokines, and eosinophilia and survival of NIK-deficient mice could be prevented completely by genetic ablation of CD4(+) T cells. Experiments based on bone marrow chimeric mice, however, demonstrated that inflammation in NIK-deficient mice depended on radiation-resistant tissues, implicating that NIK-deficient immune cells mediate inflammation in a nonautonomous manner. Surprisingly, disease development was independent of NIK's known function as an IκB kinase α (IKKα) kinase, because mice carrying a mutation in the activation loop of IKKα, which is phosphorylated by NIK, did not develop inflammatory disease. Our data show that NIK activity in nonhematopoietic cells controls Th2 cell development and prevents eosinophil-driven inflammatory disease, most likely using a signaling pathway that operates independent of the known NIK substrate IKKα.  相似文献   

15.
16.
Journal of Physiology and Biochemistry - The taste receptor type I (Tas1R) family consists of three G protein-coupled receptors (T1R1, T1R2, and T1R3) that form heterodimers recognizing sweet...  相似文献   

17.
18.
A long-term high-fat diet may result in a fatty liver. However, whether or not high-fat diets affect the hepatic circadian clock is controversial. The objective of this study is to investigate the effects of timed high-fat diet on the hepatic circadian clock and clock-controlled peroxisome proliferator-activated receptor (PPAR) α-mediated lipogenic gene expressions. Mice were orally administered high-fat milk in the evening for 4 weeks. The results showed that some hepatic clock genes, such as Clock, brain-muscle-Arnt-like 1 (Bmal1), Period 2 (Per2), and Cryptochrome 2 (Cry2) exhibited obvious changes in rhythms and/or amplitudes. Alterations in the expression of clock genes, in turn, further altered the circadian rhythm of PPARα expression. Among the PPARα target genes, cholesterol 7α-hydroxylase (CYP7A1), 3-hydroxy-3-methylglutaryl-coenzyme A reductase, low-density lipoprotein receptor, lipoprotein lipase, and diacylglycerol acyltransferase (DGAT) showed marked changes in rhythms and/or amplitudes. In particular, significant changes in the expressions of DGAT and CYP7A1 were observed. The effects of a high-fat diet on the expression of lipogenic genes in the liver were accompanied by increased hepatic cholesterol and triglyceride levels. These results suggest that timed high-fat diets at night could change the hepatic circadian expressions of clock genes Clock, Bmal1, Per2, and Cry2 and subsequently alter the circadian expression of PPARα-mediated lipogenic genes, resulting in hepatic lipid accumulation.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号