首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The inflorescences of fig trees (Ficus, Moraceae) host well-defined, host plant specific wasp communities that lend themselves to tests of hypotheses on insect diversification. We provide the first estimate of the global molecular phylogeny for the Sycoryctinae - a large subfamily of fig wasps consisting mainly of parasitoids of fig-pollinating wasps. We find strong support for a large Old World clade that contains eight of the eleven genera, in the tribes Sycoryctini and Philotrypesini. The sister taxon is tribe Apocryptini, comprising the genera Apocrypta and Bouceka. Finally, a new tribe, Critogastrini, is raised for the genus Critogaster, sister to all other sycoryctines. At the genus level, we found a general pattern of strong host conservatism, in which closely related wasps associate with closely related figs. Despite this, there is also evidence for multiple host shifts between more distantly related figs in some wasp genera (especially Philotrypesis). We estimate Sycoryctinae to have originated 49-64Ma, after the initial co-radiation of the host figs and pollinators. Further, conservative assumptions in our analyses probably overestimate the age of the sycoryctines. Together, patterns of host association, evidence for a mix of host constraints and host shifting, and molecular dating suggest that sycoryctine parasites radiated through delayed phylogenetic tracking of their hosts. This contributes to the growing body of literature suggesting that coevolving parasites often radiate after their hosts.  相似文献   

2.
Reproductive manipulations of hosts by maternally inherited bacterial endosymbionts often result in an increase in the proportion of infected female hosts in the population. When this involves the conversion of incipient males to genetic or functional females, it presents unique difficulties for symbionts invading hosts with sex-specific reproductive behaviours, such as the autoparasitic Encarsia pergandiella. In sexual forms of this species, female eggs are laid in whitefly nymphs and male eggs are laid in conspecific or heterospecific parasitoids developing within the whitefly cuticle. Further, eggs laid in the 'wrong' host do not ordinarily complete development. This study explored the role of a bacterial symbiont, Cardinium, in manipulating oviposition behaviour in a thelytokous population of E. pergandiella. Oviposition choice was measured by the number and location of eggs deposited by both infected and uninfected adult waSPS in arenas containing equal numbers of hosts suitable for the development of male and female waSPS. Uninfected waSPS included antibiotic-treated female waSPS and (untreated) daughters of antibiotic-treated female waSPS. The choices of waSPS in the thelytokous population treatments were compared with those of a conspecific sexual population. We found that offspring of antibiotic-cured thelytokous waSPS reverted to the behaviour of unmated sexual waSPS, laying their few eggs almost exclusively in hosts appropriate for male eggs. Infected thelytokous waSPS distributed their eggs approximately evenly between host types, much like mated sexual female waSPS. The antibiotic-treated female waSPS exhibited choices intermediate to waSPS in the other two treatments. The change in the observed behaviour appears sufficient to allow invasion and persistence of Cardinium in sexual populations. Lastly, our results suggest a reduction in host discrimination as a possible mechanism by which Cardinium influences this change.  相似文献   

3.
2005年8-11月,在西双版纳热带植物园对寄生对叶榕的佩妃延腹小蜂的产卵行为进行了观察,并解剖雄花前期的隐头果观察小蜂利用瘿花资源情况;对不同年份(2003、2004、2005),不同批次的隐头果内榕小蜂数量进行了统计。结果表明: 对叶榕Ficus hispida隐头果内寄生的佩妃延腹小蜂属Philotrypesis的两种榕小蜂——短尾佩妃延腹小蜂P. pilosa和长尾佩妃延腹小蜂Philotrypesis sp.,都是在果外利用长的产卵器刺穿隐头果果壁将卵产于果中雌花子房内。它们不能为寄主榕树传粉,为非传粉小蜂。短尾佩妃延腹小蜂的产卵时间与传粉榕小蜂接近,几乎与传粉榕小蜂同时到达隐头果产卵,该时期隐头果可供其产卵2天;而长尾佩妃延腹小蜂的产卵时间较晚,在传粉榕小蜂产卵后的第6天开始到果外产卵,并可持续产卵约一周时间。对叶榕雄花期雄果中的瘿花子房由于花梗长度不同而明显分为3层:果壁层(具短花梗),中间层和果腔层(具长花梗)。短尾佩妃延腹小蜂和长尾佩妃延腹小蜂在紧靠果壁的子房果壁层中分布最多,而很少存在于果腔层的瘿花子房内。在自然情况下,短尾佩妃延腹小蜂和长尾佩妃延腹小蜂寄生榕果的比率因季节和植株个体不同而变化。但无论是对榕果的寄生比率还是单果内寄生的数量,长尾佩妃延腹小蜂一般均比短尾佩妃延腹小蜂高,这可能与长尾佩妃延腹小蜂群体在隐头果上产卵时间比后者更长有关系。  相似文献   

