首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Spc1, an osmotic-stress-stimulated mitogen-activated protein kinase (MAPK) homolog in the fission yeast Schizosaccharomyces pombe, is required for the induction of mitosis and survival in high-osmolarity conditions. Spc1, also known as Sty1, is activated by Wis1 MAPK kinase and inhibited by Pyp1 tyrosine phosphatase. Spc1 is most closely related to Saccharomyces cerevisiae Hog1 and mammalian p38 kinases. Whereas Hog1 is specifically responsive to osmotic stress, we report here that Spc1 is activated by multiple forms of stress, including high temperature and oxidative stress. In this regard Spc1 is more similar to mammalian p38. Activation of Spc1 is crucial for survival of various forms of stress. Spc1 regulates expression of genes encoding stress-related proteins such as glycerol-3-phosphate dehydrogenase (gpd1+) and trehalose-6-phosphate synthase (tps1+). Spc1 also promotes expression of pyp2+, which encodes a tyrosine phosphatase postulated as a negative regulator of Spc1. This proposal is supported by the finding that Spc1 associates with Pyp2 in vivo and that the amount of Spc1 tyrosine phosphorylation is lower in a Pyp2-overproducing strain than in the wild type. Moreover, the level of stress-stimulated gpd1+ expression is higher in delta pyp2 mutants than in the wild type. These findings demonstrate that Spc1 promotes expression of genes involved in stress survival and that of regulation may be commonly employed to modulate MAPK signal transduction pathways in eukaryotic species.  相似文献   

2.
ABSTRACT

The cAMP-dependent protein kinase Pka1 is known as a regulator of glycogenesis, transition into meiosis, proper chromosome segregation, and stress responses in Schizosaccharomyces pombe. We demonstrated that both the cAMP/PKA pathway and glucose limitation play roles in appropriate spindle formation. Overexpression of Mal3 (1–308), an EB1 family protein, caused growth defects, increased 4C DNA content, and induced monopolar spindle formation. Overproduction of a high-affinity microtubule binding mutant (Q89R) and a recombinant protein possessing the CH and EB1 domains (1–241) both resulted in more severe phenotypes than Mal3 (1–308). Loss of functional Pka1 and glucose limitation rescued the phenotypes of Mal3-overexpressing cells, whereas deletion of Tor1 or Ssp2 did not. Growth defects and monopolar spindle formation in a kinesin-5 mutant, cut7-446, was partially rescued by pka1 deletion or glucose limitation. These findings suggest that Pka1 and glucose limitation regulate proper spindle formation in Mal3-overexpressing cells and the cut7-446 mutant.  相似文献   

3.
4.
5.
6.
7.
Shell JR  Lawrence DS 《Biochemistry》2012,51(11):2258-2264
The mitochondrial cAMP-dependent protein kinase (PKA) is activatable in a cAMP-independent fashion. The regulatory (R) subunits of the PKA holoenzyme (R(2)C(2)), but not the catalytic (C) subunits, suffer proteolysis upon exposure of bovine heart mitochondria to digitonin, Ca(2+), and a myriad of electron transport inhibitors. Selective loss of both the RI- and RII-type subunits was demonstrated via Western blot analysis, and activation of the C subunit was revealed by phosphorylation of a validated PKA peptide substrate. Selective proteolysis transpires in a calpain-dependent fashion as demonstrated by exposure of the R and C subunits of PKA to calpain and by attenuation of R and C subunit proteolysis in the presence of calpain inhibitor I. By contrast, exposure of mitochondria to cAMP fails to promote R subunit degradation, although it does result in enhanced C subunit catalytic activity. Treatment of mitochondria with electron transport chain inhibitors rotenone, antimycin A, sodium azide, and oligomycin, as well as an uncoupler of oxidative phosphorylation, also elicits enhanced C subunit activity. These results are consistent with the notion that signals, originating from cAMP-independent sources, elicit enhanced mitochondrial PKA activity.  相似文献   

