首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oligonucleotide primers consisting of a sequence of four or more deoxycytidylate residues terminated by a single ribocytidylate residue are extended by reaction with cytidine 5-phosphoro(2-methyl)imidazolide using polyguanylic acid as a template. The efficiency of the reaction decreases as the length of the primer increases. The reaction does not seem to depend on the dissociation of poly(G) tetrahelices but uses as templates single-stranded segments that are already present in enzymatically synthesized polyguanylic acid. Correspondence to: L.E. Orgel  相似文献   

2.
Evidence is presented for complexation of guanosine 5-monophosphate 2-methylimidazolide (2-MeImpG) with polycytidylate (poly(C)) at pH 8.0 and 23°C in the presence of 1.0 M NaCl and 0.2 M MgCl2 in water. The association of 2-McImpG with poly(C) was investigated using UV-vis spectroscopy as well as by monitoring the kinetics of the nucleophilic substitution reaction of the imidazole moiety by amines. The results of both methods are consistent with moderately strong poly(C) · 2-McImpG complexation and the spectrophotometric measurements allowed the construction of a binding isotherm with a concentration of 2-McImpG equal to 5.55 ± 0.15 mM at half occupancy. UV spectroscopy was employed to establish the binding of other guanosine derivatives on poly(C). These derivatives are guanosine 5-monophosphate (5GMP), guanosine 5monophosphate imidazolide (ImpG), and guanosine 5monophosphate morpholidate (morpG). Within experimental error these guanosine derivatives exhibit the same affinity for poly(C) as 2-McImpG.  相似文献   

3.
Summary Short oligocytidylates can act as templates for the self-condensation of guanosine 5-phosphorimidazolide. In the absence of a catalytic metal ion or in the presence of Pb2+ a noticeable template effect is already observed with the dimer and the yield of long oligomers reaches a plateau with a hexamer template. Short templates give oligomers longers than the template length. The products are predominantly 2-5 linked for the Pb2+-catalyzed reaction while mixed linkages are observed in the uncatalyzed reaction.In the presence of Zn2+, a template effect is first observed with the pentamer and is maximal by the heptamer. The products are predominantly 3-5 linked. Oligomers shorter than or as long as the template are obtained in substantial yield, and longer products in much lower yields.Abbreviations G Guanosine - Gp guanosine 2(3)-phosphate - pG guanosine 5-phosphate - Gp! guanosine cyclic 2,3-phosphate - ImpG guanosine 5-phosphorimidazolide - ImpG* [8-14C]-guanosine 5-phosphorimidazolide - pGp 5-phosphoguanosine 2(3)-phosphate - G2pG guanylyl-[2-5]-guanosine - G3pG guanylyl-[3-5]-guanosine - ImpGpG 5-phosphorimidazolide of GpG - (pG)n (n = 2,3) oligomers of pG - GppG P1, P2-diguanosine 5-diphosphate - GppGpG 5-[guanosine 5-pyrophosphate] of GpG - NH2pG guanosine 5-phosphoramidate - (pG)4+ tetramer and higher oligoguanylates with 5 terminal phosphate - oligo(G) oligoguanylate - Cp cytidine 2(3)-phosphate - Cp! cytidine cyclic 2,3-phosphate - (Cp)n–1 Cp! (n= 2,3,4) oligocytidylates terminated by 5-OH groups and 2,3-cyclic phosphates - oligo(C) oligocytidylate - poly(C) polycytidylic acid - poly(U) polyuridylic acid - poly(C,G) random copolymer of C and G - BAP bacterial alkaline phosphatase (E. coli) - EDTA ethylenediaminetetraacetic acid - Rf chromatographic mobility  相似文献   