4.
Host sanctions that reduce the relative fitness of uncooperative symbionts provide a mechanism that can limit cheating and thus stabilise mutualisms over evolutionary timescales. Sanctions have been demonstrated empirically in several mutualisms. However, if multiple individual symbionts interact with each host, the precision with which individual cheating symbionts are targeted by host sanctions is critical to their short‐ and long‐term effectiveness. No previous empirical study has directly addressed this issue. Here, we report the precision of host sanctions in the mutualism between fig trees and their pollinating wasps. Using field experiments and molecular parentage analyses, we show that sanctions in Ficus nymphaeifolia act at the level of entire figs (syconia), not at the level of the individual flowers within. Such fig‐level sanctions allow uncooperative wasps, which do not bring pollen, to avoid sanctions in figs to which other wasps bring pollen. We discuss the relevance of sanction precision to other mutualisms.  相似文献   

5.
榕树及其传粉榕小蜂繁殖上相互依存,被认为是生物界中协同进化时间最悠久,相互关系最密切的一对生物;在大多数榕树种类的隐头花序内,除了传粉榕小蜂外,还共存着多种非传粉小蜂,它们的繁殖行为直接影响着榕树和传粉榕小蜂的繁殖和互惠稳定。钝叶榕(Ficus curtipes Corner),是一种雌雄同株的绞杀性榕树。研究在西双版纳热带植物园里共收集钝叶榕100个隐头果内的榕小蜂,获得9493号标本;其中,包括1种传粉小蜂和5种非传粉小蜂,钝叶榕传粉小蜂Eupristina sp.占总数的4466%,杨氏榕树金小蜂Diaziella yangi 占46.13%,而其它4种非传粉小蜂(Lipothymus sp., Sycobia sp., Philotrypesis sp.和Sycoscopter sp.)仅占9.20%。前3种榕小蜂雌蜂进到果腔产卵,其余3种在果外产卵。观测23个钝叶榕榕果出蜂情况发现,6种榕小蜂在钝叶榕隐头花序内遵循严格的羽化出蜂顺序,首先是Sycobia sp.,次之是Lipothymus sp.,再次之是杨氏榕树金小蜂,最后是钝叶榕传粉小蜂、Philotrypesis sp.和Sycoscopter sp.。5种非传粉小蜂的交配场所与雄蜂翅型无关,雄蜂有翅型的杨氏榕树金小蜂大部分交配在果内完成,而且它们的雄蜂为争夺交配机会存在激烈的打斗行为;雄蜂无翅型的Lipothymus sp.有部分雄蜂爬出隐头果,在果壁和附近的叶片背面交配;雄蜂有翅型的Sycobia sp.,其所有交配都发生在果外;Philotrypesis sp.和Sycoscopter sp. 雄蜂均无翅,它们的交配全发生在果内。局域配偶竞争使榕小蜂性比偏雌,杨氏榕树金小蜂雄蜂虽然有翅,但大部分交配发生在榕果内,这将影响其最佳的性比率。因此,依赖雄蜂翅型并不能很好地预测榕小蜂的交配场所和性比率。  相似文献   

