首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The levels of cAMP-dependent protein kinases were measured in developing rat brain by a variety of methods. The regulatory subunit (R) was measured both by [3H]cAMP binding and by 8-N3-[32P]cAMP incorporation. The catalytic subunit (C) was measured by an assay of histone kinase activity. Data were calculated per mg protein. Neither R nor C levels changed significantly in either membranes or cytosol during development. The ratio of R to C was essentially unity in the cerebra of both newborn (2-day-old) and adult (40-day-old) rats. Polyacrylamide-gel electrophoresis resolved two regulatory subunits (R-I) and (R-II) which were derived from the Type I and Type II cAMP-dependent protein kinases, respectively. 8-N3-[32P]cAMP incorporation into Proteins R-I and R-II indicated that the amounts of Proteins R-I and R-II did not change significantly in either membranes or cytosol during development.  相似文献   

2.
The properties of the cAMP-dependent protein kinases in AtT20 mouse pituitary tumor cells were characterized by a combination of immunological and biochemical techniques. Ninety per cent of the total cAMP-dependent protein kinase was in the 40,000 X g supernatant fraction. Protein kinases I and II were immunoprecipitated with specific antisera directed against their regulatory subunits. The immunoprecipitated kinases bound [3H]cAMP and were catalytically active when incubated with [gamma-32P]ATP-Mg and protamine or histone H2B. Immunoprecipitated protein kinases I and II bound [3H]cAMP with apparent Kb values of 1.5 and 15 nM, respectively. Regulatory subunit concentrations in AtT20 cells were measured by immunoprecipitation of [3H]cAMP-R complexes. R-I and R-II levels were 2.7 and 3.0 pmol of [3H]cAMP binding activity per mg of cytosolic protein, respectively, however, the ratio of protein kinase II to protein kinase I was 2.5 indicating the presence of a significant amount of free R-I. This was confirmed by DEAE-cellulose chromatography and the isolation of immunoreactive R-I devoid of protein kinase activity. A significant amount of R-I also coeluted with protein kinase II when AtT20 cell extracts were subjected to DEAE-cellulose chromatography. In quantitative immunoprecipitation experiments, 0.1 microliter of anti-brain R-II serum complexed up to 0.5 pmol of the [3H]cAMP-binding activity of protein kinase II prepared from bovine and rat brain, and AtT20 cells while 2 microliter of anti-brain R-II serum was required to precipitate an equal amount of protein kinase II from bovine skeletal muscle showing that the protein kinase II in AtT20 cells contained the neural-specific R-II subunit.  相似文献   

3.
The regulatory subunit of Type I cAMP-dependent protein kinase from rabbit skeletal muscle can bind [3H]cAMP to form the R-[3H]cAMP complex, and the slow phase of the enhanced exchange of free cAMP with [3H]cAMP from the R-[3H]cAMP complexes was studied under various conditions using the equilibrium isotope exchange technique. Results indicate that Mg-ATP and the catalytic subunit are absolutely required for the enhanced exchange reaction to occur, but phosphorylation of the regulatory subunit by Mg-ATP does not play a determining role in the slow rate of the dissociation/association of the Type I protein-kinase in the presence of cAMP and the catalytic subunit. We interpret the role of Mg-ATP as being one in which it may provide the structural attributes required for formation of a stabilized transient state of the cAMP-regulatory subunit-catalytic subunit ternary complex, an obligatory intermediate involved in the dissociation/association of Type I cAMP-dependent protein kinase.  相似文献   

