首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
In the developing spinal cord and telencephalon, ventral patterning involves the interplay of Hedgehog (Hh), Retinoic Acid (RA) and Fibroblast Growth Factor (FGF) signaling. In the eye, ventral specification involves Hh signaling, but the roles of RA and FGF signaling are less clear. By overexpression assays in Xenopus embryos, we found that both RA and FGF receptor (FGFR) signaling ventralize the eye, by expanding optic stalk and ventral retina, and repressing dorsal retina character. Co-overexpression experiments show that RA and FGFR can collaborate with Hh signaling and reinforce its ventralizing activity. In loss-of-function experiments, a strong eye dorsalization was observed after triple inhibition of Hh, RA and FGFR signaling, while weaker effects were obtained by inhibiting only one or two of these pathways. These results suggest that the ventral regionalization of the eye is specified by interactions of Hh, RA and FGFR signaling. We argue that similar mechanisms might control ventral neural patterning throughout the central nervous system.  相似文献   

4.
The heparin binding molecules MK and HB-GAM are involved in the regulation of growth and differentiation of many tissues and organs. Here we analyzed the expression of MK and HB-GAM in the developing mouse incisors, which are continuously growing organs with a stem cell compartment. Overlapping but distinct expression patterns for MK and HB-GAM were observed during all stages of incisor development (initiation, morphogenesis, cytodifferentiation). Both proteins were detected in the enamel knot, a transient epithelial signaling structure that is important for tooth morphogenesis, and the cervical loop where the stem cell niche is located. The functions of MK and HB-GAM were studied in dental explants and organotypic cultures in vitro. In mesenchymal explants, MK stimulated HB-GAM expression and, vice-versa, HB-GAM upregulated MK expression, thus indicating a regulatory loop between these proteins. BMP and FGF molecules also activated expression of both cytokines in mesenchyme. The proliferative effects of MK and HB-GAM varied according to the mesenchymal or epithelial origin of the tissue. Growth, cytodifferentiation and mineralization were inhibited in incisor germs cultured in the presence of MK neutralizing antibodies. These results demonstrate that MK and HB-GAM are involved in stem cells maintenance, cytodifferentiation and mineralization processes during mouse incisor development.  相似文献   

5.
The three vertebrate Gli proteins play a central role in mediating Hedgehog (Hh)-dependent cell fate specification in the developing spinal cord; however, their individual contributions to this process have not been fully characterized. In this paper, we have addressed this issue by examining patterning in the spinal cord of Gli2;Gli3 double mutant embryos, and in chick embryos transfected with dominant activator forms of Gli2 and Gli3. In double homozygotes, Gli1 is also not expressed; thus, all Gli protein activities are absent in these mice. We show that Gli3 contributes activator functions to ventral neuronal patterning, and plays a redundant role with Gli2 in the generation of V3 interneurons. We also show that motoneurons and three classes of ventral neurons are generated in the ventral spinal cord in double mutants, but develop as intermingled rather than discrete populations. Finally, we provide evidence that Gli2 and Gli3 activators control ventral neuronal patterning by regulating progenitor segregation. Thus, multiple ventral neuronal types can develop in the absence of Gli function, but require balanced Gli protein activities for their correct patterning and differentiation.  相似文献   

6.
7.
8.
Gli proteins and Hedgehog signaling: development and cancer.   总被引:8,自引:0,他引:8  
  相似文献   

9.
10.
Regulation of ventral midbrain patterning by Hedgehog signaling   总被引:3,自引:0,他引:3  
In the developing ventral midbrain, the signaling molecule sonic hedgehog (SHH) is sufficient to specify a striped pattern of cell fates (midbrain arcs). Here, we asked whether and precisely how hedgehog (HH) signaling might be necessary for ventral midbrain patterning. By blocking HH signaling by in ovo misexpression of Ptc1(Delta)(loop2), we show that HH signaling is necessary and can act directly at a distance to specify midbrain cell fates. Ventral midbrain progenitors extinguish their dependence upon HH in a spatiotemporally complex manner, completing cell-fate specification at the periphery by Hamburger and Hamilton stage 13. Thus, patterning at the lateral periphery of the ventral midbrain is accomplished early, when the midbrain is small and the HH signal needs to travel relatively short distances (approximately 30 cell diameters). Interestingly, single-cell injections demonstrate that patterning in the midbrain occurs within the context of cortex-like radial columns of cells that can share HH blockade and are cytoplasmically connected by gap junctions. HH blockade results in increased cell scatter, disrupting the spatial coherence of the midbrain arc pattern. Finally, HH signaling is required for the integrity and the signaling properties of the boundaries of the midbrain (e.g. the midbrain-hindbrain boundary, the dorsoventral boundary), its perturbations resulting in abnormal cell mixing across 'leaky' borders.  相似文献   