6.
2004年8月至2005年8月在西双版纳热带植物园内,通过广泛收集歪叶榕榕小蜂标本、非传粉小蜂产卵行为学观察和阻止传粉者入果等实验方法,研究了我国西双版纳热带雨林下的一种榕树——歪叶榕Ficus cyrtophylla的榕小蜂群落组成结构、非传粉小蜂的繁殖策略以及它们对榕-蜂共生系统的影响。结果表明,歪叶榕中除了具有唯一传粉榕小蜂Blastophag sp.以外,还具有3种非传粉小蜂Platyneura sp.、Philotrypesis sp.和Sycoscapter sp.。在歪叶榕榕小蜂群落中,传粉榕小蜂占整个群落总数的92.21%,是群落的最主要组成者;主要的非传粉小蜂是Sycoscaptersp.,占5.78%; 其次是Philotrypesissp.,占1.84%,而Platyneurasp.仅占群落总数的0.17%。歪叶榕中的非传粉小蜂通过各自产卵时间和食性分化的策略来利用榕果中的资源繁殖后代。非传粉小蜂寄生使传粉榕小蜂的总数和其雌蜂数量都显著地降低,但是对传粉小蜂雄蜂数量没有显著影响,从而导致传粉榕小蜂的雄性性比显著地增加。这说明非传粉小蜂在选择寄居宿主时具有明显的倾向性,而且更多地将卵产于含有雌性传粉小蜂的瘿花之中。因此,非传粉小蜂通过减少雌性传粉小蜂的数量而降低了榕树的雄性适合度,从而在一定程度上对榕 蜂共生系统的稳定存在和发展产生了负面影响。  相似文献   

7.
We investigate the evolution of male morphology in the fig wasps belonging to the genus Philotrypesis (Chalcidoidea, Sycorectinae). We first reconstruct the phylogenetic relationships of Philotrypesis associated with African figs using nuclear and mitochondrial DNA. We then determine male morphotypes in the species included in our phylogeny and show that intraspecific polymorphism is common. Most species present two types of males and some species have up to three types. These morphotypes are believed to represent alternative mating tactics: some males show morphological adaptations to fighting, others are winged dispersers and others are small sneakers. Mapping out these variations onto our phylogeny reveals that the combination of morphs changes randomly along the branches of the tree. Both parsimony and likelihood approaches indicate that there has been at least one transition from dimorphism to trimorphism, several gains and losses of the small morph and two independent acquisitions of the winged morph. Using maximum likelihood analyses of character evolution, we estimate transition rates for each morph and show that the evolution of each type of morph are not correlated and that forward and backward transition rates are not significantly different. Our results altogether suggest that male morphology is evolutionary labile, it responds quickly to selection imposed by the mating environment. This study, also suggests that seemingly complex phenotypes, such as winged males, can evolve several times and can even be recreated after having been lost.  相似文献   

8.
本文对粗叶榕(Ficus hirta Vahl)的外部形态、花序结构以及寄主和传粉者的繁殖特性作了比较详细的观察和研究, 讨论了它们互惠共生关系的一些基本特征。它的专性传粉者是榕小蜂科(Agaonidae)榕小蜂亚科(Agaoninae)的爪哇榕小蜂(Blastophaga javana Mayr)。观察发现粗叶榕还存在两种非授粉小蜂Sycoscapter sp.和Philotrypesis sp.,它们在榕果外产卵。  相似文献   

9.
1. Fig trees require host‐specific agaonid fig wasps for pollination, but their figs also support numerous non‐pollinating fig wasps (NPFW) that gall fig tissues or develop as parasitoids. 2. Ficus microcarpa L. is widely naturalised outside its native range and the most invasive fig tree species. Seed predators are widely used for the biological control of invasive plants, but no obligate seed predatory (as opposed to ovule or fig wall galling) NPFW have been recorded previously from any fig trees. 3. Philotrypesis NPFW are usually regarded as parasitoids or ‘inquilines’ (parasitoids that also eat plant material) of pollinator fig wasps, but the present study provides evidence that Philotrypesis taiwanensis, a NPFW associated with F. microcarpa, is an obligate seed predator: (i) adults emerge from seeds of typical appearance, with a surrounding elaiosome; (ii) it shows no preference for figs occupied by fig wasp species, other than the pollinator; (iii) it only develops in figs that contain pollinated ovules, avoiding figs occupied by an agaonid that fails to pollinate; (iv) larvae are distributed in layers where seeds are concentrated and (v) it has a negative impact on seed but not pollinator offspring numbers. 4. Philotrypesis is a large genus, and further species are likely to be seed predators.  相似文献   