8.
9.
Histidine-containing phosphotransfer (HPt) proteins play an essential role in multistep histidine-aspartate phosphorelay signal transduction systems in prokaryotes and eukaryotes. The putative HPt protein in Schizosaccharomyces pombe, Mpr1p (also known as Spy1p), is a 295 amino acid protein that appears to be composed of more than one functional domain. The amino acid sequence of the N-terminal region of Mpr1p lacks homology to other known proteins, whereas the C-terminal domain is predicted to have structural similarity to the Ypd1p HPt protein from Saccharomyces cerevisiae. This study provides both in vitro and in vivo evidence that the C-terminal domain of Mpr1p indeed functions as an HPt protein in shuttling phosphoryl groups from one response regulator domain to another. Furthermore, we find that various deletions of the N-terminal region diminish both the phosphotransfer activity of Mpr1p and its affinity for response regulator domains, suggesting a possible role for the N-terminal domain in HPt-response regulator domain interactions.  相似文献   

10.
E Warbrick  P A Fantes 《The EMBO journal》1991,10(13):4291-4299
The wis1+ gene encodes a newly identified mitotic control element in Schizosaccharomyces pombe. It was isolated by virtue of its interaction with the mitotic control genes cdc25, wee1 and win1. The wis1+ gene potentially encodes a 66 kDa protein with homology to the serine/threonine family of protein kinases. wis1+ plays an important role in the regulation of entry into mitosis, as it shares with cdc25+ and nim1+/cdr1+ the property of inducing mitosis in a dosage-dependent manner. Increased levels of wis1+ expression cause mitotic initiation to occur at a reduced cell size. Loss of wis1+ function does not prevent vegetative growth and division, though wis1- cells show an elongated morphology, indicating that their entry into mitosis and cell division is delayed relative to wild type cells. wis1- cells undergo a rapid reduction of viability upon entry into stationary phase, suggesting a role for wis1+ in the integration of nutritional sensing with the control over entry into mitosis.  相似文献   

11.
The transient elevation of cytosolic free calcium concentration ([Ca2+]cyt) induced by cold stress is a well‐established phenomenon; however, the underlying mechanism remains elusive. Here, we report that the Ca2+‐permeable transporter ANNEXIN1 (AtANN1) mediates cold‐triggered Ca2+ influx and freezing tolerance in Arabidopsis thaliana. The loss of function of AtANN1 substantially impaired freezing tolerance, reducing the cold‐induced [Ca2+]cyt increase and upregulation of the cold‐responsive CBF and COR genes. Further analysis showed that the OST1/SnRK2.6 kinase interacted with and phosphorylated AtANN1, which consequently enhanced its Ca2+ transport activity, thereby potentiating Ca2+ signaling. Consistent with these results and freezing sensitivity of ost1 mutants, the cold‐induced [Ca2+]cyt elevation in the ost1‐3 mutant was reduced. Genetic analysis indicated that AtANN1 acts downstream of OST1 in responses to cold stress. Our data thus uncover a cascade linking OST1‐AtANN1 to cold‐induced Ca2+ signal generation, which activates the cold response and consequently enhances freezing tolerance in Arabidopsis.  相似文献   

12.
13.
范洁琼  邓小龙  冯碧薇  王继峰  余垚  吕红 《遗传》2013,35(8):1030-1039
丝/苏氨酸特异性钙调磷酸酶(Calcineurin, CN)是一种在真核生物中广泛存在的蛋白, 是参与转录调控的重要分子。裂殖酵母中的CN是由催化亚基Ppb1和调节亚基Cnb1组成的异源二聚体。文章报道了裂殖酵母中cnb1+的缺失引起细胞生长速度缓慢, 产生多隔膜现象, 胞质分裂受阻滞。胞质分裂过程中, Cnb1与Ppb1组成CN复合物, 与收缩环在分裂平面上共定位, 并与收缩环一起收缩。cnb1Δ菌株的隔膜成熟过程存在缺陷, 微管出现纵穿隔膜的现象。上述结果说明Cnb1可能参与隔膜的成熟过程。此外, 还检测了cnb1D菌株中胞裂蛋白的信号。胞裂蛋白包括Spn1、Spn2、Spn3和Spn4, 它们是引导隔膜降解的重要分子。结果显示, 在cnb1D菌株中, 80%左右的细胞在隔膜处缺失Spn2和Spn3的信号, 20%左右的细胞缺失Spn1和Spn4的信号。由于胞裂蛋白的蛋白表达量在cnb1D中没有降低, 因此胞裂蛋白信号的消失不是转录缺陷引起的, 这暗示Cnb1可能采用了不依赖转录的方式来调控胞裂蛋白环的稳定性。以上结果提示, Cnb1可能通过影响隔膜的成熟及胞裂蛋白环的稳定性参与调节裂殖酵母的胞质分裂过程。  相似文献   