4.
3',5'-Cyclic adenosine monophosphate (cAMP) modulates prostaglandin production in human amnion membranes. The major effects of cAMP are presumably mediated through the phosphorylation of specific regulatory phosphoproteins following cAMP activation of cAMP-dependent protein kinase. Cyclic AMP-dependent protein kinase and phosphoproteins have not previously been characterized in human amnion. Total homogenates, cytosol, and membrane fractions from human amnion were examined for [3H]cAMP binding activity and cAMP-dependent kinase activity. cAMP-dependent kinase activity was barely detectable in crude amnion fractions. Cytosol was therefore partially purified by DEAE column chromatography for further examination. Two peaks of coincident [3H]cAMP binding and cAMP-dependent kinase activity were demonstrated at 70 and 140 mM NaCl, characteristic of the Type I and Type II cAMP-dependent protein kinase isozymes. [3H]cAMP binding to the material from both peak fractions was saturable and reversible. Scatchard analysis of [3H]cAMP binding to the peak fractions was linear for peak I and curvilinear for peak II. Assuming a one-site model, [3H]cAMP binding to the Type I isozyme showed a KD = 4.17 x 10(-8) M and Bmax = 73 pmole/mg protein; using a two-site model, [3H]cAMP binding to the high-affinity site for the Type II isozyme had a KD = 3.94 x 10(-8) M and Bmax = 6.3 pmole/mg protein. Other cyclic nucleotides competed for these [3H]cAMP binding sites with a potency order of cAMP much greater than cGMP greater than (BU)2cAMP.cAMP caused a dose-dependent increase in cAMP-dependent kinase activity in the peak fractions; half-maximal activation was observed with 5.0 x 10(-8) M cAMP. The ability of cAMP to increase phosphorylation of endogenous proteins in both crude amnion cytosol and cytosol from cultures of amnion epithelial cells was assessed using [32P]ATP, SDS-polyacrylamide gel electrophoresis and autoradiography. cAMP stimulated 32P incorporation into three proteins having Mr = 80,000, 54,000, and 43,000 (P less than .01). Half-maximal 32P incorporation into these proteins occurred at 1.0 x 10(-7) M cAMP. cAMP-dependent kinase is present in human amnion; specific cAMP-enhanced phosphoproteins are also present. Hormones elevating cAMP levels in amnion may exert their effects by activating cAMP-dependent kinase and phosphorylating these phosphoproteins.  相似文献   

5.
Whether or not various cytosolic protein kinases (and especially the type I cAMP-dependent protein kinase) of rat ventral prostate are specifically regulated with respect to total activity or specific activity by androgen has been investigated. Following androgen deprivation, the total activity per prostate of cAMP-dependent protein kinase (with histone as substrate) changed little at 24 h, declining by about 20% at 96 h. Under these conditions, its specific activity remained unaltered at 24 h, but was markedly enhanced at 96 h postorchiectomy. Type II cAMP-dependent protein kinase in rat ventral prostate cytosol was the only form of cAMP-dependent protein kinases present as determined by measurement of catalytic activity as well as [32P]-8-N3-cAMP binding to the regulatory subunits. There was no alteration in the distribution of the isoenzymes of cAMP-dependent protein kinases or the response of these kinase activities to cAMP owing to castration of animals. The prostatic cytosol also contains free regulatory subunit (with molecular weight similar to that of regulatory subunit R1) which coelutes with type II cAMP-dependent protein kinase. This finding was confirmed by using [32P]-8-N3-cAMP photoaffinity labeling of cAMP-binding proteins. With respect to cAMP-independent protein kinase (measured with dephosphophosvitin as substrate), a decline of 31% in its specific activity was observed in cytosol of prostates from rats castrated for a period of 24 h without significant further change at later periods following castration. However, there was a marked progressive reduction in total activity of this enzyme per prostate (loss of 72% at 96 h postorchiectomy). The increase in specific activity of cAMP-dependent, but not cAMP-independent, protein kinase in the face of decreasing total activity in the cytosol at later periods of castration (e.g., at 96 h) may reflect a slower loss of the former enzyme protein than the bulk of the cytosolic proteins. Administration of testosterone to castrated animals prevented these changes. These data do not indicate a specific regulation by steroid of the type I cAMP-dependent protein kinase in the prostate. Rather, the cAMP-independent protein kinase (with dephosphophosvitin as substrate) appears to be modulated by the androgenic status of the animal.  相似文献   

