首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the retinal pigment epithelium (RPE) of lower vertebrates, melanin pigment granules aggregate and disperse in response to changes in light conditions. Pigment granules aggregate into the RPE cell body in the dark and disperse into the long apical projections in the light. Pigment granule movement retains its light sensitivity in vitro only if RPE is explanted together with neural retina. In the absence of retina, RPE pigment granules no longer move in response to light onset or offset. Using a preparation of mechanically isolated fragments of RPE from green sunfish, Lepomis cyanellus, we investigated the effects of catecholamines on pigment migration. We report here that 3,4-dihydoxyphenylethylamine (dopamine) and clonidine each mimic the effect of light in vivo by inducing pigment granule dispersion. Dopamine had a half-maximal effect at approximately 2 nM; clonidine, at 1 microM. Dopamine-induced dispersion was inhibited by the D2 dopaminergic antagonist sulpiride but not by D1 or alpha-adrenergic antagonists. Furthermore, a D2 dopaminergic agonist (LY 171555) but not a D1 dopaminergic agonist (SKF 38393) mimicked the effect of dopamine. Clonidine-induced dispersion was inhibited by the alpha 2-adrenergic antagonist yohimbine but not by sulpiride. These results suggest that teleost RPE cells possess distinct D2 dopaminergic and alpha 2-adrenergic receptors, and that stimulation of either receptor type is sufficient to induce pigment granule dispersion. In addition, forskolin, an activator of adenylate cyclase, induced pigment granule movement in the opposite direction, i.e., dark-adaptive pigment aggregation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The retinal pigment epithelium (RPE) of teleosts contains pigment granules that migrate in response to changes in light condition. Dissociated, cultured RPE cells in vitro can be triggered to aggregate or disperse pigment granules by the application of cAMP or dopamine, respectively. Previous research using the actin-disrupting drug, cytochalasin D, suggested that pigment granule motility is actin dependent. To further examine the role of actin in pigment granule motility, we tested the effects of the actin-stabilizing drug, jasplakinolide, on pigment granule motility. Pigment granules in previously dispersed RPE cells remained dispersed after jasplakinolide exposure (0.1-1 microM), but the drug halted movement of most pigment granules and stimulated rapid bi-directional movements in a small subset of granules. Jasplakinolide also blocked net pigment granule aggregation and interfered with the maintenance of full aggregation. Although jasplakinolide did not block pigment granule dispersion, it did alter the motility of dispersing granules compared to control cells; rather than the normal saltatory, primarily centrifugal movements, granules of jasplakinolide-treated cells demonstrated slow, creeping centrifugal movements and more rapid bi-directional movements. Jasplakinolide also altered cell morphology; the length and thickness of apical projections increased, and enlarged, paddle-like structures, which contained F-actin appeared at the tips of projections. Actin antibody labeling of jasplakinolide-treated cells revealed a more reticulated network of actin compared to antibody-labeled control cells. These results indicate that jasplakinolide-induced disruption of the actin network compromises normal pigment granule dispersion and aggregation in isolated RPE cells, thus providing further evidence that these movements are actin dependent.  相似文献   

3.
The retinal pigment epithelium (RPE) of teleosts contains pigment granules that migrate in response to changes in light condition. Dissociated, cultured RPE cells in vitro can be triggered to aggregate or disperse pigment granules by the application of cAMP or dopamine, respectively. Previous research using the actin‐disrupting drug, cytochalasin D, suggested that pigment granule motility is actin dependent. To further examine the role of actin in pigment granule motility, we tested the effects of the actin‐stabilizing drug, jasplakinolide, on pigment granule motility. Pigment granules in previously dispersed RPE cells remained dispersed after jasplakinolide exposure (0.1–1 μM), but the drug halted movement of most pigment granules and stimulated rapid bi‐directional movements in a small subset of granules. Jasplakinolide also blocked net pigment granule aggregation and interfered with the maintenance of full aggregation. Although jasplakinolide did not block pigment granule dispersion, it did alter the motility of dispersing granules compared to control cells; rather than the normal saltatory, primarily centrifugal movements, granules of jasplakinolide‐treated cells demonstrated slow, creeping centrifugal movements and more rapid bi‐directional movements. Jasplakinolide also altered cell morphology; the length and thickness of apical projections increased, and enlarged, paddle‐like structures, which contained F‐actin appeared at the tips of projections. Actin antibody labeling of jasplakinolide‐treated cells revealed a more reticulated network of actin compared to antibody‐labeled control cells. These results indicate that jasplakinolide‐induced disruption of the actin network compromises normal pigment granule dispersion and aggregation in isolated RPE cells, thus providing further evidence that these movements are actin dependent.  相似文献   