4.
Summary Selected imidazolide-activated nucleotides have been subjected to hydrolysis under conditions similar to those that favor their template-directed oligomerization. Rate constants of hydrolysis of the P–N bond in guanosine 5-monophosphate 2-methylimidazolide (2-MeImpG) and in guanosine 5-monophosphate imidazolide (ImpG), kh, have been determined in the presence/absence of magnesium ion as a function of temperature and polycytidylate [poly(C)] concentration. Using the rate constant of hydrolysis of 2-MeImpG and the rate constant of elongation, i.e., the reaction of an oligoguanylate with 2-MeImpG in the presence of poly(C) acting as template, the limiting concentration of 2-MeImpG necessary for oligonucleotide elongation to compete with hydrolysis can be calculated. The limiting concentration is defined as the initial concentration of monomer that results in its equal consumption by hydrolysis and by elongation. These limiting concentrations of 2-MeImpG are found to be 1.7 mM at 37°C and 0.36 mM at 1°C. Boundary conditions in the form of limiting concentration of activated nucleotide may be used to evaluate a prebiotic model for chemical synthesis of biopolymers. For instance, the limiting concentration of monomer can be used as a basis of comparison among catalytic, but nonenzymatic, RNA-type systems.We also determined the rate constant of dimerization of 2-MeImpG, k2=0.45±0.06 M–1 h–1 in the absence of poly(C), and 0.45±0.06k20.97±0.13 M–1 h–1 in its presence at 37°C and pH 7.95. This dimerization, as well as the trimerization of 2-MeImpG, which represent the first steps in the oligomerization reaction, are markedly slower than the elongation of longer oligoguanylates, (pG) n n>6. This means that in the presence of low concentrations of 2-MeImpG (1.7 mM) the system directs the elongation of longer oligomers more efficiently than the formation of short oligomers such as dimers and trimers. These results will be discussed as a possible example of chemical selection in template-directed reactions of nucleotides.  相似文献   

5.
Summary Nucleoside-5-phosphorimidazolides react readily with acylating agents to give N-substituted products that are highly activated. In most cases these acylated derivatives undergo rapid hydrolysis to give nucleoside 5-phosphates, whether or not a complementary template is present. However, guanosine 5-phosphorimidazolide reacts with diethyl pyrocarbonate to give a derivative that oligomerizes rapidly and efficiently in the presence of polycytidylic acid and Pb2+. The reaction is complete in about 1 h, whereas the corresponding reaction in the absence of an acylating agent takes several days. However, the final yield of long oligomers is lower when diethyl pyrocarbonate is present.  相似文献   

6.
Most, if not all, yeast mRNAs are capped at their 5-terminus by m7G. Apart from m7G no other methylated nucleotides could be detected in poly (A)+ mRNA isolated from yeast polysomes.Abbreviations used poly (A)+ mRNA messenger RNA containing poly (A) - poly (A)- RNA RNA lacking poly (A) - m7G N7-methyl guanosine - Nm any 2-0 methylated nucleoside - mN any basemethylated nucleoside  相似文献   

7.
Summary A computer simulation (KINSIM) modeling up to 33 competing reactions was used in order to investigate the product distribution in a template-directed oligonucleotide synthesis as a function of time and concentration of the reactants. The study is focused on the poly(C)-directed elongation reaction of an oligoguanylate (a 7-mer is chosen) with guanosine 5-monophosphate-2-methylimidazolide (2-MeImpG), the activated monomer. It is known that theelongation of oligoguanylates to form oligomeric products such as 8-mer, 9-mer, 10-mer, etc., is in competition with (1) thedimerization and further oligomerization reaction of 2-MeImpG that leads to the formation of dimers and short oligomers, and (2) thehydrolysis of 2-MeImpG that forms inactive guanosine 5-monophosphate, 5-GMP. Experimentally determined rate constants for the above three processes at 37°C and pH 7.95 were used in the simulation; the initial concentrations of 2-MeImpG, [M]o, and of the oligoguanylate primer, [7-mer]o, were varied, and KINSIM calculated the distribution of products as a function of time until equilibration was reached, i.e., when all the activated monomer has been consumed. In order to sort out how strongly the elongation reaction may be affected by the competing hydrolysis and dimerization, we also simulated the idealized situation in which these competing reactions do not occur. Simulation of the idealized system suggests that (1) the fraction of [7-mer]o that has reacted as well as the product distribution after equilibration do not depend on the absolute concentrations of the reactants, but only on their ratio, [M]o/[7-mer]o; (2) the rate of elongation is proportional to [7-mer]o and not to [M]o; and (3) as the [M]o/[7-mer]o ratio increases longer oligomers are formed. The results of the computer simulation with the experimental system, i.e., elongation in the presence of both hydrolysis and dimerization, are similar to the ones obtained with the idealized system as long as dimerization and hydrolysis are not responsible for consuming a substantial fraction of 2-MeImpG.  相似文献   

