首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The structure and production characteristics of microbial communities from the Urinskii alkaline hot spring (Buryat Republic, Russia) have been investigated. A distinctive characteristic of this hot spring is the lack of sulfide in the issuing water. The water temperature near the spring vents ranged from 69 to 38.5 degrees C and pH values ranged from 8.8 to 9.2. The total mineralization of water was less than 0.1 g/liter. Temperature has a profound effect on the species composition and biogeochemical processes occurring in the algal-bacterial mats of the Urinskii hot spring. The maximum diversity of the phototrophic community was observed at the temperatures 40 and 46 degrees C. A total of 12 species of cyanobacteria, 4 species of diatoms, and one species of thermophilic anoxygenic phototrophic bacteria, Chloroflexus aurantiacus, have been isolated from mat samples. At temperatures above 40 degrees C, the filamentous cyanobacterium Phormidium laminosum was predominant; its cell number and biomass concentration were 95.1 and 63.9%, respectively. At lower temperatures, the biomass concentrations of the cyanobacterium Oscillatoria limosa and diatoms increased (50.2 and 36.4%, respectively). The cyanobacterium Mastigocladus laminosus, which is normally found in neutral or slightly acidic hydrothermal systems, was detected in microbial communities. As the diatom concentration increases, so does the dry matter concentration in mats, while the content of organic matter decreases. The concentrations of proteins and carbohydrates reached their maximum levels at 45-50 degrees C. The maximum average rate of oxygenic photosynthesis (2.1 g C/m2 day), chlorophyll a content (343.4 mg/m2), and cell number of phototrophic microorganisms were observed at temperatures from 45 to 50 degrees C. The peak mass of bacterial mats (56.75 g/m2) occurred at a temperature of 65-60 degrees C. The maximum biomass concentration of phototrophs (414.63 x 10(-6) g/ml) and the peak rate of anoxygenic photosynthesis [0.42 g C/(m2 day)] were observed at a temperature of 35-40 degrees C.  相似文献   

2.
Species composition of anoxygenic phototrophic bacteria in microbial mats of the Goryachinsk thermal spring was investigated along the temperature gradient. The spring belonging to nitrogenous alkaline hydrotherms is located at the shore of Lake Baikal 188 km north-east from Ulan-Ude. The water is of the sulfate-sodium type, contains trace amounts of sulfide, and salinity does not exceed 0.64 g/L, pH 9.5. The temperature at the outlet of the spring may reach 54°C. The cultures of filamentous anoxygenic phototrophic bacteria, nonsulfur and sulfur purple bacteria, and aerobic anoxygenic phototrophic bacteria were identified using the pufLM molecular marker. The fmoA marker was used for identification of green sulfur bacteria. Filamentous cyanobacteria predominated in the mats, with anoxygenic phototrophs comprising a minor component of the phototrophic communities. Thermophilic bacteria Chloroflexus aurantiacus were detected in the samples from both the thermophilic and mesophilic mats. Cultures of nonsulfur purple bacteria similar to Blastochloris sulfoviridis and Rhodomicrobium vannielii were isolated from the mats developed at high (50.6–49.4°C) and low temperatures (45–20°C). Purple sulfur bacteria Allochromatium sp. and Thiocapsa sp., as well as green sulfur bacteria Chlorobium sp., were revealed in low-temperature mats. Truly thermophilic purple and green sulfur bacteria were not found in the spring. Anoxygenic phototrophic bacteria found in the spring were typical of the sulfur communities, for which the sulfur cycle is mandatory. The presence of aerobic bacteriochlorophyll a-containing bacteria identified as Agrobacterium (Rhizobium) tumifaciens in the mesophilic (20°C) mat is of interest.  相似文献   

