共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Nobuhiro Akashi 《Ecological Research》2009,24(2):247-255
I introduced forest dynamics to a deterministic herbivore-vegetation model to examine the effects of vertically stratified
forest structure on the dynamics of the herbivore–vegetation system, the resilience and stable states of vegetation, and the
interactions between deer populations and vegetation. I constructed a model based on data from field studies performed in
Hokkaido, northern Japan. Three phases of state were identified for a given deer density: (1) understory vegetation is maintained
with a equilibrium proportion of canopy gaps in the absence of deer; (2) if the equilibrium proportion of canopy gaps is greater
than that in the equilibrium state in the absence of deer, the understory vegetation can be maintained; and (3) the understory
vegetation cannot be maintained. At the boundary between phases 2 and 3, the herbivore population level had discontinuous
effects on vegetation. When the deer density was held below the threshold, forest vegetation had resilience to recover to
the equilibrium stable state at the given deer density, although the equilibrium canopy gap ratio and vegetation biomass differed
with deer density. However, the forest vegetation–herbivore system could not be maintained in a stable state without artificial
deer population management if food limitation was the only mechanism to keep the deer population at low levels. The deer population
must be kept below the boundary between phases 1 and 2 to maintain the forest regeneration processes. The level cannot be
determined by observing the deer population; careful observation of forest regeneration processes is required. 相似文献
4.
Forest fires frequently occur in boreal forests,and their effects on forest ecosystems are often significant in terms of carbon flux related to climate changes.Soil respiration is the second largest carbon flux in boreal forests and the change in soil respiration is not negligible.Environmental factors controlling the soil respiration,for example,soil temperature,are altered by such fires.The abnormal increase in soil temperature has an important negative effect on soil microbes by reducing their activities or even by killing them directly with strong heat.On the other hand,although vegetation is directly disturbed by fires,the indirect changes in soil respiration are followed by changes in root activities and soil microbes.However,there is very limited information on soil respiration in the forests of Northeast China.This review,by combining what is known about fire influence on soil respiration in boreal forests from previous studies of post-fire effects on soil conditions,soil microbes,and forest regeneration,presents possible scenarios of the impact of anticipated post-fire changes in forest soil respiration in Northeast China. 相似文献
5.
6.
7.
Laiye Qu Keming Ma Xiaoniu Xu Lihua Wang Kaichiro Sasa 《Frontiers of Biology in China》2009,4(2):180-186
Forest fires frequently occur in boreal forests, and their effects on forest ecosystems are often significant in terms of
carbon flux related to climate changes. Soil respiration is the second largest carbon flux in boreal forests and the change
in soil respiration is not negligible. Environmental factors controlling the soil respiration, for example, soil temperature,
are altered by such fires. The abnormal increase in soil temperature has an important negative effect on soil microbes by
reducing their activities or even by killing them directly with strong heat. On the other hand, although vegetation is directly
disturbed by fires, the indirect changes in soil respiration are followed by changes in root activities and soil microbes.
However, there is very limited information on soil respiration in the forests of Northeast China. This review, by combining
what is known about fire influence on soil respiration in boreal forests from previous studies of post-fire effects on soil
conditions, soil microbes, and forest regeneration, presents possible scenarios of the impact of anticipated post-fire changes
in forest soil respiration in Northeast China. 相似文献
8.
