首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 450 毫秒
1.
Sucrose phosphate synthase (SPS) activity was measured in extracts of maize (Zea mays L.) and soybean (Glycine max L. [Merr.]) leaves over a single day/night cycle. There was a 2- to 3-fold postillumination increase in extractable enzyme activity in maize leaves, whereas the activity of soybean SPS was only about 30% higher in extracts prepared from light- compared to dark-adapted leaves. Alterations in extractable maize leaf SPS activity correlated with light/dark transitions suggesting that the enzyme may be light modulated. Diurnal variations of extractable maize leaf SPS activity were also observed in a greenhouse experiment. A transition from high (light) to low (dark) extractable SPS activity occurred near the light compensation point for photosynthesis (about 20 micromole photons per square meter per second). Further increases in irradiance did not increase extractable SPS activity. Substrate affinities for uridine 5′-diphosphoglucose (Michaelis constant = 3.5 and 5.1 millimolar) and fructose-6 phosphate (half maximal concentration = 1.0 and 2.5 millimolar) were lower for partially purified SPS obtained from light compared to dark acclimated maize leaves. Light-induced changes in extractable SPS activity were stable for at least one column chromatography step. The above results indicate that light-induced changes in SPS activity may be important in controlling the photosynthetic production of sucrose.  相似文献   

2.
Cheikh N  Brenner ML 《Plant physiology》1992,100(3):1230-1237
An important part in the understanding of the regulation of carbon partitioning within the leaf is to investigate the endogenous variations of parameters related to carbon metabolism. This study of diurnal changes in the activities of sucrose-synthesizing enzymes and levels of nonstructural carbohydrates in intact leaves of field-grown soybean plants (Glycine max [L.]) showed pronounced diurnal fluctuations in sucrose phosphate synthase (SPS) activity. However, there was no distinct diurnal change in the activity of fructose-1,6-bisphosphatase (F1,6BPase). SPS activity in leaves from plants grown in controlled environments presented two peaks during the light period. In contrast to field-grown plants, F1,6BPase activity in leaves from growth chamber-grown plants manifested one peak during the first half of the light period. In plants grown under both conditions, sucrose and starch accumulation rates were highest during early hours of the light period. By the end of the dark period, most of the starch was depleted. A pattern of diurnal fluctuations of abscisic acid (ABA) levels in leaves was also observed under all growing conditions. Either imposition of water stress or exogenous applications of ABA inhibited F1,6BPase activity. However, SPS-extractable activity increased following water deficit but did not change in response to ABA treatment. Gibberellin application to intact soybean leaves increased levels of both starch and sucrose. Both gibberellic acid (10−6m) and gibberellins 4 and 7 (10−5m) increased the activity of SPS but had an inconsistent effect on F1,6BPase. Correlation studies between the activities of SPS and F1,6BPase suggest that these two enzymes are coordinated in their function, but the factors that regulate them may be distinct because they respond differently to certain environmental and physiological changes.  相似文献   

3.
The activity of sucrose-phosphate synthase (SPS) in 9-day-old barley (Hordeum vulgare L.) primary leaves was measured over a 24-hour period. Extractable enzyme activity was constant in the light, decreased 50 to 60% during the first one-half hour of darkness, and then returned to full activity before the start of the normal light period. Decreases of SPS activity in the dark were fully reversed by less than 10 minutes of illumination. In contrast to results with barley, the measurable activity of SPS in soybean, spinach, and pea leaves was unchanged during the first hour of darkness. Changes of SPS activity in barley primary leaves were stable upon gel filtration. The exact biochemical mechanism responsible for the enzyme activity changes in barley leaf extracts is unknown. The above findings support the suggestion by de Fekete (1973 Eur J Biochem, 10: 73-80) that SPS is controlled by posttranslational protein modification. These results are discussed in relation to the regulation of photosynthetic sucrose metabolism.  相似文献   