10.
Fig trees ( Ficus ) and their obligate pollinating wasps (Hymenoptera, Chalcidoidea, Agaonidae) are a classic example of a coevolved mutualism. Pollinating wasps are attracted to figs only when figs are receptive. It has been shown that figs will lose their attraction to pollinators sooner in monoecious and male dioecious figs when multiple pollinators have entered the enclosed inflorescence. However, little is known about the nature of the stimulus inducing the loss of attraction. By conducting experiments on the functionally dioecious fig, Ficus hispida , we show that (1) different stimuli induce the loss of attraction in each sex, pollination in female figs, and oviposition in male figs; and (2) foundress number affects the loss of attraction in both sexes only when the prerequisites ( i.e ., pollination in female figs and oviposition in male figs) have been satisfied. In general, the more foundresses that enter, the earlier the fig will lose its receptivity. We argue that the stimuli in male and female figs are adaptations to the fulfillment of its respective reproduction.  相似文献   

11.
Host–parasites interaction is a common phenomenon in nature. Diffusive coevolution might maintain stable cooperation in a fig–fig wasps system, in which the exploiter might diversify their genotype, phenotype, or behavior as a result of competition with pollinator, whereas the figs change flower syconia, fruits thickness, and syconia structure. In functionally dioecious Ficus auriculata, male figs and female figs contain two types of florets on separate plant, and share high similarities in outside morphology. Apocryptophagus (Sycophaginae, Chalcidoidea, Hymenoptera) is one of few groups of nonpollinating fig wasps that can reproduce within both male and female figs. On the basis of the morphology and DNA barcoding, evidence from partial sequences of mitochondrial cytochrome c oxidase I and nuclear internal transcribed spacer 2, we found that there are two nonsibling Apocryptophagus species living on male and female F. auriculata figs, respectively. We estimated that these two species diverged about 19.2 million years ago. Our study suggests that the host shift from Ficus variegate or Ficus prostrata fig species to male figs is a preference way for Apocryptophagus wasps to adapt to the separation of sexual function in diecious figs. Furthermore, to escape the disadvantage or sanction impact of the host, the exploiter Apocryptophagus wasps can preferably adapt to exploiting each sex of the figs, by changing their oviposition, niche shift, and habitat.  相似文献   

12.
粗叶榕(Focis hirta)繁殖系统的特征及其共生的榕小蜂   总被引:1,自引:0,他引:1  
本文对粗叶榕(Focis hirta)的外部形态、花序结构以及寄主和传粉者的繁殖特性作了比较详细的观察和研究,讨论了它们互惠共生关系的一些基本特征。它的专性传粉者是榕小蜂科(Agaonidae)榕小蜂亚科(Agaoninae)的爪哇榕小蜂(Blastophaga javana Mayr)。观察发现粗叶榕还存在两种非授粉小蜂Sycoscapter sp.和Philotrypesis sp.,它们在榕果外产卵。  相似文献   

13.
在西双版纳,分别统计了对叶榕(Ficus hispida)雌花期雌雄果的进蜂量和花后期雌雄果繁殖的多个特征值,以此来探讨自然条件下,影响对叶榕及其传粉榕小蜂(Ceratosolen solmsi marchali)繁殖的因素。结果表明:单果内有效进蜂数量是影响种子生产和传粉榕小蜂繁殖的首要因素,而雌花期进果的传粉榕小蜂并不是都能全部进入果腔传粉或产卵,大部分蜂还未进到果腔就被夹死在顶生苞片层的通道里,能进入雌果内传粉的榕小蜂为(2.72±2.04)只·果-1,约占总进蜂量的52%;而在雄果里,能进入果腔的蜂量只有(2.08±1.65)只·果-1,占35%左右。由于雌果内的雌花显著比雄果内的雌花多,结合单果进蜂量雌多雄少的格局,最终单果生产的种子数量 (1 891.63 ± 471.53)比传粉榕小蜂的数量 (367.20 ± 208.02) 多5倍有余。在雌果里,供给传粉的雌花数量与所生产的种子数量之间呈显著的正相关,而没有接受到花粉或不能正常受精的雌花数量与种子数量呈显著的负相关。雄果不仅生产花粉,也是传粉榕小蜂繁殖的场所,在相关于传粉榕小蜂自身繁殖力的因子中,传粉榕小蜂产卵制造的瘿花数量对其种群数量有最大的影响;影响次之的是发育过程中死亡的个体数量,它可降低30%左右的传粉榕小蜂数量;影响排在第三位的是寄主的雌花数量。此外,3类非传粉者的存在,单果内平均可减少30多只传粉小蜂。  相似文献   