When white-tailed deer populations reach high densities, they have negative and often dramatic effects on forest herb populations. However, it is not clear how deer affect the demographic processes of plant populations. We examined how the structure and dynamics of Trillium grandiflorum (Michx.) Salisb. populations are affected by deer browsing in the Upper Great Lakes region by sampling populations from nine study sites in a forested landscape in 1998 and 1999. We constructed a stage-based matrix population model for the regional population. Our model indicated that the long-term growth rate of the population to be –3.56% per year ( = 0.965). Mortality rates were highest for seeds (97.5%) followed by seedlings (29.1%), and lower for all remaining stage classes (4.9 to 8.5%). The observed stage distribution significantly differed from the stable stage distribution, and the damping ratio ( = 1.103) indicated the population would not reach its stable stage distribution anytime soon. In the absence of deer browsing, the long-term growth rate would improve to between –3.46% and –1.61% per year. A moderate drought during the study could account for the negative population growth rate, but deer browsing accelerates the rate of decline. Population growth is most sensitive to the proportion of plants remaining in the nonflowering stage, and deer browsing reduces this proportion. Browsing damage was relatively low in this study (5.4% of stems in 1998, 11.5% in 1999) compared to another study of browsing impacts on T. grandiflorum, indicating deer could have far more severe demographic consequences in populations subject to higher levels of browsing. 相似文献
9.
We examined whether heavy browsing by sika deer, Cervus nippon Temminck, changed morphological characteristics of a Japanese nettle, Urtica thunbergiana Sieb. et Zucc., in Nara Park, where a large population of sika deer has been maintained for more than 1,200 years. Wild nettles
of Nara Park exhibited smaller leaf area, 11–223 times more stinging hairs per leaf, and 58–630-times higher stinging hair
densities than those of other areas where there was no evidence of sika deer browsing. There were no significant differences
in stinging hair length between the areas. Nettles from Nara Park that were cultivated from seeds in a greenhouse retained
a larger number and higher density of stinging hairs. In the field, nettles of Nara Park were less frequently browsed by sika
deer and showed higher survivorship than nettles that were transplanted from an unbrowsed area into Nara Park. These results
indicate that: (1) the U. thunbergiana population of Nara Park has an extremely high stinging hair density compared with those of unbrowsed areas; (2) this characteristic
has a genetic basis, and (3) stinging hairs serve as a defensive structure against sika deer, contributing to an increase
in survivorship. Thus, we conclude that a U. thunbergiana population in Nara Park, with extremely high stinging hair densities, has evolved through natural selection due to heavy
browsing by sika deer. 相似文献
10.
Kellomäki S Peltola H Nuutinen T Korhonen KT Strandman H 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2008,363(1501):2341-2351
This study investigated the sensitivity of managed boreal forests to climate change, with consequent needs to adapt the management to climate change. Model simulations representing the Finnish territory between 60 and 70 degrees N showed that climate change may substantially change the dynamics of managed boreal forests in northern Europe. This is especially probable at the northern and southern edges of this forest zone. In the north, forest growth may increase, but the special features of northern forests may be diminished. In the south, climate change may create a suboptimal environment for Norway spruce. Dominance of Scots pine may increase on less fertile sites currently occupied by Norway spruce. Birches may compete with Scots pine even in these sites and the dominance of birches may increase. These changes may reduce the total forest growth locally but, over the whole of Finland, total forest growth may increase by 44%, with an increase of 82% in the potential cutting drain. The choice of appropriate species and reduced rotation length may sustain the productivity of forest land under climate change. 相似文献
11.
12.