3.
Namsaraev  Z. B.  Gorlenko  V. M.  Namsaraev  B. B.  Buryukhaev  S. P.  Yurkov  V. V. 《Microbiology》2003,72(2):193-203
Microbial communities growing in the bed of the alkaline, sulfide hot spring Bol'sherechenskii (the Baikal rift area) were studied over many years (1986–2001). The effluent water temperature ranged from 72 to 74°C, pH was from 9.25 to 9.8, and sulfide content was from 12 to 13.4 mg/ml. Simultaneous effects of several extreme factors restrict the spread of phototrophic microorganisms. Visible microbial mat appears with a decrease in the temperature to 62°C and in sulfide content to 5.9 mg/l. Cyanobacteria predominated in all biological zones of the microbial mat. The filamentous cyanobacteria of the genus Phormidium are the major mat-forming organisms, whereas unicellular cyanobacteria and the filamentous green bacterium Chloroflexus aurantiacus are minor components of the phototrophic communities. No cyanobacteria of the species Mastigocladus laminosus, typical of neutral and subacid springs, were identified. Seventeen species of both anoxygenic phototrophic bacteria and cyanobacteria were isolated from the microbial mats, most of which exhibited optimum growth at 20 to 45°C. The anoxygenic phototrophs were neutrophiles with pH optimum at about 7. The cyanobacteria were the most adapted to the alkaline conditions in the spring. Their optimum growth was observed at pH 8.5–9.0. As determined by the in situ radioisotope method, the optimal growth and decomposition rates were observed at 40–32°C, which is 10–15°C lower than the same parameter in the sulfide-deficient Octopus Spring (Yellowstone, United States). The maximum chlorophyll a concentration was 555 mg/m2 at 40°C. The total rate of photosynthesis in the mats reached 1.3 g C/m2 per day. The maximum rate of dark fixation of carbon dioxide in the microbial mats was 0.806 g C/m2 per day. The maximum rate of sulfate reduction comprised 0.367 g S/m2 per day at 40°C. The rate of methanogenesis did not exceed 1.188 g C/m2 per day. The role of methanogenesis in the terminal decomposition of the organic matter was insignificant. Methane formation consumed 100 times less organic matter than sulfate reduction.  相似文献   

4.
The growth of 22 strains of Azolla pinnata R. Br., 3 strains of A. filiculoides Lam. and one strain each of A. mexicana Presl and A. caroliniana Willd. was tested separately in liquid culture media kept in controlled, artificial light (30 klux) growth cabinets. Three temperature levels were used: 33°C (37/29°C day/night), 29°C (33/25°C) and 22°C (26/18°C)/ Photoperiod was 12 h a day.For most A. pinnata strains (except three) and an A. mexicana strain the maximum weekly relative growth rate was higher at 33°C than at 22°C, but not for A. filiculoides and A. caroliniana. The highest value of maximum relative growth rate corresponded to 1.9 doubling days and in most strains this occurred in the first week. As the plants grew, the growth rate slowed down more severely at higher temperatures. The maximum biomass was higher at 22°C than at 33°C in all strains. At 22°C, it took 30–50 days to attain maximum biomass and the highest value was 14 g N m?2 or 320 g dry m?2 by A. caroliniana, followed by 12 g N m?2 or 290 g dry wt. m?2 by one strain of A. filiculoides. At 29°C, the maximum biomass was attained in 20–35 days. The highest value was 6.3 g N m?2 or 154 g dry wt. m?2 by A. caroliniana. At 33°C, most A. pinnata strains gave a maximum biomass of less than 4 g N m?2 after 13–23 days, while some strains grew up to 30 days, resulting in a higher maximum biomass. The highest maximum biomass at 33°C was 5.5 g N m?2 or 140 g m?2 dry wt. by A. pinnata from Cheng Mai while the maximum biomass of A. filiculoides and A. caroliniana was much less. Azolla filiculoides requires lower temperature than other species for its growth. Azolla pinnata has the best tolerance to high temperatures among the four species. Azolla mexicana could not be discriminated from A. pinnata in its response to temperature. Azolla caroliniana may keep an intermediate position between A. filiculoides and A. pinnata in temperature response.The formation of ammonia in the medium was examined and it occurred mostly under stationary growth conditions, but, at 33°C, some strains of A. pinnata and A. mexicana released or formed ammonia at 0.3–0.8 μg N ml?1 per week during their initial exponential growth stage.  相似文献   