4.
In the retinal pigment epithelium (RPE) of lower vertebrates, melanin pigment granules migrate in and out of the cells' long apical projections in response to changes in light condition. When the RPE is in its normal association with the retina, light onset induces pigment granules to disperse into the apical projections; dark onset induces pigment granules to aggregate into the cell bodies. However, when the RPE is separated from the retina, pigment granule movement in the isolated RPE is insensitive to light onset. It thus seems likely that a signal from the retina communicates light onset to the RPE to initiate pigment dispersion. We have examined the nature of this retina-to-RPE signal in green sunfish, Lepomis cyanellus. In isolated retinas with adherent RPE, light-induced pigment dispersion in the RPE is blocked by treatments known to block Ca2+-dependent transmitter release in the retina. In addition, the medium obtained from incubating previously dark-adapted retinas in the light induces light-adaptive pigment dispersion when added to isolated RPE. In contrast, the medium obtained from incubating dark-adapted retinas in constant darkness does not affect pigment distribution when added to isolated RPE. These results are consistent with the idea that RPE pigment dispersion is triggered by a substance that diffuses from the retina at light onset. The capacity of the conditioned medium from light-incubated retinas to induce pigment dispersion in isolated RPE is inhibited by a D2 dopamine antagonist, but not by D1 or alpha-adrenergic antagonists. Light-induced pigment dispersion in whole RPE-retinas is also blocked by a D2 dopamine antagonist.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
In the retinal pigment epithelium (RPE) of fish, melanosomes (pigment granules) migrate long distances through the cell body into apical projections in the light, and aggregate back into the cell body in the dark. RPE cells can be isolated from the eye, dissociated, and cultured as single cells in vitro. Treatment of isolated RPE cells with cAMP or the phosphatase inhibitor, okadaic acid (OA), stimulates melanosome aggregation, while cAMP or OA washout in the presence of dopamine triggers dispersion. Previous studies have shown that actin filaments are both necessary and sufficient for aggregation and dispersion of melanosomes within apical projections of isolated RPE. The role of myosin II in melanosome motility was investigated using the myosin II inhibitor, blebbistatin, and a specific rho kinase (ROCK) inhibitor, H-1152. Blebbistatin and H-1152 partially blocked melanosome aggregation triggered by cAMP in dissociated, isolated RPE cells and isolated sheets of RPE. In contrast, neither drug affected melanosome dispersion. In cells exposed to either blebbistatin or H-1152, then triggered to aggregate using OA, melanosome aggregation was completely inhibited. These results demonstrate that (1) melanosome aggregation and dispersion occur through different, actin-dependent mechanisms; (2) myosin II and ROCK activity are required for full melanosome aggregation, but not dispersion; (3) partial aggregation that occurred despite myosin II or ROCK inhibition suggests a second component of aggregation that is dependent on cAMP signaling, but independent of ROCK and myosin II.  相似文献   

