首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Loss of function of the Schizosaccharomyces pombe gap1 gene results in the same phenotypes as those caused by an activated ras1 mutation, i.e., hypersensitivity to the mating factor and inability to perform efficient mating. Sequence analysis of gap1 indicates that it encodes a homolog of the mammalian Ras GTPase-activating protein (GAP). The predicted gap1 gene product has 766 amino acids with relatively short N- and C-terminal regions flanking the conserved core sequence of GAP. Genetic analysis suggests that S. pombe Gap1 functions primarily as a negative regulator of Ras1, like S. cerevisiae GAP homologs encoded by IRA1 and IRA2, but is unlikely to be a downstream effector of the Ras protein, a role proposed for mammalian GAP. Thus, Gap1 and Ste6, a putative GDP-GTP-exchanging protein for Ras1 previously identified, appear to play antagonistic roles in the Ras-GTPase cycle in S. pombe. Furthermore, we suggest that this Ras-GTPase cycle involves the ra12 gene product, another positive regulator of Ras1 whose homologs have not been identified in other organisms, which could function either as a second GDP-GTP-exchanging protein or as a factor that negatively regulates Gap1 activity.  相似文献   

2.
Two successive rounds of chromosome segregation following a single round of DNA replication enable the production of haploid gametes during meiosis. In the fission yeast Schizosaccharomyces pombe, karyogamy is the process where the nuclei from 2 haploid cells fuse to create a diploid nucleus, which then undergoes meiosis to produce 4 haploid spores. By screening a collection of S. pombe deletion strains, we found that the deletion of 2 genes, mal3 and mto1, leads to the production of asci containing up to 8 spores. Here, we show that Mal3, the fission yeast member of the EB1 family of conserved microtubule plus-end tracking proteins, is required for karyogamy, oscillatory nuclear movement, and proper segregation of chromosomes during meiosis. In the absence of Mal3, meiosis frequently initiates before the completion of karyogamy, thus producing up to 8 nuclei in a single ascus. Our results provide new evidence that fission yeast can initiate meiosis prior to completing karyogamy.  相似文献   

3.
We isolated 11 independent temperature-sensitive (ts) mutants of Schizosaccharomyces pombe RanGAP, SpRna1 that have several amino acid changes in the conserved domains of RanGAP. Resulting Sprna1ts showed a strong defect in mitotic chromosome segregation, but did not in nucleocytoplasmic transport and microtubule formation. In addition to Sprna1+ and Spksp1+, the clr4+ (histone H3-K9 methyltransferase), the S. pombe gene, SPAC25A8.01c, designated snf2SR+ (a member of the chromatin remodeling factors, Snf2 family with DNA-dependent ATPase activity), but not the spi1+ (S. pombe Ran homolog), rescued a lethality of Sprna1ts. Both Clr4 and Snf2 were reported to be involved in heterochromatin formation essential for building the centromeres. Consistently, Sprna1ts was defective in gene-silencing at the centromeres. But a silencing at the telomere, another heterochromatic region, was normal in all of Sprna1ts strains, indicating SpRna1 in general did not function for a heterochromatin formation. snf2SR+ rescued a centromeric silencing defect and Deltaclr4+ was synthetic lethal with Sprna1ts. Taken together, SpRna1 was suggested to function for constructing the centromeres, by cooperating with Clr4 and Snf2SR. Loss of SpRna1 activity, therefore, caused chromosome missegregation.  相似文献   

4.
5.
Some meiosis-specific proteins of Schizosaccharomyces pombe harbor coiled-coil motifs and play essential roles in meiotic progression. Here we describe Mcp4, a novel meiosis-specific protein whose expression is abruptly induced at the horsetail phase and which remains expressed until sporulation is finished. Fluorescence microscopic analysis revealed that Mcp4 alters its subcellular localization during meiosis in a manner that partially resembles the movement of F-actin during meiosis. Mcp4 and F-actin never colocalize; rather, they are located in a side-by-side manner. When forespore membrane formation begins at metaphase II, the Mcp4 signals assemble at the lagging face of the dividing nuclei. At this stage, they are sandwiched between F-actin and the nucleus. Mcp4, in turn, appears to sandwich F-actin with Meu14. In mcp4Delta cells at anaphase II, the F-actin, which is normally dumbbell-shaped, adopts an abnormal balloon shape. Spores of mcp4Delta cells were sensitive to NaCl, although their shape and viability were normal. Taken together, we conclude that Mcp4 plays a role in the accurate positioning of F-actin during S. pombe meiosis.  相似文献   