4.
Huber SC  Rufty TW  Kerr PS 《Plant physiology》1984,75(4):1080-1084
Studies were conducted to identify the existence of diurnal rhythms in sucrose phosphate synthase (SPS) activity in leaves of three soybean (Glycine max L. [Merr.]) and two tobacco (Nicotiana tabacum L.) cultivars and the effect of photoperiod (15 versus 7 hours) on carbohydrate partitioning and the rhythm in enzyme activity. Acclimation of all the genotypes tested to a short day (7 hours) photoperiod resulted in increased rates of starch accumulation, whereas rates of translocation, foliar sucrose concentrations, and activities of SPS were decreased relative to plants acclimated to long days (15 hours). Under the long day photoperiod, two of the three soybean cultivars (`Ransom' and `Jupiter') and one of the two tobacco cultivars (`22NF') studied exhibited a significant diurnal rhythm in SPS activity. With the soybean cultivars, acclimation to short days reduced the activity of SPS (leaf fresh weight basis) and tended to dampen the amplitude of the rhythm. With the tobacco cultivars, photoperiod affected the shape of the SPS-activity rhythm. The mean values for SPS activity (calculated from observations made during the light period) were correlated positively with translocation rates and were correlated negatively with starch accumulation rates. Overall, the results support the postulate that SPS activity is closely associated with starch/sucrose levels in leaves, and that acclimation to changes in photoperiod may be associated with changes in the activity of SPS.  相似文献   

5.
6.
Studies were conducted to determine whether protein phosphorylation may be a mechanism for regulation of spinach (Spinacia oleracea L.) leaf sucrose-phosphate synthase (SPS), shown previously to be light-dark regulated by some type of covalent modification. Radioactive phosphate was incorporated into the 120-kDa subunit of SPS during labeling of excised leaves with [32P]Pi, as shown by immunoprecipitation and denaturing gel electrophoresis of the enzyme. Conditions which activated the enzyme (illumination of leaves or mannose treatment of leaf discs in darkness) reduced the incorporation of radiolabel into SPS in the in vivo system. The partially purified SPS protein could also be phosphorylated in vitro using [gamma-32P]ATP. In the in vitro system, the incorporation of radiolabel into the 120-kDa subunit of SPS was dependent on time and magnesium concentration, and was closely paralleled by inactivation of the enzyme. These results provide the first evidence to establish protein phosphorylation as a mechanism for the covalent regulation of SPS activity.  相似文献   

7.
I Potter  S C Fry 《Plant physiology》1993,103(1):235-241
Xyloglucan endotransglycosylase (XET) activity extractable from internodes of tall and dwarf varieties of pea (Pisum sativum L.) was assayed radiochemically using tamarind seed xyloglucan as donor substrate and an oligosaccharidyl-[3H]alditol as acceptor substrate. Internodes I and II showed little elongation during the period 15 to 21 d after sowing; XET activity remained relatively constant and was unaffected by exogenous gibberellic acid (GA3). A single application of GA3 to the dwarf genotype resulted in a small enhancement of elongation in internode III between d 17 and 21 and caused a small increase in XET activity in internode III. Repeated applications of GA3 caused internode V to elongate between d 20 and 26, to the same extent as in the tall variety, and concomitantly led to greatly elevated XET activity (expressed per unit fresh weight, per unit of extractable protein, and per internode). Thus, XET activity correlated with GA3-enhanced length in pea internodes; the possibility that this represents a causal relationship is discussed.  相似文献   

8.
Prior data indicated that enhanced availability of sucrose, a major product of photosynthesis in source leaves and the carbon source for secondary wall cellulose synthesis in fiber sinks, might improve fiber quality under abiotic stress conditions. To test this hypothesis, a family of transgenic cotton plants (Gossypium hirsutum cv. Coker 312 elite) was produced that over-expressed spinach sucrose-phosphate synthase (SPS) because of its role in regulation of sucrose synthesis in photosynthetic and heterotrophic tissues. A family of 12 independent transgenic lines was characterized in terms of foreign gene insertion, expression of spinach SPS, production of spinach SPS protein, and development of enhanced extractable V max SPS activity in leaf and fiber. Lines with the highest V max SPS activity were further characterized in terms of carbon partitioning and fiber quality compared to wild-type and transgenic null controls. Leaves of transgenic SPS over-expressing lines showed higher sucrose:starch ratio and partitioning of 14C to sucrose in preference to starch. In two growth chamber experiments with cool nights, ambient CO2 concentration, and limited light below the canopy, the transgenic line with the highest SPS activity in leaf and fiber had higher fiber micronaire and maturity ratio associated with greater thickness of the cellulosic secondary wall.  相似文献   