Comparison of carbon dioxide fluxes over three boreal black spruce forests in Canada 总被引:2,自引:0,他引:2
ONIL BERGERON HANK A. MARGOLIS T. ANDREW BLACK† CAROLE COURSOLLE ALLISON L. DUNN‡ ALAN G. BARR§ STEVEN C. WOFSY‡ 《Global Change Biology》2007,13(1):89-107
Although mature black spruce forests are a dominant cover type in the boreal forest of North America, it is not clear how their carbon (C) budgets vary across the continent. The installation of an eddy covariance flux tower on an Old Black Spruce (OBS) site in eastern Canada (EOBS, Québec) provided a first opportunity to compare and contrast its annual (2004) and seasonal C exchange with two other pre-existing OBS flux sites from different climatic regions located in Saskatchewan [Southern OBS (SOBS)] and Manitoba [Northern OBS (NOBS)]. Although there was a relatively uniform seasonal pattern of net ecosystem productivity (NEP) among sites, EOBS had a lower total annual NEP than the other two sites. This was primarily because warmer soil under a thicker snowpack at EOBS appeared to increase winter C losses and low light suppressed both NEP and gross ecosystem productivity (GEP) in June. Across sites, greater total annual GEP and ecosystem respiration ( R ) were associated with greater mean annual air temperatures and an earlier beginning of the growing season. Also, GEP at all three sites showed a stronger relationship with air temperature in spring and early summer compared with later in the growing season, highlighting the importance of springtime conditions to the C budget of these boreal ecosystems. The three sites had different parameter estimates describing the responses of R and GEP at the half hour time scale to near surface temperature and light, respectively. On the other hand, the responses of both R and GEP to temperature at the monthly scale did not differ among sites. These results suggest that a general parameterization could be sufficient at coarse time resolutions to model the response of C exchange to environmental factors of mature black spruce forests from different climatic regions. 相似文献
13.
In cold or alpine areas of northern China, birch forests and larch forests are the two primary forest types. These forests are also characteristic of a south branch of boreal forests in Asia. Some ecologists argue that larch forests can replace birch forests, but this still remains a question due to fragmentary or short observations. The ecotone between a larch forest patch and a birch forest patch is the arena in which the two species interplay and compete with each other, and studies of these areas are meaningful to understanding forest succession. In the alpine area of the Baihuashan Reserve, northern China, we sampled a larch-birch forest ecotone with eight plots in four transects and then analyzed population structures of larches and birches. The results show that the edges of the larch forest patch are composed of many larch saplings or young trees, but the edges of the birch forest patch are mainly composed of old birches. Across the ecotone, the larches, on average, are taller than the birches. These facts suggest that larch saplings can permeate into birch forest patches, probably by seed dispersal, germination, success-ful competition and growth, but birch saplings cannot permeate into larch forest patches. Therefore, on the ecotone, larch forest patches can steadily expand by unceasing permeation into birch forest patches, whereas birch forest patches progressively recede due to ultimate death of the old and poor recruitment of the young. Larch forest patches replace birch forest patches in a stepwise manner, causing succession from birch forests to larch forests. This study not only confirms that larch forests can naturally replace birch forests, but also introduces a simple and reliable method, employing spatial hints, to study forest succession. Additionally, the findings are of benefit to cultivation or development of larch forests in cold or alpine areas of the North Temperate Zone, which can be a huge carbon sink. 相似文献
14.
FENGMING YUAN M. ALTAF ARAIN ALAN G. BARR† T. ANDREW BLACK‡ CHARLES P.-A. BOURQUE§ CAROLE COURSOLLE¶ HANK A. MARGOLIS¶ J. HARRY McCAUGHEY STEVEN C. WOFSY 《Global Change Biology》2008,14(8):1765-1784
Process‐based models are effective tools to synthesize and/or extrapolate measured carbon (C) exchanges from individual sites to large scales. In this study, we used a C‐ and nitrogen (N)‐cycle coupled ecosystem model named CN‐CLASS (Carbon Nitrogen‐Canadian Land Surface Scheme) to study the role of primary climatic controls and site‐specific C stocks on the net ecosystem productivity (NEP) of seven intermediate‐aged to mature coniferous forest sites across an east–west continental transect in Canada. The model was parameterized using a common set of parameters, except for two used in empirical canopy conductance–assimilation, and leaf area–sapwood relationships, and then validated using observed eddy covariance flux data. Leaf Rubisco‐N dynamics that are associated with soil–plant N cycling, and depend on canopy temperature, enabled the model to simulate site‐specific gross ecosystem productivity (GEP) reasonably well for all seven sites. Overall GEP simulations had relatively smaller differences compared with observations vs. ecosystem respiration (RE), which was the sum of many plant and soil components with larger variability and/or uncertainty associated with them. Both observed and simulated data showed that, on an annual basis, boreal forest sites were either carbon‐neutral or a weak C sink, ranging from 30 to 180 g C m?2 yr?1; while temperate forests were either a medium or strong C sink, ranging from 150 to 500 g C m?2 yr?1, depending on forest age and climatic regime. Model sensitivity tests illustrated that air temperature, among climate variables, and aboveground biomass, among major C stocks, were dominant factors impacting annual NEP. Vegetation biomass effects on annual GEP, RE and NEP showed similar patterns of variability at four boreal and three temperate forests. Air temperature showed different impacts on GEP and RE, and the response varied considerably from site to site. Higher solar radiation enhanced GEP, while precipitation differences had a minor effect. Magnitude of forest litter content and soil organic matter (SOM) affected RE. SOM also affected GEP, but only at low levels of SOM, because of low N mineralization that limited soil nutrient (N) availability. The results of this study will help to evaluate the impact of future climatic changes and/or forest C stock variations on C uptake and loss in forest ecosystems growing in diverse environments. 相似文献
15.