6.
Cell cycle checkpoints are regulatory mechanisms that arrest the cell cycle or initiate programmed cell death when critical events such as DNA replication fail to be completed or when DNA or spindle damage occurs. In fission yeast, cell cycle checkpoint responses to DNA replication blocks and DNA damage require the hus1+ gene. Mammalian homologs of hus1+ were recently identified, and here we report a detailed analysis of mouse Hus1. An approximately 4.2-kb full-length cDNA encoding the 32-kDa mouse Hus1 protein was isolated. The genomic structure and exon-intron boundary sequences of the gene were determined, and mouse Hus1 was found to consist of nine exons. Mouse Hus1 was mapped to the proximal end of chromosome 11 and is therefore a candidate gene for the mouse mutation germ cell deficient, which maps to the same genomic region. Finally, mouse Hus1 was found to be expressed in a variety of adult tissues and at several stages of embryonic development.  相似文献   

7.
8.
Role of a ras homolog in the life cycle of Schizosaccharomyces pombe   总被引:56,自引:0,他引:56  
Y Fukui  T Kozasa  Y Kaziro  T Takeda  M Yamamoto 《Cell》1986,44(2):329-336
We have analyzed the function of the only ras homolog in S. pombe detectable by Southern blotting, ras1, which is homologous to mammalian ras genes and has been cloned. We have disrupted the ras1 gene and have replaced it with ras1Val17, which corresponds to a transforming variant of mammalian ras. Loss of ras1 activity by disruption results in the complete inability to mate. The cell body of a ras1- strain is extensively deformed, and a ras1-/ras1- diploid sporulates very poorly. Unlike RAS1 and RAS2 of S. cerevisiae, ras1 of S. pombe appears to have no effect on adenylate cyclase activity. This suggests that the target enzymes presumably modulated by ras proteins in signal transduction are not the same for all organisms.  相似文献   

9.
Mitogen-activated protein kinase (MAPK) and its direct activator, MAPK kinase (MAPKK), have been suggested to play a pivotal role in a variety of signal transduction pathways in higher eukaryotes. The fission yeast Schizosaccharomyces pombe carries a gene, named spk1, whose product is structurally related to vertebrate MAPK. Here we show that Spk1 is functionally related to Xenopus MAPK. (i) Xenopus MAPK partially complemented a defect in the spk1- mutant. An spk1- diploid strain could not sporulate, but one carrying Xenopus MAPK could. (ii) Both Spk1 and Xenopus MAPK interfered with sporulation if overexpressed in S. pombe cells. (iii) Spk1 underwent tyrosine phosphorylation as does Xenopus MAPK. Tyrosine phosphorylation of Spk1 appeared to be dependent upon mating signals because it occurred in homothallic cells but not in heterothallic cells. Furthermore, this phosphorylation was diminished in a byr1 disruptant strain, suggesting that spk1 lies downstream of byr1, which encodes a MAPKK homolog in S. pombe. Taken together, the MAPKK-MAPK cascade may be evolutionarily conserved in signaling pathways in yeasts and vertebrates.  相似文献   

10.
H Lichtenberg  M Heyer  M H?fer 《FEBS letters》1999,457(3):363-368
The Schizosaccharomyces pombe Tpr1 was isolated as suppressor of the Saccharomyces cerevisiae Delta trk1,2 potassium uptake deficient phenotype. Tpr1, for tetratrico peptide repeat, encodes a 1039 amino acid residues protein with several reiterated TPR units displaying significant homology to p150(TSP), a recently identified phosphoprotein of mouse, to S. cerevisiae CTR9 and to related sequences of human, Caenorhabditis elegans, Methanoccocus jannaschii and Arabidopsis thaliana. Expression of Tpr1 restored growth on 0.2 mM K(+) media, induced K(+) transport with a K(T) of 4.6 mM and resumed inward currents of -90 pA at -250 mV (pH 7.2) conducting K(+) and other alkali-metal ions. The tetratrico peptide repeat is a degenerate motif of 34 amino acids that is repeated several times within TPR-containing proteins and has been suggested to mediate protein-protein interactions. The sequence and putative binding properties of Tpr1 suggest the protein unlikely as transporter but involved in the enhancement of K(+) uptake via conventional carriers.  相似文献   

11.
We report here the first functional over-expression of the Stm1 protein, a G-protein-coupled receptor with seven-trans-membrane spanning regions, in a homologous expression system without internal modification of the open reading frame of Stm1. The entire coding sequence, except for the termination codon followed by a C-terminal His6 tag, has been cloned into the pREP1 vector. The functionally active Stm1-His6 was over-expressed in Schizosaccharomyces pombe under the control of the nmt1 (no message in thiamine) promoter. The expression after induction was 120 times as much as that of control before induction and it gave 500 ng protein/2 × 107cells.  相似文献   

