首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A broad variety of foreign genes can be expressed in transgenic plants, which offer the opportunity for large‐scale production of pharmaceutical proteins, such as therapeutic antibodies. Nimotuzumab is a humanized anti–epidermal growth factor receptor (EGFR) recombinant IgG1 antibody approved in different countries for the treatment of head and neck squamous cell carcinoma, paediatric and adult glioma, and nasopharyngeal and oesophageal cancers. Because the antitumour mechanism of nimotuzumab is mainly attributed to its ability to interrupt the signal transduction cascade triggered by EGF/EGFR interaction, we have hypothesized that an aglycosylated form of this antibody, produced by mutating the N297 position in the IgG1 Fc region gene, would have similar biochemical and biological properties as the mammalian‐cell‐produced glycosylated counterpart. In this paper, we report the production and characterization of an aglycosylated form of nimotuzumab in transgenic tobacco plants. The comparison of the plantibody and nimotuzumab in terms of recognition of human EGFR, effect on tyrosine phosphorylation and proliferation in cells in response to EGF, competition with radiolabelled EGF for EGFR, affinity measurements of Fab fragments, pharmacokinetic and biodistribution behaviours in rats and antitumour effects in nude mice bearing human A431 tumours showed that both antibody forms have very similar in vitro and in vivo properties. Our results support the idea that the production of aglycosylated forms of some therapeutic antibodies in transgenic plants is a feasible approach when facing scaling strategies for anticancer immunoglobulins.  相似文献   

2.

Background

Nimotuzumab is a humanized IgG1 monoclonal antibody specifically targeting EGFR. In this study, we aimed to investigate the molecular mechanisms of nimotuzumab in its effects of enhancing cancer cell radiosensitivity.

Principal Finding

Lung cancer A549 cells and breast cancer MCF-7 cells were pretreated with or without nimotuzumab for 24 h before radiation to perform the clonogenic survival assay and to analyze the cell apoptosis by flow ctyometry. γ-H2AX foci were detected by confocal microscopy to assess the effect of nimotuzumab on radiation induced DNA repair. EGFR activation was examined and the levels of DNA damage repair related proteins in A549 cells at different time point and at varying doses exposure after nimotuzumab and radiation treatment were examined by Western blot. Pretreatment with nimotuzumab reduced clonogenic survival after radiation, inhibited radiation-induced EGFR activation and increased the radiation-induced apoptosis in both A549 cells and MCF-7 cells. The foci of γ-H2AX 24 h after radiation significantly increased in nimotuzumab pretreated cells with different doses. The phosphorylation of AKT and DNA-PKcs were remarkably inhibited in the combination group at each dose point as well as time point.

Conclusions

Our results revealed that the possible mechanism of nimotuzumab enhancing the cancer radiosensitivity is that nimotuzumab inhibited the radiation-induced activation of DNA-PKcs through blocking the PI3K/AKT pathway, which ultimately affected the DNA DSBs repair.  相似文献   

3.
Cancer cells can be killed by photosensitizing agents that induce toxic effects when exposed to nonhazardous light, but this also causes significant damage to surrounding healthy cells. The specificity of photodynamic therapy can be increased by conjugating photosensitizing agents to antibodies and antibody fragments that bind specifically to tumor cell antigens. However, standard conjugation reactions produce heterogeneous products whose targeting specificity and spectroscopic properties can be compromised. In this study, we used an antibody fragment (scFv-425) that binds to the epidermal growth factor receptor (EGFR) as a model to investigate the use of SNAP-tag fusions as an improved conjugation strategy. The scFv-425-SNAP-tag fusion protein allowed the specific conjugation of a chlorin e6 photosensitizer modified with O(6)-benzylguanine, generating a homogeneous product that was delivered specifically to EGFR(+) cancer cells and resulted in significant, tumor cell-specific cytotoxicity. The impact of our results on the development of photodynamic therapy is discussed.  相似文献   