6.
Teleost retinal pigment epithelial (RPE) cells contain pigment granules within apical projections which undergo actin-dependent, bi-directional motility. Dissociated RPE cells in culture attach to the substrate and extend apical projections in a radial array from the central cell body. Pigment granules within projections can be triggered to aggregate or disperse by the presence or absence of 1 mM cAMP. Aminated, fluorescent latex beads attached to the dorsal surface of apical projections and moved in the retrograde direction, towards the cell body. Bead rates on RPE cells with aggregating or fully aggregated pigment granules were 2.2 +/- 0.5 and 2.6 +/- 0.2 microm/min (mean +/- SEM), respectively, similar to rates of aggregating (retrograde) pigment granule movement (2.0 +/- 0.4 microm/min). Bead rates were slightly slower on cells with fully dispersed or dispersing pigment granules (1.5 +/- 0.1 and 1.5 +/- 0.4 microm/min). Movements of surface-attached beads and aggregating pigment granules were closely correlated in the distal portions of apical projections, but were more independent of each other in proximal regions of the projections. The actin disrupting drug, cytochalasin D (CD), reversibly halted retrograde bead movements, suggesting that motility of surface-attached particles is actin-dependent. In contrast, the microtubule depolymerizing drug, nocodazole, had no effect on retrograde bead motility. The similar characteristics and actin-dependence of retrograde bead movements and aggregating pigment granules suggest a correlation between these two processes.  相似文献   

7.
Teleost retinal pigment epithelial (RPE) cells contain pigment granules within apical projections which undergo actin‐dependent, bi‐directional motility. Dissociated RPE cells in culture attach to the substrate and extend apical projections in a radial array from the central cell body. Pigment granules within projections can be triggered to aggregate or disperse by the presence or absence of 1 mM cAMP. Aminated, fluorescent latex beads attached to the dorsal surface of apical projections and moved in the retrograde direction, towards the cell body. Bead rates on RPE cells with aggregating or fully aggregated pigment granules were 2.2 ± 0.5 and 2.6 ± 0.2 μm/min (mean ± SEM), respectively, similar to rates of aggregating (retrograde) pigment granule movement (2.0 ± 0.4 μm/min). Bead rates were slightly slower on cells with fully dispersed or dispersing pigment granules (1.5 ± 0.1 and 1.5 ± 0.4 μm/min). Movements of surface‐attached beads and aggregating pigment granules were closely correlated in the distal portions of apical projections, but were more independent of each other in proximal regions of the projections. The actin disrupting drug, cytochalasin D (CD), reversibly halted retrograde bead movements, suggesting that motility of surface‐attached particles is actin‐dependent. In contrast, the microtubule depolymerizing drug, nocodazole, had no effect on retrograde bead motility. The similar characteristics and actin‐dependence of retrograde bead movements and aggregating pigment granules suggest a correlation between these two processes.  相似文献   

8.
Erythrophores isolated from the scales of the marine teleost, Holocentrus ascensionis (Osbeck), are capable of rapidly aggregating or dispersing numerous red pigment granules within their cytoplasm by translocating them along radial paths delineated by bundles of radially oriented microtubules. Pigment translocation is accompanied by transformations in the morphology of the cytoplasmic matrix, or microtrabecular lattice (MTL), in which the pigment granules are suspended. It appears that the MTL as a whole contracts toward the cell center during aggregation, carrying the pigment granules inward along with it, and is restructured during dispersion, using the radial microtubules as guides. We examined the energy requirements of pigment migration and the accompanying MTL transformations. Cellular ATP was depleted using the specific metabolic inhibitors 2,4 dinitrophenol, NaCN and oligomycin. All three of these drugs, which inhibit oxidative phosphorylation by different mechanisms, prevent both pigment dispersion and MTL transformation to dispersed morphology, while aggregation is unaffected. Inhibitor-treated cells recover normal pigment movements and MTL morphology when inhibitor is washed out of the cells with fresh medium. Potential energy apparently is stored in the MTL by some ATP-dependent process during dispersion and is converted to kinetic energy during aggregation. The results of this study strengthen the hypothesis that the MTL, working in concert with the radial microtubules, is the vehicle for pigment translocation in the erythrophore system.  相似文献   