5.
6.
Biomass, akinete numbers, net photosynthesis, and respiration of Pithophora oedogonia were monitored over two growing seasons in shallow Surrey Lake, Indiana. Low rates of photosynthesis occurred from late fall to early spring and increased to maximum levels in late spring to summer (29–39 mgO2·g?1 dry wt·h?1). Areal biomass increased following the rise in photosynthesis and peaked in autumn (163–206g dry wt·m?2). Photosynthetic rates were directly correlated with temperature, nitrogen, and phosphorus over the entire annual cycle and during the growing season. Differences in photosynthetic activity and biomass between the two growing seasons (1980 and 1981) were apparently related to higher, early spring temperatures and higher levels of NO3-N and PO4-P in 1981. Laboratory investigations of temperature and light effects on Pithophora photosynthesis and respiration indicated that these processes were severely inhibited below 15°C. The highest Pmax value occurred at 35°C (0.602 μmol O2·mg?1 chl a·min?1). Rates of dark respiration did not increase above 25°C thus contributing to a favorable balance of photosynthetic production to respiratory utilization at high temperatures. Light was most efficiently utilized at 15°C as indicated by minimum values of Ik(47 μE·m?2·s?1) and Ic (6 μE·m?2·s?1). Comparison of P. oedogonia and Cladophora glomerata indicated that the former was more tolerant of temperatures above 30°C. Pithophora's tolerance of high temperature and efficient use of low light intensity appear to be adaptive to conditions found within the dense, floating algal mats and the shallow littoral areas inhabited by this filamentous alga.  相似文献   

7.
The respiratory and photosynthetic quinones of microbial mats which occurred in Japanese sulfide-containing neutral-pH hot springs at different temperatures were analyzed by spectrochromatography and mass spectrometry. All of the microbial mats that developed at high temperatures (temperatures above 68°C) were so-called sulfur-turf bacterial mats and produced methionaquinones (MTKs) as the major quinones. A 78°C hot spring sediment had a similar quinone profile. Chloroflexus-mixed mats occurred at temperatures of 61 to 65°C and contained menaquinone 10 (MK-10) as the major component together with significant amounts of either MTKs or plastoquinone 9 (PQ-9). The sunlight-exposed biomats growing at temperatures of 45 to 56°C were all cyanobacterial mats, in which the photosynthetic quinones (PQ-9 and phylloquinone) predominated and MK-10 was the next most abundant component in most cases. Ubiquinones (UQs) were not found or were detected in only small amounts in the biomats growing at temperatures of 50°C and above, whereas the majority of the quinones of a purple photosynthetic mat growing at 34°C were UQs. A numerical analysis of the quinone profiles was performed by using the following three parameters: dissimilarity index (D), microbial divergence index (MDq), and bioenergetic divergence index (BDq). A D matrix tree analysis showed that the hot spring mats consisting of the sulfur-turf bacteria, Chloroflexus spp., cyanobacteria, and purple phototrophic bacteria formed distinct clusters. Analyses of MDq and BDq values indicated that the microbial diversity of hot spring mats decreased as the temperature of the environment increased. The changes in quinone profiles and physiological types of microbial mats in hot springs with thermal gradients are discussed from evolutionary viewpoints.  相似文献   