14.
15.
Schizosaccharomyces pombe rho1(+) and rho2(+) genes are involved in the control of cell morphogenesis, cell integrity, and polarization of the actin cytoskeleton. Although both GTPases interact with each of the two S. pombe protein kinase C homologues, Pck1p and Pck2p, their functions are distinct from each other. It is known that Rho1p regulates (1,3)beta-D-glucan synthesis both directly and through Pck2p. In this paper, we have investigated Rho2p signaling and show that pck2 delta and rho2 delta strains display similar defects with regard to cell wall integrity, indicating that they might be in the same signaling pathway. We also show that Rho2 GTPase regulates the synthesis of alpha-D-glucan, the other main structural polymer of the S. pombe cell wall, primarily through Pck2p. Although overexpression of rho2(+) in wild-type or pck1 delta cells is lethal and causes morphological alterations, actin depolarization, and an increase in alpha-D-glucan biosynthesis, all of these effects are suppressed in a pck2 delta strain. In addition, genetic interactions suggest that Rho2p and Pck2p are important for the regulation of Mok1p, the major (1-3)alpha-D-glucan synthase. Thus, a rho2 delta mutation, like pck2 delta, is synthetically lethal with mok1-664, and the mutant partially fails to localize Mok1p to the growing areas. Moreover, overexpression of mok1(+) in rho2 delta cells causes a lethal phenotype that is completely different from that of mok1(+) overexpression in wild-type cells, and the increase in alpha-glucan is considerably lower. Taken together, all of these results indicate the presence of a signaling pathway regulating alpha-glucan biosynthesis in which the Rho2p GTPase activates Pck2p, and this kinase in turn controls Mok1p.  相似文献   

16.
After the seminal work of Ebashi and coworkers which established the essential role of the intracellular Ca2+ concentration ([Ca2+]i) in the regulation of skeletal muscle contraction, we have witnessed an explosive elongation of the list of cell functions that are controlled by the [Ca2+]i. In numerous instances, release of intracellular Ca2+ stores plays important roles in Ca2+ signalling which displays significant variation in spatio-temporal pattern. There are two families of Ca2+ release channels, ryanodine receptors and inositol 1,4,5-trisphosphate (IP3) receptors. These Ca2+ release channels are structurally and functionally similar. In particular, the activity of both types of channels is regulated by the [Ca2+]i. The [Ca2+]i dependence of the Ca2+ release channel activity provides both types of channels with properties of a Ca2+ signal amplifier. This function of the ryanodine receptor is important in striated muscle excitation-contraction coupling, whereas that of the IP3 receptor seems to be the basis of the generation of Ca2+ waves. Thus the wide variety of Ca2+ signalling patterns seem to be critically dependent on the [Ca2+]i dependence of the Ca2+ release channels.  相似文献   