8.
5-Deoxy-5-nucleosideacetic acids II–V are isostructural analogues of nucleotides with a carboxylate group in the place of the 5-phosphate group. We have studied their oligomerization in aqueous solution using a water-soluble carbodiimide as the condensing agent in the presence or absence of an appropriate polynucleotide template. Condensation of adenylic acid analogues IIa, IIIa, and Va in the presence of polyuridylic acid were found to be the most efficient reactions. Cyclization of the activated monomers to lactones and the insolubility of the oligomers in aqueous solution were found to be obstacles to the efficient formation of long oligomers.  相似文献   

9.
Substrate properties of several dTTP analogues bearing a photoreactive 2-nitro-5-azidobenzoyl (NAB) group attached at position 5 of uracil through linkers of various lengths, dTTP–NAB-x-dUTP (where x = 2, 4, 7–13 is the number of atoms in the linker), were studied. All the analogues are substrates for thermostable Thermus thermophilus B35 DNA polymerase in the elongation reaction of the 5-32P-labeled primer–template complex. The kinetic parameters of some of the analogues were determined and compared with those of natural dTTP. It was shown that an increase in the linker length results in a higher efficiency of the analogue. The incorporation of NAB-x-dUP residues into the 3 primer end did not impede further elongation of the chain in the presence of natural dNTP.  相似文献   

10.
Summary Template-directed oligomerization of an activated derivative of 3-isoadenosine 5-phosphate (piA) on polyuridylic acid [poly(U)] was studied. The reaction of ImpiA is more efficient than the corresponding reaction of ImpA, and produces 3–5-linked oligomers while the reaction of ImpA gives only 2–5-linked oligomers. The base pairing between piA and poly(U) in this system is probably of the Hoogsteen type (involving the 6-amino group and N7 of 3-isoadenosine) rather than of the Watson-Crick type.  相似文献   

11.
Summary The self-condensation of 2(3)-O-glycyl esters of adenosine, adenosine-5-(O-methylphosphate) and P1, P2-diadenosine-5-pyrophosphate in 6.2 mM solutions at pH 8.0 and -5°C in the presence of 12.5 mM poly(U) yields approximately 3 times as much diketopiperazine as reactions without poly(U). As the concentration of 2(3)-O-(glycyl)-P1, P2-diadenosine-5-pyrophosphate is decreased from 6.2 mM to 1.5 mM the yield of diketopiperazine in the presence of poly(U) decreases slightly from 6.6% to 5.2%, whereas, in the absence of poly(U) the yield of diketopiperazine decreases substantially from 2.4% to 0.75%. The enhanced yield of diketopiperazine that is attributed to the template action of poly(U) is temperature dependent and is observed only at temperatures below 10°C (5°C to -5°C) for 6.2 mM 2(3)-O-(glycyl)-adenosine-5-(O-methylphosphate) and below 23°C (15°C to -5°C) for 6.2 mM 2(3)-O-(glycyl)-P1, P2-diadenosine-5-pyrophosphate. The absence of a template effect at high temperatures is attributed to the melting of the organized helices. The hydrolysis half-lives at pH 8.0 and -5°C of 2(3)-O-(glycyl)-adenosine, 2(3)-O-(glycyl)-adenosine-5-(O-methylphosphate), 2(3)-O-(glycyl)-P1, P2-diadenosine-5-pyrophosphate, and 5-O-(glycyl)-adenosine in the presence of poly(U) are substantially larger than their half-lives in the absence of poly(U). The condensation of 2(3)-O-(glycyl)-adenosine yields 5% of 5-O-(glycyl)-adenosine in the presence of poly(U) compared to 0.7% in the absence of poly(U).Abbreviations DKP diketopiperazine - (gly)2 glycylglycine - (gly)3 glycylglycylglycine - AppA-gly 2(3)-O-(glycyl)-P1, P2-diadenosine-5-pyrophosphate - MepA-gly 2(3)-O-(glycyl)-adenosine-5-(O-methylphosphate) - Ado-2(3)-gly 2(3)-O-(glycyl)-adenosine - Ado-5-gly 5-O-(glycyl)-adenosine - Boc-gly N-tert-butyloxycarbonylglycine - AppA P1, P2-diadenosine-5-pyrophosphate - MepA adenosine-5-(O-methylphosphate) - AppA-Boc-gly 2(3)-O-(Boc-glycyl)-P1, P2-diadenosine-5-pyrophosphate - Ado-5-Boc-gly 5-O-(Boc-glycyl)-adenosine - Ado-2(3)-Boc-gly 2(3)-O-(Boc-glycyl)-adenosine  相似文献   