8.
The biomass, productivity (14C), and photosynthetic response to light and temperature of eelgrass, Zostera marina L. and its epiphytes was measured in a shallow estuarine system near Beaufort, North Carolina, during 1974. The maximum of the biomass (above-ground) was measured in March; this was followed by a general decline throughout the rest of the year. The average biomass was 105.0 g dry wt m?2; 80.3 g dry wt m?2 was eelgrass and 24.7 g dry wt m?2 was epiphytes. The productivity of eelgrass averaged 0.88 mg C g?1 h?1 which was similar to that of the epiphytes, 0.65 mg C g?1 h?1. Eelgrass and epiphyte productivity was low during the spring and early summer, gave a maximum during late summer and fall, and declined during the winter; this progression was probably due to environmental factors associated with tidal heights. On an areal basis, the average annual productivity was 0.9 g C m?2 day?1 for eelgrass and 0.2 g C m?2 day?1 for the epiphytes. Rates of photosynthesis of both eelgrass and epiphytes increased with increasing temperature to an asymptotic value at which the system was light saturated. Both eelgrass and epiphytes had a temperature optimum of < 29 °C. A negative response to higher temperatures was also reflected in biomass measurements which showed the destruction of eelgrass with increasing summer temperatures. The data suggest that the primary productivity cycles of macrophytes and epiphytes are closely interrelated.  相似文献   

9.

Background

Microbial mats are a good model system for ecological and evolutionary analysis of microbial communities. There are more than 20 alkaline hot springs on the banks of the Barguzin river inflows. Water temperature reaches 75 °C and pH is usually 8.0–9.0. The formation of microbial mats is observed in all hot springs. Microbial communities of hot springs of the Baikal rift zone are poorly studied. Garga is the biggest hot spring in this area.

Results

In this study, we investigated bacterial and archaeal diversity of the Garga hot spring (Baikal rift zone, Russia) using 16S rRNA metagenomic sequencing. We studied two types of microbial communities: (i) small white biofilms on rocks in the points with the highest temperature (75 °C) and (ii) continuous thick phototrophic microbial mats observed at temperatures below 70 °C. Archaea (mainly Crenarchaeota; 19.8% of the total sequences) were detected only in the small biofilms. The high abundance of Archaea in the sample from hot springs of the Baikal rift zone supplemented our knowledge of the distribution of Archaea. Most archaeal sequences had low similarity to known Archaea. In the microbial mats, primary products were formed by cyanobacteria of the genus Leptolyngbya. Heterotrophic microorganisms were mostly represented by Actinobacteria and Proteobacteria in all studied samples of the microbial mats. Planctomycetes, Chloroflexi, and Chlorobi were abundant in the middle layer of the microbial mats, while heterotrophic microorganisms represented mostly by Firmicutes (Clostridia, strict anaerobes) dominated in the bottom part. Besides prokaryotes, we detect some species of Algae with help of detection their chloroplasts 16 s rRNA.

Conclusions

High abundance of Archaea in samples from hot springs of the Baikal rift zone supplemented our knowledge of the distribution of Archaea. Most archaeal sequences had low similarity to known Archaea. Metagenomic analysis of microbial communities of the microbial mat of Garga hot spring showed that the three studied points sampled at 70 °C, 55 °C, and 45 °C had similar species composition. Cyanobacteria of the genus Leptolyngbya dominated in the upper layer of the microbial mat. Chloroflexi and Chlorobi were less abundant and were mostly observed in the middle part of the microbial mat. We detected domains of heterotrophic organisms in high abundance (Proteobacteria, Firmicutes, Verrucomicrobia, Planctomicetes, Bacteroidetes, Actinobacteria, Thermi), according to metabolic properties of known relatives, which can form complete cycles of carbon, sulphur, and nitrogen in the microbial mat. The studied microbial mats evolved in early stages of biosphere formation. They can live autonomously, providing full cycles of substances and preventing live activity products poisoning.
  相似文献   