4.
The objective of the present study was to construct epidermal growth factor receptor (EGFR) targeting cetuximab-immunoliposomes (ILs) for targeted delivery of boron compounds to EGFR(+) glioma cells for neutron capture therapy. The ILs were synthesized by using a novel cholesterol-based membrane anchor, maleimido-PEG-cholesterol (Mal-PEG-Chol), to incorporate cetuximab into liposomes by either surface conjugation or a post-insertion method. For post-insertion, the transfer efficiency of MAb conjugates from micelles to liposome was examined at varying temperatures, mPEG2000-DSPE ratios, and micelle-to-liposome lipid ratios. Following this, the cetuximab-ILs were evaluated for targeted delivery of the encapsulated boron anion, dodecahydro-closo-dodecaborate (2-) (B12H122-), to human EGFR gene transfected F98EGFR glioma cells as potential delivery agents for boron neutron capture therapy (BNCT). In addition, cellular uptake of cetuximab-ILs, encapsulating a fluorescence dye, was analyzed by confocal fluorescence microscopy and flow cytometry, and boron content was quantified by ICP-MS. Much greater ( approximately 8-fold) cellular uptake of boron was obtained using cetuximab-ILs in EGFR(+) F98EGFR compared with nontargeted human IgG-ILs. On the basis of these observations, we have concluded that cholesterol can serve as an effective anchor for MAb in liposomes, and cetuximab-ILs are potentially useful delivery vehicles for BNCT of gliomas.  相似文献   

5.
Recombinant expression and EGFR-binding activity assay of single chain nimotuzumab (nimotuzumab scFv) is reported in this study. The scFv was produced in VH-linker-VL format in Origami? 2(DE3)pLysS bacterial cells and purified using Ni-TNA resin column. 3-D structure prediction using I-TASSER (Iterative Threading Assembly Refinement) server and analyzing the predicted models using YASARA (Yet Another Scientific Artificial Reality Application) viewer revealed that VH and VL domains assemble into a correctly-folded single chain antibody that is able to bind EGFR. The scFv was evaluated in ELISA and western blot tests and proven to be able to bind EGFR-overexpressing cancer cells (A-431 cells in an efficient manner but unable to recognize cancer cells expressing low levels of EGFR (MCF-7 breast cancer cells).  相似文献   

6.
Most therapeutic antibodies (Abs) target cell surface proteins on tumor and immune cells. Cloning of Ab gene libraries in E. coli and their display on bacteriophages is commonly used to select novel therapeutic Abs binding target antigens, either purified or expressed on cells. However, the sticky nature of bacteriophages renders phage display selections on cells challenging. We previously reported an E. coli display system for expression of VHHs (i.e., nanobodies, Nbs) on the surface of bacteria and selection of high-affinity clones by magnetic cell sorting (MACS). Here, we demonstrate that E. coli display is also an attractive method for isolation of Nbs against cell surface antigens, such as the epidermal growth factor receptor (EGFR), upon direct selection and screening of Ab libraries on live cells. We employ a whole cell-based strategy using a VHH library obtained by immunization with human tumor cells over-expressing EGFR (i.e., A431), and selection of bacterial clones bound to murine fibroblast NIH-3T3 cells transfected with human EGFR, after depletion of non-specific clones on untransfected cells. This strategy resulted in the isolation of high-affinity Nbs binding distinct epitopes of EGFR, including Nbs competing with the ligand, EGF, as characterized by flow cytometry of bacteria displaying the Nbs and binding assays with purified Nbs using surface plasmon resonance. Hence, our study demonstrates that E. coli display of VHH libraries and selection on cells enables efficient isolation and characterization of high-affinity Nbs against cell surface antigens.  相似文献   

7.
《MABS-AUSTIN》2013,5(4):1013-1025
Molecular details of epidermal growth factor receptor (EGFR) targeting by nimotuzumab, a therapeutic anti-cancer antibody, have been largely unknown. The current study delineated a functional map of their interface, based on phage display and extensive mutagenesis of both the target antigen and the Fv antibody fragment. Five residues in EGFR domain III (R353, S356, F357, T358, and H359T) and the third hypervariable region of nimotuzumab heavy chain were shown to be major functional contributors to the interaction. Fine specificity differences between nimotuzumab and other anti-EGFR antibodies were revealed. Mapping information guided the generation of a plausible in silico binding model. Knowledge about the epitope/paratope interface opens new avenues for the study of tumor sensitivity/resistance to nimotuzumab and for further engineering of its binding site. The developed mapping platform, also validated with the well-known cetuximab epitope, allows a comprehensive exploration of antigenic regions and could be expanded to map other anti-EGFR antibodies.  相似文献   