12.
Summary 3-Amino-3-deoxyguanosine-5-phosphorimidazolidate (ImpGnh 2) oligomerizes more rapidly and regiospecifically than related nucleotide derivatives on a d(CpCpCpCpC) template. The greater nucleophilicity of the amino group leads to efficient oligomerization even when the structure of the double-helical complex formed by the template and the substrate is not optimal for reaction. The use of amine-containing analogues should permit us to develop models of potentially prebiotic polymerization reactions that cannot be studied easily using natural nucleotides.  相似文献   

13.
Heteropolynucleotides as templates for non-enzymatic polymerizations   总被引:1,自引:0,他引:1  
Summary We have studied a number of condensation reactions involving ImpU, ImpT, ImpC, ImpA, ImpG, ImpUpG and ImpCpA as activated nucleotide donors and a variety of homo- and hetero-polynucleotides as templates. We did not obtain any evidence of a template effect with ImpU and ImpT, but observed some condensation of ImpC with GpG on appropriate templates. ImpA and ImpG take part in a number of more or less efficient template-directed reactions, as do ImpUpG and ImpCpA.Our results suggest that, on the primitive Earth, pyrimidine nucleotides could most easily have been incorporated into polymers as constituents of short oligomers, which contained one or more purine nucleotide. The linkage of the product depends strongly on the nature of the substrates; the percentage of the natural 3-5-linkage was, in some cases, less than 10% and, in others, as high as 70%. Wobble-pairing was often very effective in promoting condensations, suggesting that transition mutations would have been very frequent in prebiotic polynucleotide replication.Abbreviations and Conventions U uridine - T thymidine - C cytidine - A adenosine - G guanosine - pN nucleoside-5-phosphate - Np a mixture of 2- and 3-phosphates of a nucleoside - pNp a mixture of the 2-5-diphosphate and 3-5-diphosphate of a nucleoside - N1 2 pN2 a 2-5-linked dinucleoside monophosphate - N1 3 pN2 a 3-5-linked dinucleoside monophosphate - N5 ppN a pyrophosphate derived from a nucleoside-5-phosphate. ImpN and ImpN1pN2 are 5-phosphorimidazolides of nucleosides and 3-5-linked dinucleoside monophosphates, respectively - poly(N) a homopolynucleotide - poly (U1 C2 A4 G3) a random copolymer derived from a substrate mixture containing U, C, A, G in ratio 1:2:4:3 - ODU optical density units measured at 260 nm  相似文献   

14.
The enzyme specifically hydrolyzing guanosine 3,5-bis(diphosphate) [ppGpp] has been isolated from the ribosomal fraction of Escherichia coli; it released pyrophosphate from the 3-position of ppGpp. The effects of various drugs and antibiotics known to interfere with protein and/or RNA synthesis were investigated in the ppGpp degrading reaction. It was determined that tetracycline, chlorotetracycline, and thiostrepton strongly inhibited the reaction, whereas levallorphan gave a moderate inhibition. Only the tetracycline-mediated inhibition could be reversed by manganese ions. Oxytetracycline, rifampicin, fusidic acid, kirromycin, streptomycin, puromycin, chloramphenicol, and morphine did not inhibit the decay reaction.Abbreviations ppGpp guanosine 3,5-bis(diphosphate)  相似文献   