9.
Retinular cells of the compound eyes of stomatopods (mantis shrimps) contain screening pigment granules that migrate radially in response to light. To clarify the role of the cytoskeleton in these movements, we have performed light microscopy and ultrastructural analyses of cytoskeletal organelles in retinular cells. Rhodamine phalloidin staining indicates that filamentous actin is a component of microvillar rhabdomeres and zonula adherens between retinular cells. Ultrastructural studies reveal three populations of microtubules in retinular cells that differ in their orientations and labilities to fixation. Two of these populations are oriented longitudinally in cells: the soma microtubules, found primarily in a column in the cell soma, and the more labile palisade microtubules, which extend alongside the palisade vacuole near the rhabdomere. The third, most labile microtubule population, and filaments 9–30 nm in diameter, are oriented radially in retinular cells, some within cytoplasmic bridges that span the palisade. The radial microtubules and filaments are appropriately oriented for participating in pigment granule migration. Determination of microtubule polarities in retinular cells by decoration with endogenous tubulin indicates that palisade and soma microtubules contain subpopulations having opposite polarity orientations, as has been observed in neuronal dendrites. In contrast, neighboring pigment cells contain microtubules uniformly oriented with minus ends towards the nucleus, as has been observed in most cell types studied.  相似文献   

10.
Melanosomes (pigment granules) within retinal pigment epithelial (RPE) cells of fish and amphibians undergo massive migrations in response to light conditions to control light flux to the retina. Previous research has shown that melanosome motility within apical projections of dissociated fish RPE cells requires an intact actin cytoskeleton, but the mechanisms and motors involved in melanosome transport in RPE have not been identified. Two in vitro motility assays, the Nitella assay and the sliding filament assay, were used to characterize actin-dependent motor activity of RPE melanosomes. Melanosomes applied to dissected filets of the Characean alga, Nitella, moved along actin cables at a mean rate of 2 microm/min, similar to the rate of melanosome motility in dissociated, cultured RPE cells. Path lengths of motile melanosomes ranged from 9 to 37 microm. Melanosome motility in the sliding filament assay was much more variable, ranging from 0.4-33 microm/min; 70% of velocities ranged from 1-15 microm/min. Latex beads coated with skeletal muscle myosin II and added to Nitella filets moved in the same direction as RPE melanosomes, indicating that the motility is barbed-end directed. Immunoblotting using antibodies against myosin VIIa and rab27a revealed that both proteins are enriched on melanosome membranes, suggesting that they could play a role in melanosome transport within apical projections of fish RPE.  相似文献   

11.
The physiological response and ultrastructure of the pigment cells of Trematomus bernacchii, an Antarctic teleost that lives under the sea ice north of the Ross Ice Shelf, were studied. In the integument, two types of epidermal chromatophores, melanophores and xanthophores, were found; in the dermis, typically three types of chromatophores--melanophores, xanthophores, and iridophores--were observed. The occurrence of epidermal xanthophore is reported for the first time in fish. Dermal melanophores and xanthophores have well-developed arrays of cytoplasmic microtubules. They responded rapidly to epinephrine and teleost melanin-concentrating hormone (MCH) with pigment aggregation and to theophylline with pigment dispersion. Total darkness elicited pigment aggregation in the majority of dermal xanthophores of isolated scales, whereas melanophores remained dispersed under both light and dark conditions. Pigment organelles of epidermal and dermal xanthophores that translocate during the pigmentary responses are carotenoid droplets of relatively large size. Dermal iridophores containing large reflecting platelets appeared to be immobile.  相似文献   

12.
Cytoplasmic microtubules (MTs) continuously grow and shorten at their free plus ends, a behavior that allows them to capture membrane organelles destined for MT minus end-directed transport. In Xenopus melanophores, the capture of pigment granules (melanosomes) involves the +TIP CLIP-170, which is enriched at growing MT plus ends. Here we used Xenopus melanophores to test whether signals that stimulate minus end MT transport also enhance CLIP-170-dependent binding of melanosomes to MT tips. We found that these signals significantly (>twofold) increased the number of growing MT plus ends and their density at the cell periphery, thereby enhancing the likelihood of interaction with dispersed melanosomes. Computational simulations showed that local and global increases in the density of CLIP-170-decorated MT plus ends could reduce the half-time of melanosome aggregation by ~50%. We conclude that pigment granule aggregation signals in melanophores stimulate MT minus end-directed transport by the increasing number of growing MT plus ends decorated with CLIP-170 and redistributing these ends to more efficiently capture melanosomes throughout the cytoplasm.  相似文献   