16.
Seppo Kellomki Ismo Rouvinen Heli Peltola Harri Strandman Rainer Steinbrecher 《Global Change Biology》2001,7(5):531-544
This study aims to identify how climate change may influence total emissions of monoterpene and isoprene from boreal forest canopies. The whole of Finland is assumed to experience an annual mean temperature (T) increase of 4 °C and a precipitation increase of 10% by the year 2100. This will increase forest resources throughout the country. At the same time, the proportions of Scots pine (Pinus sylvestris) and Norway spruce (Picea abies) in southern Finland (60°≤ latitude < 65°N) will be reduced from the current 40–50% to less than 10–20%, with increased dominance of birches (Betula pendula and Betula pubescens). In northern Finland (65°≤ latitude < 70°N), the proportions of Norway spruce and Scots pine will be balanced at a level of about 40% as the result of an increase in Norway spruce from the current 21% to 37% and a concurrent reduction in Scots pine from 63% to 40%. The proportion of birches is predicted to increase from the current 17% to 23%, but these will become the dominant species only on the most fertile sites. Total mean emissions of monoterpene by Scots pine will be reduced by 80% in southern Finland, but will increase by 62% in the north. Emissions from Norway spruce canopies will increase by 4% in the south but by 428% in the north, while those from birch canopies will increase by about 300% and 113%, respectively. Overall emissions of monoterpene over the whole country amount to about 950 kg km?2 y?1 under current temperature conditions and will increase by 17% to 1100 kg km?2 y?1 with elevated temperature and precipitation, mainly because of an increase at northern latitudes. Under current conditions, emissions of isoprene follow the spatial distribution of spruce canopies (the only isoprene‐emitting tree species that forms forests in Finland) with four times higher emissions in the south than in the north. The elevated temperature and the changes in the areal distribution of Norway spruce will result in increases in isoprene emissions of about 37% in southern Finland and 435% in northern Finland. Annual mean isoprene emissions from Norway spruce canopies over the whole country will increase by about 60% up to the year 2100. 相似文献
17.
18.
Takayuki Nakatsubo Masaki Uchina Takao Horikoshi Kaneyuki Nakane 《Ecological Research》1997,12(1):47-54
The mossHylocomium splendens shows a very wide distribution in the Northern Hemisphere and may be useful as an indicator of climatic change on a global scale. We aimed to establish a convenient method to estimate the annual rate of litter mass loss of this species. The rate was calculated from the annual litter production rate and the amount of litter accumulated in the field. The litter production rate was estimated by analysis of the moss shoot growth. The rates calculated by this method tended to be larger than estimates obtained by the litter bag method. Using this method, we examined the difference in the litter mass loss rate along the altitudinal and latitudinal temperature gradients. The moss samples were collected from three boreal forests in Canada and four subalpine forests in Japan. At the subalpine sites, the annual rate of litter mass loss was within the range of 10–24% and tended to be smaller with increasing altitude. The rates in the boreal sites were similar to those in the subalpine sites despite lower mean annual temperatures. A significant log-linear relationship was observed between the annual mass loss rate and the cumulative value of monthly mean air temperatures higher than 0°C (CMT). Nitrogen concentration of the litter was positively correlated with mean annual air temperature. Site to site variation in the annual mass loss rate was largely explained by CMT and nitrogen concentration of the litter. 相似文献
19.