9.
Experiments were conducted with vegetative soybean plants (Glycine max [L.] Merr., `Ransom') to determine whether the activities in leaf extracts of key enzymes in sucrose metabolism changed during the daily light/dark cycle. The activity of sucrose-phosphate synthase (SPS) exhibited a distinct diurnal rhythm, whereas the activities of UDP-glucose pyrophosphorylase, cytoplasmic fructose-1,6-bisphosphatase, and sucrose synthase did not. The changes in extractable SPS activity were not related directly to photosynthetic rates or light/dark changes. Hence, it was postulated that the oscillations were under the control of an endogenous clock. During the light period, the activity of SPS was similar to the estimated rate of sucrose formation. In the dark, however, SPS activity declined sharply and then increased even though degradation of starch was linear. The activity of SPS always exceeded the estimated maximum rate of sucrose formation in the dark. Transfer of plants into light during the normal dark period (when SPS activity was low) resulted in increased partitioning of photosynthate into starch compared to partitioning observed during the normal light period. These results were consistent with the hypothesis that SPS activity in situ was a factor regulating the rate of sucrose synthesis and partitioning of fixed carbon between starch and sucrose in the light.  相似文献   

10.
Monoclonal antibodies specific for sucrose phosphate synthase (SPS; EC 2.4.1.14) have been obtained for the first time. Three independent clones have been isolated which inhibited spinach (Spinacia oleracea L.) leaf SPS activity and facilitated the enzyme purification by immunoprecipitation. All three clones were specific for the spinach enzyme but neither inhibited nor precipitated the SPS present in tissue extracts of maize (Zea mays L.), barley (Hordeum vulgare L.), soybean (Glycine max L.), and sugar beet (Beta vulgaris L.). The inhibition of SPS activity by all three clones was reversible in the presence of UDPG, suggesting the presence of an epitope at the substrate-binding site. Immunoprecipitates of active enzyme preparations consistently revealed the presence of a 120 kilodalton polypeptide, indicating that the enzyme may be a homotetramer with a native molecular weight of about 480 kilodaltons. The occasional appearance of a 52 kilodalton polypeptide in the immunoprecipitates of some enzyme preparations was not the result of proteolysis, was not necessary for enzyme activity, and did not contain an antigenic site as revealed by Western blotting experiments. All three antibodies bind weakly to the SDS denatured 120 kilodalton subunit bound to nitrocellulose. The specific activity of the purified spinach enzyme was determined for the first time to be approximately 150 units per milligram SPS protein (pH 7.5 and 25°C) based on quantitative immunoprecipitation of the enzyme.  相似文献   

11.
We recently obtained evidence that the activity of spinach (Spinacia oleracea L.) leaf nitrate reductase (NR) responds rapidly and reversibly to light/dark transitions by a mechanism that is strongly correlated with protein phosphorylation. Phosphorylation of the NR protein appears to increase sensitivity to Mg2+ inhibition, without affecting activity in the absence of Mg2+. In the present study, we have compared the light/dark modulation of sucrose-phosphate synthase (SPS), also known to be regulated by protein phosphorylation, and NR activities (assayed with and without Mg2+) in spinach leaves. There appears to be a physiological role for both enzymes in mature source leaves (production of sucrose and amino acids for export), whereas NR is also present and activated by light in immature sink leaves. In mature leaves, there are significant diurnal changes in SPS and NR activities (assayed under selective conditions where phosphorylation status affects enzyme activity) during a normal day/night cycle. With both enzymes, activities are highest in the morning and decline as the photoperiod progresses. For SPS, diurnal changes are largely the result of phosphorylation/dephosphorylation, whereas with NR, the covalent modification is super-imposed on changes in the level of NR protein. Accumulation of end products of photosynthesis in excised illuminated leaves increased maximum NR activity, reduced its sensitivity of Mg2+ inhibition, and prevented the decline in activity with time in the light seen with attached leaves. In contrast, SPS was rapidly inactivated in excised leaves. Overall, NR and SPS share many common features of control but are not identical in terms of regulation in situ.  相似文献   