13.
14.
The microtubule motors, cytoplasmic dynein and kinesin II, drive pigmented organelles in opposite directions in Xenopus melanophores, but the mechanism by which these or other motors are regulated to control the direction of organelle transport has not been previously elucidated. We find that cytoplasmic dynein, dynactin, and kinesin II remain on pigment granules during aggregation and dispersion in melanophores, indicating that control of direction is not mediated by a cyclic association of motors with these organelles. However, the ability of dynein, dynactin, and kinesin II to bind to microtubules varies as a function of the state of aggregation or dispersion of the pigment in the cells from which these molecules are isolated. Dynein and dynactin bind to microtubules when obtained from cells with aggregated pigment, whereas kinesin II binds to microtubules when obtained from cells with dispersed pigment. Moreover, the microtubule binding activity of these motors/dynactin can be reversed in vitro by the kinases and phosphatase that regulate the direction of pigment granule transport in vivo. These findings suggest that phosphorylation controls the direction of pigment granule transport by altering the ability of dynein, dynactin, and kinesin II to interact with microtubules.  相似文献   

15.
The beta isoform of protein kinase C (PKC) has been described as the main isoform involved in the stimulation of melanogenesis in mammalian skin melanocytes. Little is known about PKC isoforms in non-mammalian pigment cells. In neopterigian fish (holostei and teleostei), PKC is associated with pigment granule aggregation within the pigment cells (skin lightening), whereas in elasmobranchs and tetrapods, the activation of PKC leads to pigment granule dispersion (skin darkening). In an attempt to a better understanding of this distinct functional behavior upon PKC activation, we decided to investigate the PKC isoforms expressed in pigment cell lines of teleost fish, amphibians and birds, using RT-PCR followed by cloning and sequencing. Our results demonstrate the presence of messenger RNA (mRNA) for the following PKC isoforms: beta 1, lambda and iota in GEM-81 cells (Carassius auratus erythrophoroma), beta 1, beta 2 and zeta in Xenopus laevis (amphibian) melanophores; beta 1 and lambda in Gallus gallus (chicken) primary melanocytes. Beta 1 PKC seems to be conserved throughout phylogeny, but the diversity of the other isoforms in the different groups may account for the functional differences after PKC activation, which are observed between teleost and tetrapod pigment cells.  相似文献   

16.
We followed the translocation of identifiable pigment granules in living erythrophores through normal aggregation and dispersion and observed that they always return in dispersion to the same location relative to the whole pigment complex. This is interpreted to mean that each granule occupies a fixed position within a unit structure, the cytoplast. This position is retained even though the cytoplast undergoes dramatic reversals in form from ellipsoid to spheroid and back again with each aggregation and dispersion. The major structural components of the cytoplast, besides pigment granules, are microtubules and microtrabeculae. The latter constitute an irregular lattice that is confluent with microtubules and contains the pigment granules. In aggregation, the microtrabeculae shorten and seemingly contribute to the contraction of the entire cytoplast plus pigment. In dispersion, the microtrabeculae elongate in an apparent restructuring of the ellipsoidal cytoplast. The microtubules, however, persist in the cell cortex and appear to give radial direction to the pigment motion.  相似文献   

17.
We have been investigating the mechanisms of diurnal and circadian regulation of teleost retinomotor movements. In the retinas of lower vertebrates, photoreceptors and melanin pigment granules of the retinal pigment epithelium (RPE) undergo movements at dawn and dusk. These movements continue to occur at subjective dawn and dusk in animals maintained in constant darkness. Cone myoids contract at dawn and elongate at dusk; RPE pigment disperses into the epithelial cells' long apical processes at dawn and aggregates into the cell bodies at dusk. We report here that forskolin, an adenylate cyclase activator, and 3-isobutyl-1-methylxanthine (IBMX), a phosphodiesterase inhibitor, each induces dark-adaptive cone and RPE retinomotor movements in isolated light-adapted green sunfish retinas cultured in constant light. Forskolin induces a 22-fold elevation in retinal cyclic AMP content. Forskolin- and IBMX-induced movements are inhibited approximately 65% and 95%, respectively, by 3,4-dihydroxyphenylethylamine (dopamine). However, dopamine does not inhibit dark-adaptive movements induced by dibutyryl cyclic AMP. Epinephrine is much less effective than dopamine in inhibiting forskolin-induced movements, while phenylephrine and clonidine are totally ineffective. These results are consistent with our previous findings that treatments that increase intracellular cyclic AMP content promote dark-adaptive retinomotor movement. They further suggest that dopamine inhibits adenylate cyclase activity in photoreceptors and RPE cells and thereby favors light-adaptive retinomotor movements.  相似文献   