15.
We have recently shown that the polycytidylic acid-directed polymerization of guanosine 5-monophosphate 2-methylimidazolide (2-McImpG) is amenable to kinetic study and that rate determinations as a function of 2-McImpG concentration can reveal much mechanistic detail (Kanavarioti et al. 1993). Here we report kinetic data which show that, once the reaction has been initiated by the formation of dimers, the elongation of dimers to form longer oligomers is accelerated by decreasing polycytidylate (poly(C)) concentration from 0.05 to 0.002 m. This result is consistent with the previously proposed mechanism. The increase in the observed pseudo-first order rate constant for formation of the trimer, k 3 , and the corresponding constant for formation of oligomers longer than the trimer, k i (k i is independent of oligomer length for i 4), with decreasing template concentration for a given monomer concentration is attributed to an increase in template occupancy as template concentration is reduced.Correspondence to: A. Kanavarioti  相似文献   

16.
Summary 2-Amino-2-deoxyuridine reacts efficiently with nucleoside 5-phosphorimidazolides in aqueous solution. The dinucleoside monophosphate analogues were obtained in yields exceeding 80% under conditions in which little reaction occurs with the natural nucleosides.In a similar way, the 5-phosphorimidazolide of 2-amino-2-deoxyuridine undergoes self-condensation in aqueous solution to give a complex mixture of oligomers.The phosphoramidate bond in the dinucleoside monophosphate analogues is stable for several days at room temperature and pH 7. The mechanisms of their hydrolysis under acidic and alkaline conditions are described.Abbreviations A adenosine - C cytidine - G guanosine - U uridine - T thymidine - UN 3 2-azido-2-deoxyuridine - UNH 2 2-amino-2-deoxyuridine - ImpA adenosine 5-phosphorimidazolide - ImpU uridine 5-phosphorimidazolide - ImpUN 3 2-azido-2-deoxyuridine 5-phosphorimidazolide - ImpUNH 2 2-amino-2-deoxyuridine 5-phosphorimidazolide - pA adenosine 5-phosphate - pU uridine 5-phosphate - pUN 3 2-azido-2-deoxyuridine 5-phosphate - pUNH 2 2-amino-2-deoxyuridine 5-phosphate - UpA uridylyl-[35]-adenosine - UpU uridylyl-[35]-uridine - UNpA adenylyl-[52]-2-amino-2-deoxy-uridine - UNpU uridylyl-[52]-2-amino-2-deoxyuridine (pUN)n n=2,3,4 [25]-linked oligomers of pUNH 2 poly(A) polyadenylic acid - Im imidazole - MeIm l-methylimidazole  相似文献   

17.
Western white pine (Pinus monticola) seeds exhibit deep dormancy at maturity and seed populations require several months of moist chilling to reach their uppermost germination capacities. Abscisic acid (ABA) and its metabolites, phaseic acid (PA), dihydrophaseic acid (DPA), 7-hydroxy ABA (7OH ABA) and ABA-glucose ester (ABA-GE), were quantified in western white pine seeds during dormancy breakage (moist chilling) and germination using an HPLC–tandem mass spectrometry method with multiple reaction monitoring and internal standards incorporating deuterium-labeled analogs. In the seed coat, ABA and metabolite levels were high in dry seeds, but declined precipitously during the pre-moist-chilling water soak to relatively low levels thereafter. In the embryo and megagametophyte, ABA levels decreased significantly during moist chilling, coincident with an increase in the germination capacity of seeds. ABA catabolism occurred via several routes, depending on the stage and the seed tissue. Moist chilling of seeds led to increases in PA and DPA levels in both the embryo and megagametophyte. Within the embryo, 7OH ABA and ABA-GE also accumulated during moist chilling; however, 7OH ABA peaked early in germination. Changes in ABA flux, i.e. shifts in the ratio between biosynthesis and catabolism, occurred at three distinct stages during the transition from dormant seed to seedling. During moist chilling, the relative rate of ABA catabolism exceeded ABA biosynthesis. This trend became even more pronounced during germination, and germination was also accompanied by a decrease in the ABA catabolites DPA and PA, presumably as a result of their further metabolism and/or leaching/transport. The transition from germination to post-germinative growth was accompanied by a shift toward ABA biosynthesis. Dormant imbibed seeds, kept in warm moist conditions for 30 days (after an initial 13 days of soaking), maintained high ABA levels, while the amounts of PA, 7OH ABA, and DPA decreased or remained at steady-state levels. Thus, in the absence of conditions required to break dormancy there were no net changes in ABA biosynthesis and catabolism.Abbreviations ABA abscisic acid - ABA-GE abscisic acid glucose ester - DPA dihydrophaseic acid - 7OH ABA 7-hydroxy abscisic acid - 8OH ABA 8-hydroxy abscisic acid - MRM multiple reaction monitoring - PA phaseic acid  相似文献   