6.
Cardiac cAMP-dependent protein kinases were compared between the spontaneously hypertensive rat and the age-matched normotensive Wistar-Kyoto rat by DEAE-cellulose chromatography, photoaffinity labeling with 8-N3[32P]cAMP, and Western blots using the antiregulatory and 125I-anticatalytic subunit antibodies. DEAE-cellulose chromatography revealed that the ratio of type I to type II cAMP-dependent protein kinase was 3:1 in the cytoplasmic soluble proteins from the heart of normotensive rat. In contrast, the ratio of type I to type II was 1:1 in the heart of hypertensive rat. Type I protein kinase was reduced by 3-fold in hypertensive rat compared to normotensive rat. The levels of type II protein kinase were similar in both normotensive and hypertensive rats. The ratio of regulatory subunits of type I (RI) to type II (RII) cAMP-dependent protein kinase was 2.5 in the soluble proteins from the heart of normotensive rat compared to a ratio of 0.62 for hypertensive rat. RI was reduced by 4-fold in hypertensive rat compared to normotensive rat. The decrease in RI from hypertensive rat was also demonstrated by photoaffinity labeling with 8-N3[32P] cAMP. Western blot analysis of the catalytic subunit revealed a 2-fold decrease in catalytic subunit (C) in the soluble proteins from the hypertensive rat compared to normotensive rat. These results show that the reduced level of activity of cardiac type I protein kinase in hypertensive rat was the result of a decrease in both the RI and C subunits, thus reducing the number of type I cAMP-dependent protein kinase holoenzyme molecules. Comparison of type I protein kinase from "prehypertensive" and "hypertensive" stages of hypertensive rat indicated that the type I protein kinase was reduced by 3-fold before an increase in the blood pressure was detectable. Cardiac type I protein kinase is predominantly associated with the cytoplasmic proteins in both the normotensive and hypertensive rats. The levels of RI, RII, and C associated with the membrane-solubilized proteins were not affected in the hypertensive rat. The levels of RII were similar in the brain tissue of normotensive and hypertensive rats, suggesting that the decrease in type I protein kinase is specific in hypertensive rat. In conclusion, a decrease in cardiac type I cAMP-dependent protein kinase may affect the degree of phosphorylation of cardiac regulatory proteins, thus impairing normal cardiac physiology in hypertensive rat.  相似文献   

7.
cAMP-dependent protein kinases have been characterized in parietal cells isolated from rabbit gastric mucosa. Both Type I and Type II cAMP-dependent protein kinase isozymes are present in these cells. Type II isozymes were detected in 900, 14,000, and 100,000 X g particulate fractions as well as 100,000 X g cytosolic fractions; Type I isozymes were found predominately in the cytosolic fraction. When parietal cells were stimulated with histamine, an agent that elevates intracellular cAMP content and initiates parietal cell HCl secretion, cAMP-dependent protein kinase activity was increased in homogenates of these cells as measured by an increase in the cAMP-dependent protein kinase activity ratio. Histamine activation of cAMP-dependent protein kinase was correlated with parietal cell acid secretory responses which were measured indirectly as increased cellular uptake of the weak base, [14C]aminopyrine. These results suggest that cAMP-dependent protein kinase(s) is involved in the control of parietal cell HCl secretion. The parietal cell response to histamine may be compartmentalized because histamine appears to activate only a cytosolic Type I cAMP-dependent protein kinase isozyme, as determined by three different techniques including 1) ion exchange chromatography; 2) Sephadex G-25 to remove cAMP and allow rapid reassociation of the Type II but not the Type I isozyme; and 3) 8-azido-[32P]cAMP photoaffinity labeling. Forskolin, an agent that directly stimulates adenylate cyclases, was found to activate both the Type I and Type II isozymes. Several cAMP-dependent protein kinases were also detected in parietal cell homogenates, including a Ca2+-phospholipid-sensitive or C kinase and two casein kinases which were tentatively identified as casein kinase I and II. At least two additional protein kinases with a preference for serine or lysine-rich histones, respectively, were also detected. The function of these enzymes in parietal cells remains to be shown.  相似文献   

8.
The type I and type II regulatory subunits of cAMP-dependent protein kinase can be distinguished by autophosphorylation. The type II regulatory subunits have an autophosphorylation site at a proteolytically sensitive hinge region, while the type I regulatory subunits have a pseudophosphorylation site. Only holoenzyme formed with type I regulatory subunits has a high affinity binding site for MgATP. In order to determine the functional consequences of regulatory subunit phosphorylation on interaction with the catalytic subunit, an autophosphorylation site was introduced into the type I regulatory subunit using recombinant DNA techniques. When Ala97 at the hinge region of the type I regulatory subunit was replaced with Ser, the regulatory subunit became a good substrate for the catalytic subunit. Stoichiometric phosphorylation occurred exclusively at Ser97. Radioactivity was incorporated primarily into the recombinant regulatory subunit when catalytic subunit and [gamma-32P]ATP were added to the total bacterial extract. Phosphorylation of the mutant regulatory subunit also occurred readily following polyacrylamide gel electrophoresis and electrophoretic transfer to nitrocellulose. Phosphorylation occurred as an intramolecular event in the absence of cAMP indicating that the hinge region of the regulatory subunit occupies the substrate recognition site of the catalytic subunit in the holoenzyme complex. Holoenzyme formed with both the wild type and mutant regulatory subunits was susceptible to dissociation in the presence of high salt; however, only the native holoenzyme was stabilized by MgATP. In contrast to the wild type holoenzyme, the affinity of the mutant holoenzyme for cAMP was not reduced in the presence of MgATP. Holoenzyme formation also was not facilitated by MgATP.  相似文献   