8.
Molecular details of epidermal growth factor receptor (EGFR) targeting by nimotuzumab, a therapeutic anti-cancer antibody, have been largely unknown. The current study delineated a functional map of their interface, based on phage display and extensive mutagenesis of both the target antigen and the Fv antibody fragment. Five residues in EGFR domain III (R353, S356, F357, T358, and H359T) and the third hypervariable region of nimotuzumab heavy chain were shown to be major functional contributors to the interaction. Fine specificity differences between nimotuzumab and other anti-EGFR antibodies were revealed. Mapping information guided the generation of a plausible in silico binding model. Knowledge about the epitope/paratope interface opens new avenues for the study of tumor sensitivity/resistance to nimotuzumab and for further engineering of its binding site. The developed mapping platform, also validated with the well-known cetuximab epitope, allows a comprehensive exploration of antigenic regions and could be expanded to map other anti-EGFR antibodies.  相似文献   

9.
Brain tumors are a major cause of cancer-related mortality in children. Overexpression of epidermal growth factor receptor (EGFR) is detected in pediatric brain tumors and receptor density appears to increase with tumor grading. Nimotuzumab is an IgG1 antibody that targets EGFR. Twenty-three children with high-grade glioma (HGG) were enrolled in an expanded access program in which nimotuzumab was administered alone or with radio-chemotherapy. The mean number of doses was 39. Nimotuzumab was well-tolerated and treatment with the antibody yielded a survival benefit: median survival time was 32.66 mo and the 2-y survival rate was 54.2%. This study demonstrated the feasibility of prolonged administration of nimotuzumab and showed preliminary evidence of clinical benefit in HGG patients with poor prognosis.  相似文献   

10.
Abstract

A simple strategy for designing a cancer immunotherapeutic system involves modification of tumor cells from tumor-bearing animals in vivo in such a way that the host can evoke a specific immune response against them. We have expressed allogeneic class I major histocompatibility complex (MHC) molecules on tumor cells, through ex vivo DNA-mediated gene transfer. These molecules are potent immuno-modulators for the stimulation of strong immune reactions against certain malignancies. In order to achieve efficient gene delivery to tumor cells in vivo we have compared the efficiencies of gene transfer into mammalian tumor cells by the biolistic particle delivery system and cationic liposomes. In this report, we have demonstrated that cationic liposomes prepared by DC-chol and DOPE gives the best efficiency of transfection for tumor cells in vivo. We also showed that a strong anti-H-2Kb allo-reactive cytotoxic T lymphocyte (CTL) response could be generated following in vivo immunization of AKR/J mouse spleens with the H-2Kb gene and DC-chol cationic liposomes. The direct immunization of mouse spleens to induce cell-mediated immunity against exogenous antigens may allow alternative treatment strategies for cancer immunotherapy.  相似文献   

11.
Photochemotherapy is used both for solid tumors and in extracorporeal treatment of various hematologic disorders. Nevertheless, its development in oncology remains limited, because of the low selectivity of photosensitizers (PS) towards human tumor cells. To enhance PS efficiency, we recently covalently linked a porphyrin (TrMPyP) to a plant lectin (Morniga G), known to recognize with high affinity tumor-associated T and Tn antigens. The conjugation allowed a quick uptake of PS by Tn-positive Jurkat leukemia cells and efficient PS-induced phototoxicity. The present study was performed: (i) to evaluate the targeting potential of the conjugate towards tumor and normal cells and its phototoxicity on various leukemia cells, (ii) to investigate the mechanism of conjugate-mediated cell death. The conjugate: (i) strongly increased (×1000) the PS phototoxicity towards leukemic Jurkat T cells through an O-glycan-dependent process; (ii) specifically purged tumor cells from a 1∶1 mixture of Jurkat leukemia (Tn-positive) and healthy (Tn-negative) lymphocytes, preserving the activation potential of healthy lymphocytes; (iii) was effective against various leukemic cell lines with distinct phenotypes, as well as fresh human primary acute and chronic lymphoid leukemia cells; (iv) induced mostly a caspase-independent cell death, which might be an advantage as tumor cells often resist caspase-dependent cell death. Altogether, the present observations suggest that conjugation with plant lectins can allow targeting of photosensitizers towards aberrant glycosylation of tumor cells, e.g. to purge leukemia cells from blood and to preserve the normal leukocytes in extracorporeal photochemotherapy.  相似文献   