11.
Dentate gyrus and hippocampus as centers for spatial learning, memory and emotional behaviour have been the focus of much interest in recent years. The molecular information on its development, however, has been relatively poor. To date, only Emx genes were known to be required for dorsal telencephalon development. Here, we report on forebrain development in the extra toes (Xt(J)) mouse mutant which carries a null mutation of the Gli3 gene. This defect leads to a failure to establish the dorsal di-telencephalic junction and finally results in a severe size reduction of the neocortex. In addition, Xt(J)/Xt(J) mice show absence of the hippocampus (Ammon's horn plus dentate gyrus) and the choroid plexus in the lateral ventricle. The medial wall of the telencephalon, which gives rise to these structures, fails to invaginate during embryonic development. On a molecular level, disruption of dorsal telencephalon development in Xt(J)/Xt(J) embryos correlates with a loss of Emx1 and Emx2 expression. Furthermore, the expression of Fgf8 and Bmp4 in the dorsal midline of the telencephalon is altered. However, expression of Shh, which is negatively regulated by Gli3 in the spinal cord, is not affected in the Xt(J)/Xt(J) forebrain. This study therefore implicates Gli3 as a key regulator for the development of the dorsal telencephalon and implies Gli3 to be upstream of Emx genes in a genetic cascade controlling dorsal telencephalic development.  相似文献   

12.
Sonic Hedgehog (Shh) signaling plays a critical role during dorsoventral (DV) patterning of the developing neural tube by modulating the expression of neural patterning genes. Overlapping activator functions of Gli2 and Gli3 have been shown to be required for motoneuron development and correct neural patterning in the ventral spinal cord. However, the role of Gli2 and Gli3 in ventral hindbrain development is unclear. In this paper, we have examined DV patterning of the hindbrain of Shh(-/-), Gli2(-/-) and Gli3(-/-) embryos, and found that the respective role of Gli2 and Gli3 is not only different between the hindbrain and spinal cord, but also at distinct rostrocaudal levels of the hindbrain. Remarkably, the anterior hindbrain of Gli2(-/-) embryos displays ventral patterning defects as severe as those observed in Shh(-/-) embryos suggesting that, unlike in the spinal cord and posterior hindbrain, Gli3 cannot compensate for the loss of Gli2 activator function in Shh-dependent ventral patterning of the anterior hindbrain. Loss of Gli3 also results in a distinct patterning defect in the anterior hindbrain, including dorsal expansion of Nkx6.1 expression. Furthermore, we demonstrate that ventral patterning of rhombomere 4 is less affected by loss of Gli2 function revealing a different requirement for Gli proteins in this rhombomere. Taken together, these observations indicate that Gli2 and Gli3 perform rhombomere-specific function during DV patterning of the hindbrain.  相似文献   

13.
14.
15.
Comment on: Drakopoulou E, et al. Cell Cycle 2010; 9:4144–52.  相似文献   

16.
17.
Dorsal-ventral patterning in the mammalian telencephalon   总被引:4,自引:0,他引:4  
  相似文献   

18.
The localized expression of Hedgehog (Hh) at the extreme anterior of Drosophila ovarioles suggests that it might provide an asymmetric cue that patterns developing egg chambers along the anteroposterior axis. Ectopic or excessive Hh signaling disrupts egg chamber patterning dramatically through primary effects at two developmental stages. First, excess Hh signaling in somatic stem cells stimulates somatic cell over-proliferation. This likely disrupts the earliest interactions between somatic and germline cells and may account for the frequent mis-positioning of oocytes within egg chambers. Second, the initiation of the developmental programs of follicle cell lineages appears to be delayed by ectopic Hh signaling. This may account for the formation of ectopic polar cells, the extended proliferation of follicle cells and the defective differentiation of posterior follicle cells, which, in turn, disrupts polarity within the oocyte. Somatic cells in the ovary cannot proliferate normally in the absence of Hh or Smoothened activity. Loss of protein kinase A activity restores the proliferation of somatic cells in the absence of Hh activity and allows the formation of normally patterned ovarioles. Hence, localized Hh is not essential to direct egg chamber patterning.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号