Fire and site type effects on the long-term carbon and nitrogen balance in pristine Siberian Scots pine forests 总被引:6,自引:0,他引:6
Wirth C. Schulze E.-D. Lühker B. Grigoriev S. Siry M. Hardes G. Ziegler W. Backor M. Bauer G. Vygodskaya N.N. 《Plant and Soil》2002,242(1):41-63
Effects of fire and site type on carbon (C) and nitrogen (N) balances were determined by following the change of total and component C and N pools along four chronosequences of fire-prone Siberian Scots pine ecosystems. These differed in the mean return interval of surface fires (unburned – moderately burned, 40 years – heavily burned, 25 years) and site quality (lichen versus Vaccinium site type). Of the Vaccinium site type (higher site quality) only a moderately burned chronosequence was studied. A total of 22 even-aged stands were investigated with stand ages ranging from 2 to 383 years. The C balance was dominated by the opposing dynamics of coarse woody debris (CWD) and biomass and could be divided into three phases: (1) Young stands (up to 40 years)acted as a net source for C of 6-10 mol C m-2 year-1 because the previous generation CWD pool originating from stand-replacing crown fires decayed much faster than biomass increased. During this period the C pool in the unburned lichen type chronosequence decreased from 807 to 480 mol C m-2. (2) Middle aged stands (40-100 years) being in a stage of maximum biomass accumulation were a net sink of 8-10 mol C m-2 year-1. (3)Maturestands (100 to > 350 years) continued to sequester C at a lower rate (0.8-2.5mol C m-2 year-1). Differences in the rates of C sequestration during the two later phases could be explained by the complex interaction between surface fire regime and site type. Recurrent surface fires resulted in enhanced mortality and regularly redistributed C from the living to the CWD pool thereby lowering the rate of C sequestration. Site quality determined the potential to recover from disturbance by fire events. Differences in site type did not correlate with soil and total ecosystem N pool size. However, the N status of needles as well as the N pool of physiologically active tissue was highest in the stands of the Vaccinium type. The woody C pool (biomass + CWD) was sensitive to differences in surface fire regime and site type. It was lowest in the heavily burned lichen type chronosequence (297 ± 108 mol C m-2), intermediate in the unburned and moderately burned lichen type chronosequence (571 ± 179 mol C m-2) and highest in the moderately burned Vaccinium type chronosequence (810 ± 334 mol C m-2). In contrast, the total soil C pool (organic plus mineral layer down to a depth of 25 cm) was independent of stand age, surface fire regimeand site type and fluctuated around a value of 250 mol C m-2. The organic layer C pool oscillated in response to recurring surface fires and its C pool was dependent on time since fire increasing at a rate of about 1.5 mol C m-2 year-during the first 40 years and then reaching a plateau of 170 mol C m-2. The total ecosystem N pool was 7.4 ± 1.5 mol N m-2 on average of which only 25 % were stored in biomass or coarse woody debris. Total ecosystem N was independent of stand age, surface fire regime and site type. No correlation was found between total ecosystem C and N pools. Average total ecosystem C:N ratio was 114 ± 35 mol C mol N-1. A conceptual model illustrating how changes in the regime of stand-replacing crown fires and recurrent surface fires and changes in site quality interact in determining the long-term C balance in Siberian Scots pine forests is presented. 相似文献