12.
《MABS-AUSTIN》2013,5(1):38-48
Engineered domains of human fibronectin (Adnectins?) were used to generate a bispecific Adnectin targeting epidermal growth factor receptor (EGFR) and insulin-like growth factor-I receptor (IGF-IR), two transmembrane receptors that mediate proliferative and survival cell signaling in cancer. Single-domain Adnectins that specifically bind EGFR or IGF-IR were generated using mRNA display with a library containing as many as 1013 Adnectin variants. mRNA display was also used to optimize lead Adnectin affinities, resulting in clones that inhibited EGFR phosphorylation at 7 to 38 nM compared to 2.6 μM for the parental clone. Individual, optimized, Adnectins specific for blocking either EGFR or IGF-IR signaling were engineered into a single protein (EI-Tandem Adnectin). The EI-Tandems inhibited phosphorylation of EGFR and IGF-IR, induced receptor degradation, and inhibited down-stream cell signaling and proliferation of human cancer cell lines (A431, H292, BxPC3 and RH41) with IC50 values ranging from 0.1 to 113 nM. Although Adnectins bound to EGFR at a site distinct from those of anti-EGFR antibodies cetuximab, panitumumab and nimotuzumab, like the antibodies, the anti-EGFR Adnectins blocked the binding of EGF to EGFR. PEGylated EI-Tandem inhibited the growth of both EGFR and IGF-IR driven human tumor xenografts, induced degradation of EGFR, and reduced EGFR phosphorylation in tumors. These results demonstrate efficient engineering of bispecific Adnectins with high potency and desired specificity. The bispecificity may improve biological activity compared to monospecific biologics as tumor growth is driven by multiple growth factors. Our results illustrate a technological advancement for constructing multi-specific biologics in cancer therapy.  相似文献   

13.
Nimotuzumab is a humanized therapeutic monoclonal antibody against epidermal growth factor receptor (EGFR). Clinical trials are ongoing globally to evaluate nimotuzumab in different indications. Nimotuzumab has been granted approval for use in squamous cell carcinoma of head and neck (SCCHN), glioma and nasopharyngeal cancer in different countries. This review focuses on the unique functional characteristics of nimotuzumab. Also, it discusses the safety and efficacy data obtained from the Phase IIb clinical trial conducted in India in SCCHN. Post marketing surveillance data from Cuba for the use of nimotuzumab in pediatric and adult glioma is also discussed. Overall, nimotuzumab has immense therapeutic potential in cancers of epithelial origin.Key words: nimotuzumab, EGFR, humanized, monoclonal antibody, SCCHN, glioma, overall survival  相似文献   

14.
Summary The purpose of this study was to examine (1) the association of tumor extract proteins with phospholipid vesicles of varying physiochemical properties, and (2) the adjuvant and carrier properties of liposome-borne tumor antigens in the in vivo induction of an antitumor immune response. Cell surface antigens of the 3-methylcholanthrene-induced fibrosarcoma of C3H/HeJ mice, MCA-F, were extracted using 2.5% 1-butanol. Crude and electrofocused antigen preparations capable of eliciting a protective antitumor immune response were used to prepare liposome vaccines. The incorporation of extract proteins into liposomes formed by butanol dialysis (BVD) was three- to five-fold greater than the encapsulation of protein into the aqueous compartment of multilamellar vesicles (MLV). The electrochemical properties of the BDV had a significant effect on the induction of an antitumor response: Antigens borne on negatively charged, but not uncharged, liposomes were effective in protecting hosts against supralethal tumor challenge, and displayed a specific activity 20- to 50-fold greater than soluble antigen. Antigens carried by MLV were not effective in generating an immunoprotective response. The lipophilic characteristics of butanol-extracted antigens allowed (1) the passive adsorption of immunoprotective tumor antigen onto the surface of preformed vesicles, and (2) adsorption of MCA-F antigen onto the surface of an antigenically distinct tumor MCA-D. In the latter experiment, adsorption of MCA-F-specific antigen onto MCA-D cells resulted in a change in the membrane antigen phenotype as measured by indirect immunofluorescence. Although butanol released a lipophilic moiety from cells which spontaneously reassociated with phospholipid bilayers, no evidence for a lipoidal antigen was obtained when tumor-derived lipids were used as immunogens. This study demonstrates that butanol-extracted tumor antigen is lipophilic without being a lipid, and that negatively charged liposomes can be effective as carriers and adjuvants for tumor antigens in the induction of an antitumor immune response. Abbreviations used: BDV, butanol dialysis vesicles; CBE-F, crude butanol extract from the MCA-F tumor; Chol, cholesterol; FI, fluorescense index; PBS, Dulbecco's calcium- and magnesium-free phosphate-buffered saline, pH 7.4; PC, phosphatidylcholine; PG, phosphatidylglycerol; pIEF, preparative isoelectric focusing; MLV, multilamellar vesicles; REV, reverse-evaporation vesicles  相似文献   