10.
Microbial communities growing in the bed of the alkaline, sulfide hot spring Bol'sherechenskii (the Baikal rift area) were studied over many years (1986-2001). The effluent water temperature ranged from 72 to 74 degrees C, pH was from 9.25 to 9.8, and sulfide content was from 12 to 13.4 mg/ml. Simultaneous effects of several extreme factors restrict the spread of phototrophic microorganisms. Visible microbial fouling appears with a decrease in the temperature to 62 degrees C and in the sulfide content to 5.9 mg/l. Cyanobacteria predominated in all biological zones of the microbial mat. The filamentous cyanobacteria of the genus Phormidium are the major mat-forming organisms, whereas unicellular cyanobacteria and the filamentous green bacterium Chloroflexus aurantiacus are minor components of the phototrophic communities. No cyanobacteria of the species Mastigocladus laminosus, typical of neutral and subacid springs, were identified. Seventeen species of both anoxygenic phototrophic bacteria and cyanobacteria were isolated from the microbial mats, most of which exhibited optimum growth at 20 to 45 degrees C. The anoxygenic phototrophs were neutrophiles with pH optimum at about 7. The cyanobacteria were the most adapted to the alkaline conditions in the spring. Their optimum growth was observed at pH 8.5-9.0. As determined by the in situ radioisotope method, the optimal growth and decomposition rates were observed at 40-32 degrees C, which is 10 to 15 degrees C lower than the same parameter in the sulfide-deficient Octopus Spring (Yellowstone, United States). The maximum chlorophyll a concentration was 555 mg/m2 at 40 degrees C. Total rate of photosynthesis in the mats reached 1.3 g C/m2 per day. The maximum rate of dark fixation of carbon dioxide in the microbial mats was 0.806 g C/m2 per day. The maximum rate of sulfate reduction comprised 0.367 g S/m2 per day at 40 degrees C. The rate of methanogenesis did not exceed 1.188 micrograms C/m2 per day. The role of methanogenesis in the terminal decomposition of the organic matter was insignificant. Methane formation consumed 100 times less organic matter than sulfate reduction.  相似文献   

11.
Green nonsulfur-like bacteria (GNSLB) in Yellowstone hot spring microbial mats have been extensively studied and are thought to operate both as photoheterotrophs and photoautotrophs. Here we studied the occurrence and carbon metabolisms of GNSLB by analyzing the distribution and isotopic composition of their characteristic wax ester lipids in four Californian and Nevada hot spring microbial mats at a range of temperatures (37–96°C). The distribution of wax esters varied strongly with temperature. At temperatures between 50–60°C the wax ester composition in each of the four hot spring microbial mats was dominated by C30 to C36 wax esters, consisting of mixtures of C15-C18 n-alkyl and branched fatty acids and alcohols, typical for GNSLB. Stable carbon isotopic analysis showed that these wax esters were only depleted by 5 to 10‰ compared to dissolved inorganic carbon in the overlying water, suggesting that these GNSLB were mainly autotrophic. However, analysis of different depth layers of one microbial mat showed that these GNSLB wax esters were increasingly depleted in 13C with depth, suggesting that photoautotrophy mainly occurred in the top layer of the mat. 13C-depleted C36-C44 wax esters were found in one hot spring at high temperatures (77–96°C) and are likely derived from allochtonous plant waxes. At several lower temperature sites (35–40°C) the wax esters were predominantly composed of C28, C30 and C32 wax esters consisting of mixtures of C14-C16 fatty acids and n-alkanols and were depleted in 13C by 15–20‰ relative to dissolved inorganic carbon, suggesting they may be derived from heterotrophic organisms. Our results indicate that autotrophic GNSLB occur widely in hot springs and that diverse groups of organisms contribute to the pool of wax ester lipids in hot spring environments.  相似文献   