12.
13.
E Warbrick  P A Fantes 《The EMBO journal》1991,10(13):4291-4299
The wis1+ gene encodes a newly identified mitotic control element in Schizosaccharomyces pombe. It was isolated by virtue of its interaction with the mitotic control genes cdc25, wee1 and win1. The wis1+ gene potentially encodes a 66 kDa protein with homology to the serine/threonine family of protein kinases. wis1+ plays an important role in the regulation of entry into mitosis, as it shares with cdc25+ and nim1+/cdr1+ the property of inducing mitosis in a dosage-dependent manner. Increased levels of wis1+ expression cause mitotic initiation to occur at a reduced cell size. Loss of wis1+ function does not prevent vegetative growth and division, though wis1- cells show an elongated morphology, indicating that their entry into mitosis and cell division is delayed relative to wild type cells. wis1- cells undergo a rapid reduction of viability upon entry into stationary phase, suggesting a role for wis1+ in the integration of nutritional sensing with the control over entry into mitosis.  相似文献   

14.
From the fission yeast Schizosaccharomyces pombe, a cDNA fragment was isolated, which confers UV resistance on repair deficient Escherichia coli host cells. The cloned cDNA encodes a protein of 68,815 Da, which has a 36.6% identity of amino acid sequence with the previously identified 74 kDa UV endonuclease of the filamentous fungus Neurospora crassa. Analysis of several truncated gene constructs shows that only the C-terminal two thirds region, which has 54% identity of amino acid sequence with the C-terminal region of the Neurospora homolog, is necessary for complementing activity of UV-sensitivity in the E. coli host cells. Purified recombinant protein from E. coli host cells incises both UV-induced cyclobutane pyrimidine dimers and (6-4) photoproducts at the sites immediately 5' to the DNA damage in the same fashion as the Neurospora protein. Furthermore, a bacterial homologous sequence was isolated from Bacillus subtilis and shows a similar complementing activity of UV sensitivity in E. coli host cells, indicating a wide distribution of this alternative excision repair mechanism in life.  相似文献   

15.
The Saccharomyces cerevisiae gene CDC28 encodes a protein kinase required for cell cycle initiation. In an attempt to identify genes encoding proteins that interact with the Cdc28 protein kinase, high-copy plasmid suppressors of a temperature-sensitive cdc28 mutation were isolated. One such suppressor, CKS1, was found to encode an 18-kilodalton protein that shared a high degree of homology with the suc1+ protein (p13) of Schizosaccharomyces pombe (67% amino acid sequence identity). Disruption of the chromosomal CKS1 gene conferred a G1 arrest phenotype similar to that of cdc28 mutants. The presence of the 18-kilodalton Cks1 protein in yeast lysates was demonstrated by using Cks-1 specific antiserum. Furthermore, the Cks1 protein was shown to be physically associated with active forms of the Cdc28 protein kinase. These data suggest that Cks1 is an essential component of the Cdc28 protein kinase complex.  相似文献   

16.
The fission yeast Schizosaccharomyces pombe carries a cytosine 5-methyltransferase homolog of the Dnmt2 family (termed pombe methyltransferase 1, Pmt1), but contains no detectable DNA methylation. Here, we found that Pmt1, like other Dnmt2 homologs, has in vitro methylation activity on cytosine 38 of tRNAAsp and, to a lesser extent, of tRNAGlu, despite the fact that it contains a non-consensus residue in catalytic motif IV as compared with its homologs. In vivo tRNA methylation also required Pmt1. Unexpectedly, however, its in vivo activity showed a strong dependence on the nutritional status of the cell because Pmt1-dependent tRNA methylation was induced in cells grown in the presence of peptone or with glutamate as a nitrogen source. Furthermore, this induction required the serine/threonine kinase Sck2, but not the kinases Sck1, Pka1 or Tor1 and was independent of glucose signaling. Taken together, this work reveals a novel connection between nutrient signaling and tRNA methylation that thus may link tRNA methylation to processes downstream of nutrient signaling like ribosome biogenesis and translation initiation.  相似文献   

17.
Proper ras1 function is required for normal sexual function in the yeast Schizosaccharomyces pombe. We have found a gene in S. pombe, sar1, that encodes a product capable of regulating ras1 function. sar1 is a member of an expanding family of RAS GTPase-activating proteins (GAPs) that includes mammalian GAP, the yeast Saccharomyces cerevisiae IRA proteins, and the product of the human neurofibromatosis locus, NF1 sar1, like these other proteins, can complement the loss of IRA function in S. cerevisiae. Computer analysis shows that the highest degree of sequence conservation is restricted to a very small number of diagnostic residues represented by the motif Phe-Leu-Arg-X-X-X-Pro-Ala-X-X-X-Pro. We find no evidence that sar1 is required for the effector function of ras1.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号