12.
The effect of chlorflurenol (methyl 2-chloro-9-hydroxyfluorene-9-carboxylate) (CF) on chlorophyll (chl) content was studied in intact plants and floating leaf disks. For intact soybean (Glycine max (L.) Merrill) plants grown in the growth chamber, 2.5 μg/ml CF applied 10 to 20 d after planting retarded chl decline in senescing tissues such as cotyledons and unifoliate leaves and increased chl content in recently expanded tissues such as trifoliate leaves. CF did not retard chl decline in the dark unless regulator application was followed by a period of 24 h in the light prior to darkness. In floating leaf disk tests, CF retarded chl decline in dock (Rumex obtusifolius L.) and radish (Raphanus sativus L.) at concentrations of 10?4 M, but was ineffective at lower concentrations. Chl decline was significantly hastened by CF in tobacco (Nicotiana tabacum L.) and soybean, but was unchanged in barley (Hordeum vulgare L.). CF treatment increased tissue weight (g fresh wt/cotyledon; g dry wt/ cm2 for unifoliate and trifoliate leaves), decreased moisture content, and increased leaf thickness, palisade layer thickness, and palisade and spongy mesophyll cell counts. We conclude that plants treated with morphactins show greater green coloration predominantly because of growth effects, and only in small part because of prevention of chl decline in senescing tissues.  相似文献   

13.
The characteristics of sucrose-phosphate synthase (SPS; EC 2.4.1.14) activity in leaves of Phaseolus vulgaris L. cv. Linden was studied in plants subjected to water stress and various CO2 and light treatments. When water was withheld for 3 days causing mild water stress (–0.9 MPa), the activity of SPS measured in crude extracts was reduced ca 50%. The effect of water stress was most evident when the enzyme was assayed with saturating amounts of its substrates fructose 6-phosphate and UDP glucose. Placing a water-stressed plant in an atmosphere containing 1% CO2 reversed the effect of water stress on SPS activity over 5 h even though the water stress was not relieved. Holding unstressed leaves in low CO2 partial pressure reduced the extractable activity of SPS. After 1 h of low CO2 treatment the effect of low CO2 could be reversed by 20 min of 5% CO2. However, after 24 h of low CO2 treatment, less SPS activity was recovered by the 20 min treatment. The cytosolic protein synthesis inhibitor cycloheximide prevented the slow recovery of SPS activity, but did not affect the rapid recovery of SPS. We conclude that the effect of water stress on SPS activity was a consequence of the inhibition of photosynthesis caused by stomatal closure. Responses of Phaseolus vulgaris SPS to light were similar to the response to low CO2 in that the effects were most pronounced under Vmax assay conditions. This is the first report of this type of light response of SPS in a dicotyledonous species.  相似文献   

14.
The purpose of this study was to identify the factors that control sucrose-phosphate synthase (SPS)-kinase and SPS-protein phosphatase (SPS-PP) activity in situ, and thereby mediate the activation of SPS by light or mannose. Feeding mannose to excised spinach (Spinacia oleracea) leaves in darkness resulted in a general sequestration of cellular phosphate (as evidenced by accumulation of mannose-6-P and depletion of glucose-6-P [Glc-6-P] and fructose-6-P [Fru-6-P]) and a relatively slow activation of SPS (maximum activation achieved within 90 min). Supplying exogenous inorganic phosphate (Pi) with mannose reduced sequestration of cellular Pi (as evidenced by mannose-6-P accumulation without depletion of hexose-P) and substantially reduced mannose activation of SPS. Thus, depletion of cytoplasmic Pi may be required for SPS activation; accumulation of mannose-6-P alone is clearly not sufficient. It was verified that Glc-6-P, but not mannose-6-P, was an inhibitor of partially purified SPS-kinase, and that Pi was an inhibitor of partially purified SPS-PP. Total extractable activity of SPS-kinase did not vary diurnally, whereas a pronounced light activation of SPS-PP activity was observed. Pretreatment of leaves in the dark with cycloheximide blocked the light activation of SPS-PP (assayed in vitro) and dramatically reduced the rate of SPS activation in situ (in saturating light and carbon dioxide). We conclude that rapid activation of SPS by light involves reduction in cytosolic Pi, an inhibitor of SPS-PP, and light activation of SPS-PP, by a novel mechanism that may involve (directly or indirectly) a protein synthesis step. An increase in cytosolic Glc-6-P, an inhibitor of SPS-kinase, would also favor SPS activation. Thus, the signal transduction pathway mediating the light activation of SPS involves elements of “fine” and “coarse” control.  相似文献   