12.
1. The temporal abundance and composition of the plankton of a continental Antarctic lake (Lake Druzhby) situated in the Vestfold Hills, Eastern Antarctica was investigated from December 1992 to December 1993. The system was dominated by microbial plankton (cyanobacteria, heterotrophic bacteria and protozoans) with few metazoans. 2. Chlorophyll a concentrations ranged between 0.15 and 1.1 μg l–1 and showed highest levels from late winter to spring. 3. Heterotrophic bacteria ranged between 75 and 250 × 106 l–1 with highest abundances in late winter/spring. Mean bacterial biovolumes showed considerable seasonal variation (0.05–0.31 μm3). Largest biovolumes occurred in summer and this was the time of highest community biomass. 4. Heterotrophic nanoflagellates reached highest abundances in late summer (maximum 14 × 105 l–1). Their mean biovolume also exhibited considerable seasonal variation, ranging between 1.77 and 27.0 μm3, with largest size resulting in community biomass peaking in early summer. Ciliated protozoa were poorly represented and sparse. Phototrophic nanoflagellates were sparse in this lake; instead the phototrophic plankton was dominated by a small rod-shaped cyanobacterium which constituted the largest carbon pool in the system. It was common throughout the year, its biomass peaking in autumn. Its presence is discussed in relation to lake morphometry and light climate. 5. Heterotrophic flagellate grazing rates ranged from 6.78 bacteria cell–1 day–1 at 2 °C to 11.8 bacteria cell–1 day–1 at 4 °C. They remove around 2% of the bacterial carbon pool per day during summer and winter. 6. Nutrient levels were low and recorded in pulses. Dissolved and particulate organic carbon were also low, usually less than 3 mg l–1 and 600 μg l–1, respectively. The carbon pools were derived from autochthonous sources. This lake system is driven by bottom-up forces and lacks top-down control, which fits into the picture currently seen for continental Antarctic lakes.  相似文献   

13.
Photosynthetic and respiratory activities at low light intensities (300 μE m−2 s−1) in the microbial mats of the Ebro Delta were measured by the oxygen exchange method in the laboratory. The response to H2S concentration, a significant factor in the dynamics of that ecosystem, was assessed. Total photosynthesis reached 23.78–28.17 μg O2 cm−2 h−1. Photosynthetic activity was not significantly different at the two temperatures tested. Respiratory activity reached a consumption of 6.95–8.56 μg O2 cm−2 h−1 at 25°C and 11.42–11.70 μg O2 cm−2 h−1 at 35°C. The Q10 value for respiration was 1.37–1.64. Oxygen production in Microcoleus chthonoplastes, the most abundant cyanobacterium in those microbial mats, was highly resistant to sulfide inhibition. Concentrations less than 0.02 mM sulfide did not affect the rate of photosynthesis. Concentrations up to 0.1 mM sulfide caused different degrees of partially reversible inhibition, with a maximum of 67% at 0.78 mM sulfide. Primary production (g C assimilated/m2/year) in those microbial mats was also assessed and compared with data from other ecosystems. Received: 24 October 1997 / Accepted: 18 December 1997  相似文献   