14.
We studied the phylogenetic relationships of Otiteselline fig waSPS associated with Ficus in the Afrotropical region using rDNA sequences. African fig species usually host two species of Otiteselline fig waSPS. Phylogenetic analyses reveal that this pattern of association results from the radiation of two clades of waSPS superimposed on the fig system. Within each clade, wasp species generally cluster according to their host classification. The phylogenies of the two clades are also generally more congruent than expected by chance. Together these results suggest that Otiteselline wasp speciation is largely constrained by the diversification of their hosts. Finally, we show a difference in ovipositor length between the two Otiteselline species coexisting in the same Ficus species, which probably corresponds to ecological differences. The diversification of ecological niches within the fig is probably, with cospeciation, one of the key factors explaining the diversification and maintenance of species of parasites of the fig/pollinator system.  相似文献   

15.
Ecological and evolutionary consequences of host–parasite interactions have attracted considerable attention from evolutionary biologists. Previous studies have suggested that immune responsiveness may be genetically or developmentally linked with colour pattern, such that the evolution of animal colour patterns may be influenced by correlated responses to selection for parasite resistance. We studied interactions between the endoparasitic fly Leiophora innoxia (Meigen) (Diptera: Tachinidae) and its colour polymorphic pygmy grasshopper host Tetrix undulata (Sow.) (Orthoptera: Tetrigidae) to test for morph‐specific differences in parasitization and immune defence, and host‐induced variation in parasite phenotypes. Our results revealed that c. 2 and 30% of adult grasshoppers collected from the same natural population in two subsequent years, respectively were parasitized. Parasite prevalence was independent of host sex and colour morph. Pupae were larger if the parasite had developed in a female than in a male host, possibly reflecting host resource value or a physical constraint on larval growth imposed by host body size. Pupal size was also associated with host colour morph, with individuals that had developed in dark morphs being smaller at pupation compared to those that developed in paler morphs. However, immune defence, measured as the encapsulation response to a novel antigen, did not differ among individuals belonging to alternative colour morphs or sexes. Darker morphs warm up more quickly and prefer higher body temperatures than paler ones. Encapsulation was not influenced by maintenance temperature (15 vs. 30 °C), however, suggesting that indirect effects of coloration on parasite resistance mediated via differential body temperature are unlikely. The dependence of parasite body size on host colour morph may thus reflect plasticity of growth and development of the larvae in response to differential host body temperature, rather than variable host immune defence. © 2005 The Linnean Society of London, Biological Journal of the Linnean Society, 2005, 85 , 373–383.  相似文献   

16.
Aims Most pollinator fig wasps are host plant specific, with each species only breeding in the figs of one fig tree species, but increasing numbers of species are known to be pollinated by more than one fig wasp, and in rare instances host switching can result in Ficus species sharing pollinators. In this study, we examined factors facilitating observed host switching at Xishuangbanna in Southwestern (SW) China, where Ficus squamosa is at the northern edge of its range and lacks the fig wasps that pollinate it elsewhere, and its figs are colonized by a Ceratosolen pollinator that routinely breeds in figs of F. heterostyla .Methods We recorded the habitat preferences of F. squamosa and F. heterostyla at Xishuangbanna, and compared characteristics such as fig size, location and colour at receptive phase. Furthermore, the vegetative and reproductive phenologies in the populations of F. squamosa and F. heterostyla were recorded weekly at Xishuangbanna Tropical Botanical Garden for 1 year.Important findings Ficus squamosa is a shrub found near fast-flowing rivers, F. heterostyla is a small tree of disturbed forest edges. Although preferring different habitats, they can be found growing close together. Both species have figs located at or near ground level, but they differ in size when pollinated. Fig production in F. squamosa was concentrated in the colder months. F. heterostyla produced more figs in summer but had some throughout the year. The absence of its normal pollinators, in combination with similarly located figs and partially complementary fruiting patterns appear to have facilitated colonization of F. squamosa by the routine pollinator of F. heterostyla. The figs probably also share similar attractant volatiles. This host switching suggests one mechanism whereby fig trees can acquire new pollinators and emphasizes the likely significance of edges of ranges in the genesis of novel fig tree–fig wasp relationships.  相似文献   