18.
Summary We have studied the reactions between adenosine 5-phosphorimidazolide and 9-(2-amino-2-deoxyxylofuranosyl) adenine (I) or 3-methylamino-3-deoxyadenosine (II), both with and without a poly (U) template. We find that both amino compounds react much more rapidly than does adenosine, in the absence of a template. The rate of reaction is greatly enhanced by a poly (U) template in the case of I, but the enhancement is slight in the case of II.Abbreviations A adenosine - xylo ANH2 9-(2-amino-2-deoxy--D-xylofuranosyl) adenine - ANHMe 3-methylamino-3-deoxyadenosine - ImpA adenosine 5-phosphorimidazolide - A3 pA adenylyl-[35]-adenosine - A2 pA adenylyl-[25]-adenosine - UNPA adenylyl-[52]-2-amino-2-deoxyuridine - xylo ANPA 9-[adenylyl-(52)-2-amino-2-deoxy--D-xylofuranosyl]adenine - A(NMe)pA adenylyl-[53]-3-methylamino-3-deoxyadenosine - pA adenosine 5phosphate - AppA P1, P2-diadenosine 5pyrophosphate - (pA)n n = 2, 3 [2-5]-linked oligomers of pA - A2 pA2 pA [2-5]-linked trinucleoside diphosphate of A - poly (U) polyuridylic acid  相似文献   

19.
Summary Photoreactive probes for the hydrophobic pocket of the liver fatty acid-binding protein, 11-(5-azido-salicylamido)-undecanoic acid (5 ASU) and its acetyl ester (Ac5 ASU), were synthesized and their interaction with the protein was assessed. Fatty acid-binding proteins are closely related proteins which are abundantly expressed in tissues with active lipid metabolism. A simple model that assumes that the protein possesses a single kind of sites fitted the binding of radioiodinated 5 ASU to L-FABP satisfactorily. The apparent dissociation constant, 1.34×10–7 M, evidenced a slightly higher affinity than that reported for C16–C20 fatty acids. Consistent with the binding curve, 5 ASU effectively competed with palmitic acid for the hydrophobic sites and the effect was nearly complete for concentrations of 1 gmM; oleic acid, in turn, displaced the radiolabelled probe. Irradiation at 366 nm of125I-5 ASU bound to L-FABP caused the covalent cross-linking of the reagent. The amount of radioactivity covalently bound reached a maximum after 2 min thus agreeing with the photo-activation kinetics of the unlabelled compound that evidenced a t1/2 of 31.1 sec. The yield with which probes bound to L-FABP became covalently linked to the protein, appraised after SDS-PAGE of irradiated samples, was estimated as 23 and 26 per cent for 5 ASU and Ac5 ASU respectively. In turn, irradiation of L-FABP incubated with 5ASU or Ac5 ASU resulted in the irreversible loss of about one fourth its ability to bind palmitic acid. Both results, taken together, suggested that the derivatives are linked to the protein through the sites for fatty acids. When cross-linking of125I-5 ASU was performed after incubation with delipidated cytosol and products were analyzed by SDS-PAGE, a band was visualized in a position similar to that of purified L-FABP.Abbreviations FABP Fatty Acid-Binding Protein - L-FABP Hepatic FABP - I-FABP Intestinal FABP - C-FABP Cardiac FABP - 5 ASU-11 (5-azido-salicylamido)-undecanoic acid - Ac5 ASU-11 (O-acetyl-5-azido-salicylamido)-undecanoic acid  相似文献   

20.
Evidence is presented that a poly(U) template selectively favors the oligomerization of the activated, 3–5 pyrophosphate-linked dimer pdAppdAp, in comparison with the 3–3 and 5–5 linked dimers. In the absence of poly(U), the 5–5linked dimer is the most reactive, and chains are formed which are more than 60 monomer units in length.Nucleic Acid-Like Structures V. For the previous paper in this series see Visscher and Schwartz (1988).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号