14.
15.
The seasonal abundance and composition of photosynthetic picoplankton (0.2-2 μm) was compared among five oligotrophic to mesotrophic lakes in Ontario. Epilimnetic picocyanobacteria abundance followed a similar pattern in all lakes; maximum abundance (2-4 × 105 cells · ml−1) occurred in late summer following a period of rapid, often exponential increase after epilimnetic temperatures reached 20 °C. In half of the lakes picocyanobacteria abundance was significantly correlated with temperature, while in other lakes the presence of a small spring peak resulted in a poor correlation with temperature. In all lakes there was a significant correlation between epilimnetic abundance and day of the year. Correlations with water chemistry parameters (soluble reactive phosphorus, total phosphorus, particulate C: P and C: N) were generally weaker or insignificant. However, in the three lakes with the highest spring nitrate concentrations, a significant negative correlation with nitrate was observed. During summer stratification, picocyanobacteria abundance reached a maximum within the metalimnion and at or above the euphotic zone (1% of incident light) in all lakes. These peaks were not related to nutrient gradients. The average total phytoplankton biomass ranged from 0.5 g m−3 (wet weight) in the most oligotrophic lake to 1.4 g m−3 for the most mesotrophic with picoplankton biomass ranging from 0.01 g m−3 to 0.3 g m−3. Picocyanobacteria biomass comprised 1 to 9 % of total phytoplankton biomass in late summer, but in one year for one lake represented a maximum of 56%. Other photosynthetic picoplankton (unidentified eukaryotes, Chlorella spp. Nannochloris spp.), although less abundant (103 cells · ml−1) than picocyanobacteria, represented biomass equal or greater than that of the picocyanobacteria in spring and early summer. On average, half of the photosynthetic picoplankton biomass was eukaryotic in the more coloured lakes, while in the clear lakes less than 20% was eukaryotic. Among the lakes there was a significant positive correlation between the average light extinction coefficient and the proportion of eukaryotic biomass of the picoplankton. In mesotrophic Jack's Lake, the contribution of picoplankton to the maximum photosynthetic rate ranged from 10 to 47% with the highest values in the spring (47%) and late summer (33%), as a result of eukaryotic picoplankton and picocyanobacteria respectively. Picocyanobacteria cell specific growth rates were high during July (0.6-0.8 day−1) and losses were close to 80% of the growth rate. Thus, despite low biomass, photosynthetic picoplankton populations appeared to turn over rapidly and potentially contributed significantly to planktonic food webs in early spring and late summer.  相似文献   

16.

Phototrophic bacterial mats from Kiran soda lake (south-eastern Siberia) were studied using integrated approach including analysis of the ion composition of water, pigments composition, bacterial diversity and the vertical distribution of phototrophic microorganisms in the mats. Bacterial diversity was investigated using microscopic examination, 16S rRNA gene Illumina sequencing and culturing methods. The mats were formed as a result of decomposition of sedimented planktonic microorganisms, among which cyanobacteria of the genus Arthrospira predominated. Cyanobacteria were the largest part of phototrophs in the mats, but anoxygenic phototrophs were significant fraction. The prevailing species of the anoxygenic phototrophic bacteria are typical for soda lakes. The mats harbored aerobic anoxygenic phototrophic bacteria, purple sulfur and non-sulfur bacteria, as well as new filamentous phototrophic Chloroflexi. New strains of Thiocapsa sp. Kir-1, Ectothiorhodospira sp. Kir-2 and Kir-4, Thiorhodospira sp. Kir-3 and novel phototrophic Chloroflexi bacterium Kir15-3F were isolated and identified.

  相似文献   

17.
《Aquatic Botany》1986,24(4):335-341
Seasonal and year-to-year variations in the growth of Zostera marina L. were measured at three sites in two locations in the lower Chesapeake Bay between 1978 and 1980. The maximum values for the 1979 above- and belowground standing crop ranged from 161–336 g dry wt m−2 and 61–155 g dry wt m−2, respectively, leaf length was 19.6–59.7 cm and shoot density 1418–2576 shoot m−2. Values for 1980 tended to be greater and may be related to climatical differences between the two years. Maximum values were usually recorded in the months of June and July when water temperatures were between 20 and 25°C. Significant loss of leaves occurred in July and August, when water temperatures ranged between 25 and 30°C, while new shoots began to appear more rapidly in late September as water temperatures dropped below 20°C. The greatest increase in all growth parameters occurred from April to June during which time reproductive shoots were present, and accounted for up to 25% of the total number of shoots.  相似文献   