17.
为了探讨榕树隐头果的发育期、性别、大小等外部特征对传粉榕小蜂选择的影响,采取人为控制雌花期的方法,对鸡嗉子榕(Ficus sermicordata)及其传粉榕小蜂(Ceratosolen gravelyi)的选择行为进行研究。结果表明,在隐头花序发育到雌花期后,如果阻止传粉小蜂进入,隐头果会继续生长。直径较小的雌果和雄果的进蜂量较多,且在雌雄果同时存在时,小蜂仍然会选择进入雌果,但进蜂量显著低于雄果。小蜂优先选择进入雌花期前期的隐头花序,雌雄果皆有此特点。对于相同发育期的隐头果,果径和进蜂量呈正相关关系,说明对于相同发育期的隐头果,小蜂更倾向于进入较大的隐头果。因此,真正控制小蜂行为的是隐头花序所处的发育期,以及不同发育期所产生的化学挥发物,而非隐头果直径大小。这为进一步研究榕-蜂系统的稳定机制提供依据。  相似文献   

18.
传粉榕小蜂与非传粉小蜂间寄主识别行为的趋同进化   总被引:1,自引:0,他引:1  
在高度专性传粉的榕树-榕小蜂互惠共生系统中普遍存在着一些非传粉小蜂,它们中的一些种类进入果腔后也能为榕树传粉,且在形态和物候上已与传粉榕小蜂发生了趋同进化。但其寄主识别行为是否也与传粉榕小蜂发生了趋同进化还不得而知。我们在西双版纳选择了钝叶榕(Ficuscurtipes)及其3种进果繁殖小蜂开展了相关的行为实验。3种小蜂中,1种是钝叶榕的专性传粉榕小蜂(Eupristina sp.),另外2种是寄居性非传粉小蜂(杨氏金小蜂Diaziellayangi和Lipothymus sp.),这2种非传粉小蜂进入果腔后也像传粉榕小蜂那样为钝叶榕传粉。我们以钝叶榕不同发育时期的榕果及这3种小蜂为材料,采用Y型嗅觉仪观察了这3种小蜂对各发育时期榕果和信息化学物质6-甲基-5-庚烯-2-醇、6-甲基-5-庚烯-2-酮及这2种化合物的混合物的选择行为。结果表明,当提供雌花期榕果与其他发育时期榕果和空气对照供这3种小蜂选择时,它们均显著地偏向于选择雌花期榕果;当提供雄花期榕果与其他发育时期榕果和空气对照供这3种小蜂选择时,它们均显著地偏向于选择其他发育时期榕果和空气对照,即都会避开雄花期榕果;此外,这3种小蜂均对钝叶榕雌花期果释放的一种主要化合物6-甲基-5-庚烯-2-醇的同一剂量(1μL)表现出显著的偏好。这一结果为传粉榕小蜂与非传粉小蜂间的寄主识别行为趋同进化的假说提供了证据。  相似文献   

19.
佩妃延腹榕小蜂的产卵行为   总被引:1,自引:1,他引:0  
榕树与传粉榕小蜂之间的互惠共生关系是协同进化研究领域中的热点之一。榕树除了与传粉榕小蜂共生外,它还为许多非传粉榕小蜂提供食物和生境。佩妃延腹榕小蜂Philotrypesis pilosa Mayr腹部第8~9节背板极度延伸,形似长长的产卵鞘,其后更长的才是真正的产卵鞘。它将产卵针刺入榕果的果壁,产卵于果内。该蜂是对叶榕Ficus hispida L. 的传粉榕小蜂Ceratosolen solmsi (Mayr)的盗食性寄生蜂。我们利用数码照相机记录了佩妃延腹榕小蜂产卵的全过程,详细描述了其产卵行为。发现了前人没有发现的下列行为特点: (1)当雌蜂找到合适的产卵位点时,身体呈倒立状,后足扶持产卵鞘到选定的产卵位点;2)从开始插入产卵针到产卵鞘向后弹出,腹部第8~9节背板延伸部分与产卵鞘之间有两次大幅度的靠拢与分开,第一次靠拢与分开是保证产卵针以最佳的垂直角度插入果内,第二次是使产卵鞘向后弹出,将暴露在外的产卵针顺利地插入果内;3)雌蜂产卵针沿榕果直径方向(最短距离)插入果壁;4)前足与后足比中足发达,与整个产卵过程中支撑身体的行为有关 。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号