9.
1. Ten new cAMP analogs were synthesized by replacing the purine ring with with indazole, benzimidazole or benztriazole and/or their nitro and amino derivatives. 2. Each analog proved effective in activating cAMP-dependent protein kinase I (PK-I) purified from rabbit skeletal muscle and cAMP-dependent protein kinase II (PK-II) from bovine heart and chasing 8-[3H]cAMP bound to regulatory subunits in the half-maximal effective concentrations of 2 x 10(-8)-8 x 10(-6) M. 3. The N-1-beta-D-ribofuranosyl-indazole-3'5'-cyclophosphate(I) proved a very poor chaser and activator of both isoenzymes, but when indazole was attached at its N-2 to ribose (IV) or when its H at C-4 (equivalent to the position of amino-group in adenine) was substituted by an amino-(III) or especially nitro-group (II) its efficiency was dramatically increased. 4. Analogs containing benztriazole ring proved as powerful as cAMP irrespective of the presence of substituents (VII-X). 5. Benzimidazole derivatives with amino-(VI) or nitro-group (V) activated PK-II 3 and 20 times better than PK-I. 6. Attaching of ribose to N-2 of indazole or benztriazole increased the affinity to PK-II 10 and 4 times, respectively. 7. Chasing efficiency of cAMP analogs at half-saturating [3H]cAMP tended to correlate with activating potency only for PK-I but at saturating [3H]cAMP concentration for both isoenzymes. 8. On the basis of synergistic activation with 8-Br-cAMP a site 2-selective binding of nitro-benzimidazole (V) and unsubstituted benztriazole (VII) derivatives to PK-II is suggested.  相似文献   

10.
We have isolated and partially characterized three mutants of the pheochromocytoma line PC12 by using dibutyryl cyclic AMP (cAMP) as a selective agent. Each of these variants, A126-1B2, A208-4, and A208-7, was resistant to both dibutyryl cAMP and cholera toxin when cell growth was measured. In comparison to wild-type PC12 cells, each of these mutants was deficient in the ability to induce ornithine decarboxylase (ODC) in response to agents that act via a cAMP-dependent pathway. In contrast, each of these mutants induced ODC in response to nerve growth factor. To understand the nature of the mutations, the cAMP-dependent protein kinases of the wild type and of each of these mutants were studied by measuring both histone kinase activity and 8-N3-[32P]cAMP labeling. Wild-type PC12 cells contained both cAMP-dependent protein kinase type I (cAMP-PKI) and cAMP-dependent protein kinase type II (cAMP-PKII). Regulatory subunits were detected in both soluble and particulate fractions. The mutant A126-1B2 contained near wild-type PC12 levels of cAMP-PKI but greatly reduced levels of cAMP-PKII. Furthermore, when compared with wild-type PC12 cells, this cell line had an altered distribution in ion-exchange chromatography of regulatory subunits of cAMP-PKI and cAMP-PKII. The mutant A208-4 demonstrated wild-type-level binding of 8-N3-[32P]cAMP to both type I and type II regulatory subunits, but only half the wild-type level of type II catalytic activity. The mutant A208-7 had type I and type II catalytic activities equivalent to those in wild-type cells. However, the regulatory subunit of cAMP-PKI occurring in A208-7 demonstrated decreased levels of binding 8-N3-[32P]cAMP in comparison with the wild type. Furthermore, all mutants were defective in their abilities to bind 8-N3-[32P]cAMP to the type II regulatory protein in the particulate fraction. Thus, cAMP-PK was altered in each of these mutants. We conclude that both cAMP-PKI and cAMP-PKII are apparently required to induce ODC in response to increases in cAMP. Finally, since all three mutants induced ODC in response to nerve growth factor, the nerve growth factor-dependent induction of OCD was not mediated by an increase in cAMP that led to an activation of cAMP-PK. These mutants will be useful in the elucidation of the many functions controlled by cAMP and nerve growth factor.  相似文献   