15.
Surface grafting of liposomes with the wide variety of ligands including antibodies and other proteins is a promising approach for targeted delivery of therapeutics. In this paper, we describe a simple method of synthesizing a hydrazine-functionalized poly(ethylene glycol)-phosphatidylethanolamine (PEG-PE)-based amphiphilic polymer which can conjugate a variety of ligands via a reversible, pH-cleavable bond. In this method, the targeting ligand is attached to the distal end of the PEG chain, which facilitates its easy access to the targeted site of interaction. The reversible attachment of targeting ligands is useful especially in multifunctional liposomal systems, whereafter successfully performing the function of targeting to the specific site, the bulky ligands, such as proteins or antibodies, are cleaved off in response to an environmental stimulus to expose some other functionalities such as ligands for intracellular penetration or organelle-specific targeting. To investigate the applicability of the protocol, the model ligands monoclonal antinucleosome antibody 2C5 and antimyosin antibody 2G4, and glycoproteins concanavalin A (Con-A) and avidin were conjugated to the synthesized polymer and incorporated into liposomes. In vitro assays including biochemical, enzyme-linked immunosorbent, fluorescence microscopy, and flow cytometry were used to confirm three key characteristics of the modified and/or liposome-attached proteins: successful conjugation of the targeting ligands to the polymer, preservation of specific activity of the ligands after the conjugation and liposome attachment, and the facile pH-sensitive ligand detachment. Monoclonal antibody 2C5 and 2G4, immobilized on the liposome surface, retained their binding affinity to corresponding antigens as confirmed by ELISA. The Con A-bearing liposomes showed significantly higher agglutination in the presence of its substrate mannan compared to plain liposomes (PL) and avidin-functionalized liposomes bound specifically with biotin-agarose. The study on the pH-dependence showed that almost 80% of the hydrazone bond was cleaved after rather brief preincubation of the immunoliposomes at pH 5 for 0.5 to 1 h. Fluorescence microscopy and flow cytometry analysis of cancer cells (HeLa and MCF-7) treated with cancer cell-specific targeting ligand mAb 2C5-bearing liposomes showed enhanced cellular binding. Studies at low pH clearly confirmed the easy cleavability of the targeting ligand from the liposomes resulting in significantly less or virtually no cellular association.  相似文献   

16.
Engineered domains of human fibronectin (Adnectins™) were used to generate a bispecific Adnectin targeting epidermal growth factor receptor (EGFR) and insulin-like growth factor-I receptor (IGF-IR), two transmembrane receptors that mediate proliferative and survival cell signaling in cancer. Single-domain Adnectins that specifically bind EGFR or IGF-IR were generated using mRNA display with a library containing as many as 1013 Adnectin variants. mRNA display was also used to optimize lead Adnectin affinities, resulting in clones that inhibited EGFR phosphorylation at 7 to 38 nM compared to 2.6 µM for the parental clone. Individual optimized Adnectins specific for blocking either EGFR or IGF-IR signaling were engineered into a single protein (EI-Tandem Adnectin). The EI-Tandems inhibited phosphorylation of EGFR and IGF-IR, induced receptor degradation and inhibited down-stream cell signaling and proliferation of human cancer cell lines (A431, H292, BxPC3 and RH41) with IC50 values ranging from 0.1 to 113 nM. Although Adnectins bound to EGFR at a site distinct from those of anti-EGFR antibodies cetuximab, panitumumab and nimotuzumab, like the antibodies, the anti-EGFR Adnectins blocked the binding of EGF to EGFR. PEGylated EI-Tandem inhibited the growth of both EGFR and IGF-IR driven human tumor xenografts, induced degradation of EGFR and reduced EGFR phosphorylation in tumors. These results demonstrate efficient engineering of bispecific Adnectins with high potency and desired specificity. The bispecificity may improve biological activity compared to monospecific biologics as tumor growth is driven by multiple growth factors. Our results illustrate a technological advancement for constructing multi-specific biologics in cancer therapy.Key words: Adnectin, biologics, EGFR, IGF-IR, bispecific  相似文献   