15.
Methyl Jasmonate Induces Papain Inhibitor(s) in Tomato Leaves   总被引:9,自引:1,他引:8       下载免费PDF全文
Bolter CJ 《Plant physiology》1993,103(4):1347-1353
Leaves of 18- to 24-d-old tomato (Lycopersicon esculentum) plants exposed to gaseous methyl jasmonate (MJ) for 24 h at 30[deg]C in continuous light contained high levels of soluble protein that inhibited papain. Chromatographic analysis demonstrated that the active protein had a molecular mass of 80 to 90 kD. Induction of papain inhibitor was directly related to the concentration of air-borne MJ up to a maximum of 0.1 [mu]L MJ per treatment and depended on the duration of exposure up to 18 h. Inhibitor activity in plants treated for less than 18 h increased with time after treatment. Levels remained constant for up to 4 d after treatment, after which time activity decreased. The youngest leaf, leaf 5, consistently lost activity at a faster rate than older, lower leaves. Inhibitor concentration in all leaves was reduced to minimum levels by 11 d after MJ treatment, but did not return to control levels. Treatment with MJ in the dark did induce inhibitor activity, but at a significantly lower rate. Polyclonal antibodies raised to purified potato tuber skin cysteine proteinase inhibitors (CPI) cross-reacted with the tomato inhibitor, suggesting that the tomato papain inhibitor and the potato CPI are closely related. No papain inhibitor activity was observed in extracts from wounded tomato leaves, nor was there any immunoreactivity with antibodies raised to potato tuber skin CPI.  相似文献   

16.
Constitutive over-expression of a maize sucrose-phosphate synthase (SPS) gene in tobacco (Nicotiana tabacum) had major effects on leaf carbohydrate budgets with consequences for whole plant development. Transgenic tobacco plants flowered earlier and had greater flower numbers than wild-type plants. These changes were not linked to modified source leaf carbon assimilation or carbon export, although sucrose to starch ratios were significantly higher in leaves expressing the transgene. The youngest and oldest leaves of plants over-expressing SPS had up to 10-fold wild-type maximal extractable SPS activity, but source leaf SPS activities were only 2-3 times greater in these lines than in the wild type. In the oldest leaves, where the expression of the transgene led to the most marked enhancement in SPS activity, photosynthesis was also increased. It was concluded that these increases in the capacity for sucrose synthesis and carbon assimilation, particularly in older leaves, accelerate the whole plant development and increase the abundance of flowers without substantial changes in the overall shoot biomass.  相似文献   

17.
A dot-blot technique was developed using monoclonal antibodies to measure, rapidly and accurately, the amount of sucrose-phosphate synthase (SPS; EC 2.4.1.14) protein present in a crude extract from spinach (Spinacia oleracea L. cv. Dark Green Bloomsdale) leaves; this was compared with SPS activity in this material. During leaf development, increased SPS activity followed closely the increase in enzyme-protein level, indicating denovo synthesis or altered turn-over rates for SPS. In contrast, activation of SPS by illumination of leaves or by mannose treatment of leaf discs in the dark (M. Stitt et al. Planta 174, 217–230) occurred without a significant change in the level of enzyme protein. Since conditions which altered SPS activity did not affect immunoprecipitation or mobility of the 120-kilodalton (kDa) subunit of the enzyme during denaturing gel electrophoresis, some form of protein modification other than proteolysis must be involved. Overall, the results indicate that regulation of SPS activity can involve changes in the level of enzyme protein and-or covalent modification.Abbreviations kDa kilodalton - SDS-PAGE sodium dodecylsulfate polyacrylamide gel electrophoresis - SPS sucrosephosphate synthase Cooperative investigations of the U.S. Department of Agriculture, Agricultural Research Service, and the North Carolina Agricultural Reseach Service, Raleigh. Paper No. 11789 of the Journal Series of the North Carolina Agricultural Research Service, Raleigh, NC 27695-7643, USA  相似文献   