18.
Melanosomes within the retinal pigment epithelium (RPE) of mammals have long been thought to exhibit no movement in response to light, unlike fish and amphibian RPE. Here we show that the distribution of melanosomes within the mouse RPE undergoes modest but significant changes with the light cycle. Two hours after light onset, there is a threefold increase in the number of melanosomes in the apical processes that surround adjacent photoreceptors. In skin melanocytes, melanosomes are motile and evenly distributed throughout the cell periphery. This distribution is due to the interaction with the cortical actin cytoskeleton mediated by a tripartite complex of Rab27a, melanophilin, and myosin Va. In ashen (Rab27a null) mice RPE, melanosomes are unable to move beyond the adherens junction axis and do not enter apical processes, suggesting that Rab27a regulates melanosome distribution in the RPE. Unlike skin melanocytes, the effects of Rab27a are mediated through myosin VIIa in the RPE, as evidenced by the similar melanosome distribution phenotype observed in shaker-1 mice, defective in myosin VIIa. Rab27a and myosin VIIa are likely to be required for association with and movement through the apical actin cytoskeleton, which is a prerequisite for entry into the apical processes.  相似文献   

19.
Summary The antarctic teleost, Pagothenia borchgrevinki inhabits the Antarctic Ocean where the water temperature remains around -1.9° C throughout the year. Dermal melanophores of this fish respond within minutes to epinephrine and theophylline with melanosome aggregation and dispersion, respectively. Numerous cytoplasmic microtubules are present in these cells despite the low environmental temperature. In longitudinal profiles, many microtubules are twisted, beaded and sometimes even branched. In cross sections, C-, U-, S-, 6- and other irregularly shaped tubules are observed. Nocodazole partially disrupts microtubules and inhibits epinephrine-induced pigment aggregation. Pigment movements are also prevented by erythro-9-[3-(2-hydroxynonyl)] adenine. Although the participation of these incomplete microtubules in cell motility remains uncertain, the results indicate that this fish has a cold-resistant microtubule system on which melanosome movements depend. Unlike those in melanophores, microtubules in the axons of spinal nerves are of uniform thickness and often contain an electron-dense core in the center.  相似文献   

20.
Using primary embryonic Drosophila cell cultures, we have investigated the assembly of transcellular microtubule bundles in epidermal tendon cells. Muscles attach to the tendon cells of previously undescribed epidermal balls that form shortly after culture initiation. Basal capture of microtubule ends in cultured tendon cells is confined to discrete sites that occupy a relatively small proportion of the basal cell surface. These capturing sites are associated with hemiadherens junctions that link the ends of muscle cells to tendon cell bases. In vivo, muscle attachment and microtubule capture occur across the entire cell base. The cultured tendon cells reveal that the basal ends of their microtubules can be precisely targeted to small, pre-existing, structurally well-defined cortical capturing sites. However, a search and capture targeting procedure, such as that undertaken by kinetochore microtubules, cannot fully account for the precision of microtubule capture and positioning in tendon cells. We propose that cross-linkage of microtubules is also required to zip them into apicobasally oriented alignment, progressing from captured basal plus ends to apical minus ends. This involves repositioning of apical minus ends before they become anchored to an apical set of hemiadherens junctions. The proposal is consistent with our finding that hemiadherens junctions assemble at tendon cell bases before they do so at cell apices in both cultures and embryos. It is argued that control of microtubule positioning in the challenging spatial situations found in vitro involves the same procedures as those that operate in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号