17.
《ImmunoMethods》1994,4(3):223-228
B cells have limited endocytic capacity and are reported to endocytose and present liposome-encapsulated antigens poorly. B cells also endocytose soluble antigens poorly, except those for which their surface immunoglobulin is specific, which are taken up and presented efficiently. We present results indicating that, in vitro, B cells endocytose small liposomes bearing antigen with affinity for their surface immunoglobulin. Antigen encapsulated in liposomes targeted by antibody specific for surface immunoglobulin is presented to T cells as efficiently as specific antigen in soluble form. These studies provide a rational basis for the design of liposomes optimized to stimulate T-dependent B-cell responses.  相似文献   

18.
The epidermal growth factor receptor 1 (EGFR) is overexpressed in various malignancies and is associated with a poor patient prognosis. A small, receptor-specific, high-affinity imaging agent would be a useful tool in diagnosing malignant tumors and in deciding upon treatment and assessing the response to treatment. We describe here the affinity maturation procedure for the generation of Affibody molecules binding with high affinity and specificity to EGFR. A library for affinity maturation was constructed by rerandomization of selected positions after the alignment of first-generation binding variants. New binders were selected with phage display technology, using a single oligonucleotide in a single-library effort, and the best second-generation binders had an approximately 30-fold improvement in affinity (Kd = 5-10 nM) for the soluble extracellular domain of EGFR in biospecific interaction analysis using Biacore. The dissociation equilibrium constant, Kd, was also determined for the Affibody with highest affinity using EGFR-expressing A431 cells in flow cytometric analysis (Kd = 2.8 nM). A retained high specificity for EGFR was verified by a dot blot assay showing staining only of EGFR proteins among a panel of serum proteins and other EGFR family member proteins (HER2, HER3, and HER4). The EGFR-binding Affibody molecules were radiolabeled with indium-111, showing specific binding to EGFR-expressing A431 cells and successful targeting of the A431 tumor xenografts with 4-6% injected activity per gram accumulated in the tumor 4 h postinjection.  相似文献   

19.
To achieve effective active targeting in a drug delivery system, we previously developed dual-targeting (DT) liposomes decorated with both vascular endothelial growth factor receptor-1 (VEGFR-1)-targeted APRPG and CD13-targeted GNGRG peptide ligands for tumor neovessels, and observed the enhanced suppression of tumor growth in Colon26 NL-17 tumor-bearing mice by the treatment with the DT liposomes encapsulating doxorubicin. In this present study, we examined the binding characteristics of DT liposomes having a different couple of ligands, namely, APRPG and integrin αvβ3-targeted GRGDS peptides. These DT liposomes synergistically associated to stimulated human umbilical vein endothelial cells compared with single-targeting (ST) liposomes decorated with APRPG or GRGDS. The results of a surface plasmon resonance assay showed that ST liposomes modified with APRPG or GRGDS peptide selectively bound to immobilized VEGFR-1 or integrin αvβ3, respectively. DT liposomes showed a higher affinity for a mixture of VEGFR-1 and integrin αvβ3 compared with ST liposomes, suggesting the cooperative binding of these 2 kinds of ligand on the liposomal surface. In a biodistribution assay, the DT liposomes accumulated to a significantly greater extent in the tumors of Colon26 NL-17 tumor-bearing mice compared with other liposomes. Moreover, the intratumoral distribution of the liposomes examined by confocal microscopy suggested that the DT liposomes targeted not only angiogenic endothelial cells but also tumor cells due to GRGDS-decoration. These findings suggest that "dual-targeting" augmented the affinity of the liposomes for the target cells and would thus be useful for active-targeting drug delivery for cancer treatment.  相似文献   

20.
We have incorporated antibodies against fibronectin or laminin into liposomes and studied their interaction with insoluble forms of these antigens. The antibodies, after modification by palmitoylchloride, were incorporated into the lipid bilayer by the cholate dialysis method. The antibodies in the liposomes recognized their specific antigen with little reaction to the alternative attachment protein or to albumin (less than 2%). The binding of antibody-containing liposomes to insoluble antigen was inhibited by soluble antibodies to the respective antigens but not by antibodies to other antigens. The affinity constant of the liposome-antibody complex with the antigen was estimated at 1-10 X 10(-9) M liposomes. Thus, antibodies in liposomes retain their reactivity and specificity, and the reaction constant is comparable to that observed for immune complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号