18.
Site-directed mutagenesis of spinach sucrose-phosphate synthase (SPS) was performed to investigate the role of Ser158 in the modulation of spinach leaf SPS. Tobacco plants expressing the spinach wild-type (WT), S158A, S158T and S157F/S158E SPS transgenes were produced. Expression of transgenes appeared not to reduce expression of the tobacco host SPS. SPS activity in the WT and the S158T SPS transgenics showed light/dark modulation, whereas the S158A and S157F/S158E mutants were not similarly light/dark modulated: the S158A mutant enzyme was not inactivated in the dark, and the S157F/S158E was not activated in the light. The inability to modulate the activity of the S158A mutant enzyme by protein phosphorylation was demonstrated in vitro. The WT spinach enzyme immunopurified from dark transgenic tobacco leaves had a low initial activation state, and could be activated by PP2A and subsequently inactivated by SPS-kinase plus ATP. Rapid purification of the S158A mutant enzyme from dark leaves of transgenic plants using spinach-specific monoclonal antibodies yielded enzyme that had a high initial activation state, and pre-incubation with leaf PP2A or ATP plus SPS-kinase (the PKIII enzyme) caused little modulation of activity. The results demonstrate the regulatory significance of Ser158 as the major site responsible for dark inactivation of spinach SPS in vivo, and indicate that the significance of phosphorylation is the introduction of a negative charge at the Ser158 position.  相似文献   

19.
We studied the effects of synthetic analogs of phytohormones (benzyladenine, IAA, and GA) on the activities of the enzymes catalyzing sucrose synthesis and metabolism, sucrose phosphate synthase (SPS, EC 2.4.1.14) and sucrose synthase (SS, EC 2.4.1.13), and on the content of chlorophyll and protein during the sugar-beet (Beta vulgaris L.) ontogeny. Plant spraying with phytohormonal preparations activated SPS in leaves; direct interaction between phytohormones and the enzyme also increased its activity. The degree of this activation differed during the ontogeny and in dependence on the compound used for treatment. Analogs of phytohormones maintained high protein level in leaves, retarded chlorophyll breakdown, and, thus, prolonged leaf functional activity during development. Phytohormonal preparations practically did not affect the SS activity both after plant treatment and at their direct interaction with the enzyme. It is supposed that the SS activity in sugar-beet roots is controlled by sucrose synthesized in leaves rather than by phytohormones. The effects of hormones on leaf metabolism were mainly manifested in growth activation.  相似文献   

20.
The Stability and Movement of Gibberellic Acid in Pea Seedlings   总被引:1,自引:0,他引:1  
McCOMB  A. J. 《Annals of botany》1964,28(4):669-687
The stability and movement of gibberellic acid (GA) in intactdwarf pea seedlings growing in the light was studied by meansof both unlabelled GA and GA labelled with isotopic carbon (14C).After 14C-GA had been applied to the mature leaves of pea seedlingsmuch remained in association with the treated leaflets, but14C-GA was also extractable from the young shoots. The yieldwas approximately the same 5 to 96 hours after treatment. GApenetrated leaf surfaces only while the application solventwas moist (about 1 hour), but moved from the treated leafletsinto the shoots for at least 24 hours. Some hours after treatmentthere was an abrupt increase in the growth-rates of the plants,and crude estimates suggest that an effective dose of GA movedto the elongating tissue at about 5 cm/hr. The pattern of distributionof 14C was examined by autoradiography. The data suggest thatGA which enters the plant is redistributed from maturing leavesto immature leaves, passing through the elongating tissue, foras long as any of the substance is present. The hypothesis remainstenable that GA produces its growth effects by acting only uponexpanding tissue  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号