18.
Recently, aquaculture of Laminaria japonica has expanded to the southern coast of Japan and to China along the East China Sea. The southerly distribution of L. religiosa, compared to that of L. japonica, indicated that the aquaculture of L. religiosa along the southern coasts of Japan might be feasible. Thus, we examined the growth, biomass and productivity of L. religiosa cultivated in the Uwa Sea, in southwestern Japan over a period of two years. The seawater temperature ranged from 12.9 to 27.4°C in 2003/2004 and from 12.2 to 28.3°C in 2004/2005. In 2003/2004, the maximum mean density, maximum mean length, and maximum mean wet weight of L. religiosa was 7.8 ± 5.0 ind. m−1 (mean ± SD), 14.8 ± 4.6 cm, and 1.2 ± 0.8 g wet wt., respectively. In 2004/2005, no germination was confirmed through the study period. The maximum biomass and annual production in 2003/2004 were estimated to be 6.9 ± 5.2 g wet wt. m−1 and 8.9 g wet wt. m−1 year−1, respectively. The present study revealed that L. religiosa cultivated in the Uwa Sea were much smaller compared with those of Hokkaido Island, where the alga is naturally found. For the growth of L. religiosa, a relatively long period of seawater temperatures below 13.5°C is required. In the study area, seawater temperatures were below 13.5°C only 11 days in 2003, and 12 days in 2004. As a result, it is thought that expanding the cultivation of L. religiosa to southern areas including the Uwa Sea will be difficult.  相似文献   

19.
The operational temperature of microbial fuel cell reactors influences biofilm development, and this has an impact on anodic biocatalytic activity. In this study, we compared three microbial fuel cell (MFC) reactors acclimated at 10°C, 20°C and 35°C to investigate the effect on biomass development, methanogenesis and electrogenic activity over time. The start-up time was inversely influenced by temperature, but the amount of biomass accumulation increased with increased temperatures, the 10°C, 20°C and 35°C acclimated biofilms resulted in 0.57, 0.82 and 5.43 g biomass (volatile suspended solids) per litre respectively at 56 weeks of operation. Biofilm build-up on the 35°C anode was further demonstrated by scanning electron microscopy, which showed large aggregations of biomass accumulating on the anode when compared to 10°C and 20°C biofilms. Biomass accumulation had a direct impact on biocatalytic performance, with the maximum power at 35°C after 60 weeks of operation being 2.14 W m−3 and power densities for the 10°C and 20°C reactors being and 4.29 W m−3. Methanogenic activity was also shown to be higher at 35°C, with a rate of 10.1 mmol CH4 biofilm per gram of volatile suspended solid (VSS) per day, compared to 0.28 mmol CH4 per gram of VSS per day produced at 20°C. These results demonstrate that higher MFC operating temperatures could be detrimental to the biocatalytic performance of electrochemically active bacteria in anodic biofilms due to biomass accumulation with enhanced development of non-electrogenic communities (e.g. methanogens and fermenters), meaning that, over time, psychro- or mesophilic operation can have beneficial effects for the development of electrogenically active populations in the reactor.  相似文献   

20.
Partitioning of CO2 incorporation into oxygenic phototrophic, anoxygenic phototrophic, and chemolithoautotrophic guilds was determined in a freshwater lake (Lake Cisó, Banyoles, Spain). CO2 incorporation into the different types of microorganisms was studied at different depths, during diel cycles, and throughout the year. During winter holomixis, the whole lake became anoxic and both the anoxygenic and chemolithoautotrophic guilds were more active at the surface of the lake, whereas the activity of the oxygenic guild was negligible. During stratification, the latter guild was more active in the upper metalimnion, whereas the anoxygenic guild was more active in the lower metalimnion. Specific growth rates and doubling times were estimated for the most conspicuous phototrophic microorganisms. Doubling times for Cryptomonas phaseolus ranged between 0.5 and 192 days, whereas purple sulfur bacteria (Chromatiaceae-like) ranged between 1.5 and 238 days. These growth rates were similar to those calculated with a different approach in previous papers and indicate slow-growing populations with very large biomass. Overall, the annual total CO2 incorporation in Lake Cisó was 220 g C m−2. Most of the CO2 incorporation, however, was due to the chemolithoautotrophic guild (61% during holomixis and 56% during stratification), followed by the anoxygenic phototrophic guild (35 and 19%, respectively) and the oxygenic phototrophs (4 and 25%, respectively), making dark carbon fixation the key process in the autotrophic metabolism of the lake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号