17.
The effects of 30 s to 10 min hypoxia (PO2-10 mmHg) on glutamate receptor activity were studied in murine cortical neurons. Receptor activity was assessed as a rise in intracellular calcium concentration ([Ca2+]i) following a 10 s application of 1 mm glutamate or 100 micro mN-methy-d-aspartate (NMDA) in the presence of 0.1 mm Mg2+ and 10 micro m glycine. Change in [Ca2+]i elicited by glutamate increased 26% (n = 192, p < 0.001) and that to NMDA by 74% (n = 9, p < 0.01) during a 100-s period of hypoxia. After 10 min hypoxia, responses to glutamate were 62% smaller than those in normoxia, with increased basal intracellular [Ca2+]i predicting reduced receptor activity. When neurons were exposed to NMDA after 10 min of hypoxia, [Ca2+]i increases were 12% smaller than after 100 s hypoxia, but still 53% larger than in oxygenated neurons (n = 9, p = 0.01). Neurons expressed relatively similar amounts of NR2A, -B, -C, and -D subunits. The phosphorylation of NMDA NR1 subunits increased during hypoxia. Pre-treatment of neurons with a protein kinase C (PKC) inhibitor (chelerythrine, 10 micro m) prevented increases in N-methy-d-aspartate receptor (NMDAR) activity during hypoxia and reduced the phosphorylation of NR1 subunits. These results suggest that enhancement of glutamate receptor activity during the first minutes of hypoxia is mediated by phosphorylation of NMDARs by PKC and that other mechanisms, possibly involving intracellular calcium, limit glutamate receptor-mediated calcium influx during longer periods of hypoxia.  相似文献   

18.
The effects of cAMP-dependent protein kinase A and protein kinase C on cell-cell communication have been examined in primary ovarian granulosa cells microinjected with purified components of these two regulatory cascades. These cells possess connexin43 ( 1)-type gap junctions, and are well-coupled electrotonically and as judged by the cell-to-cell transfer of fluorescent dye. Within 2–3 min after injection of the protein kinase A inhibitor (PKI) communication was sharply reduced or ceased, but resumed in about 3 min with the injection of the protein kinase A catalytic subunit. A similar resumption also occurred in PKI-injected cells after exposure to follicle stimulating hormone. Microinjection of the protein kinase C inhibitor protein caused a transient cessation of communication that spontaneously returned within 15–20 min. Treatment of cells with activators of protein kinase C, TPA or OAG for 60 min caused a significant reduction in communication that could be restored within 2–5 min by the subsequent injection of either the protein kinase C inhibitor or the protein kinase A catalytic subunit. With a longer exposure to either protein kinase C activator communication could not be restored and this appeared to be related to the absence of aggregates of connexin43 in membrane as detected immunologically. In cells injected with alkaline phosphatase communication stopped but returned either spontaneously within 20 min or within 2–3 min of injecting the cell with either the protein kinase A catalytic subunit or with protein kinase C. When untreated cells were injected with protein kinase C communication diminished or ceased within 5 min. Collectively these results demonstrate that cell-cell communication is regulated by both protein kinase A and C, but in a complex interrelated manner, quite likely by multiple phosphorylation of proteins within or regulating connexin-43 containing gap junctions.Abbreviations C catalytic subunit of protein kinase A - CKI protein kinase C inhibitor protein - Cx connexin protein - dbcAMP N6,2-O-dibutyryladenosine 3:5-cyclic monophosphate - OAG 1-oleoyl-2-acetyl-sn-glycerol - protein kinase A cAMP-dependent protein kinase - protein kinase C Ca2+-sensitive phospholipid-dependent protein kinase - PKI protein kinase A inhibitor protein - R regulatory subunit of protein kinase A - TRA 12-O-tetradecanoylphorbol-13-acetate - 8Br-cAMP 8-bromoadenosine 3:5 cyclic monophosphate  相似文献   

19.
20.
Summary The ras1 gene, an oncogene homologue, is known to be essential for recognition of the mating pheromone and hence for conjugation but not for vegetative growth in Schizosaccharomyces pombe. To facilitate further characterization and genetic manipulation of this gene, we have mapped it by using S. pombe strains which carry the Saccharomyces cerevisiae LEU2 gene inserted next to ras1 on the chromosome. Crosses with tester strains revealed that ras1 is tightly linked to pro2 on chromosome I. Furthermore, we have shown that ras1 is allelic with ste5, one of the sterility genes described by O. Girgsdies. The map position previously reported for ste5 eventually turned out to be false.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号