11.
Regulation of the expression of cAMP-dependent protein kinase in cellular aging was studied using the IMR-90 diploid human lung fibroblasts. The level of cAMP-dependent protein kinase present in cell extracts was monitored by 1) photoactivated incorporation of 8-N3-[32P]cAMP into the 47,000- and 54,000-dalton regulatory subunits of the type I and type II cAMP-dependent protein kinases, respectively; 2) cAMP-dependent phosphorylation of histone II AS catalyzed by the catalytic subunit of the kinase; and 3) fractionation and analysis of the type I and type II cAMP-dependent protein kinase by DEAE-Sephacel column chromatography. Our results showed an approximately two- to threefold increase in the level of the type I cAMP-dependent protein kinase and a somewhat smaller increase in the type II kinase in extracts of the "old" IMR-90 cells (population doubling greater than 48) as compared to that of the "young" cells (PDL 22-27). The timing of the increase in cAMP-dependent protein kinase coincided with a significant decrease in the proliferative potential of the cells. This result together with previously demonstrated effects of cAMP in the control of cell growth and differentiation and the increased expression of cAMP-dependent protein kinase during terminal differentiation of the murine preadipocytes (3T3-L1) and myoblast (L-5, L-6, and C2C13) suggests that regulation of the levels of cAMP and cAMP-dependent protein kinase plays a significant role in the control of cell growth and differentiation.  相似文献   

12.
Fluorescence intensity and anisotropy measurements using the fluorescent adenosine cyclic 3',5'-phosphate (cAMP) analogue 1,N6-ethenoadenosine cyclic 3',5'-phosphate (epsilon-cAMP) are sensitive to the dissociation of epsilon-cAMP which occurs when either the type I or the type II regulatory subunit (RI or RII) of cAMP-dependent protein kinase associates with the catalytic subunit. Studies using epsilon-cAMP show that MgATP has opposite effects on the reconstitution of both types of protein kinase: MgATP strongly stabilizes the type I holoenzyme while it slightly destabilizes the type II holoenzyme. The synthetic substrate Kemptide has a small inhibitory effect on the reconstitution of both holoenzymes when tested at 10 microM concentration. The protein kinase inhibitor has a larger effect which is especially pronounced in the reassociation of the type I enzyme. The diminished relative ability of the type I regulatory subunit to compete with the protein kinase inhibitor suggests that the combined effects of the two opposing equilibria (epsilon-cAMP and catalytic subunit binding) are different for the two types of regulatory subunits. Displacement experiments show that cAMP and epsilon-cAMP bind about equally well to the type I subunit. Slow conformational changes accompanying the binding of epsilon-cAMP by both regulatory subunits are greatly accelerated with the holoenzymes, suggesting that dissociation of the holoenzymes occurs via ternary complexes. The time courses of epsilon-cAMP binding also show the heterogeneity of binding characteristics of RII. The 37 000-dalton fragment of type II subunit retains the epsilon-cAMP binding properties of the native subunit. However, only a fraction of the fragment preparation (approximately 32% estimated from sedimentation measurements) binds the catalytic subunit well, suggesting heterogeneity of cleavage.  相似文献   

13.
Two protein bands, present in cytosol fractions from each of seven rat tissues examined, specifically incorporated 32P-labeled 8-azidoadenosine 3':5'-monophosphate (8-N3-[32P]cAMP), a photoaffinity label for cAMP-binding sites. These proteins had apparent molecular weights of 47,000 and 54,000 on a sodium dodecyl sulfate-polyacrylamide gel electrophoresis system. These two proteins were characterized in three of the tissues, namely, heart, uterus, and liver, by the total amount of 8-N3-[32P]cAMP incorporation, by the dissociation constant (Kd) for 8-N3-[32P]cAMP, and by the nucleotide specific inhibition of 8-N3-[32P]cAMP incorporation. Several lines of evidence were obtained that the protein with an apparent molecular weight of 47,000 represents the regulatory subunit of a type I cAMP-dependent protein kinase, while the protein with an apparent molecular weight of 54,000 represents the regulatory subunit of a type II cAMP-dependent protein kinase. Almost all of the cAMP receptor protein found in the cytosol of these tissues, as measured by 8-N3-[32P]cAMP incorporation, was associated with these two protein kinases, in agreement with the idea that most effects of cAMP are mediated through protein kinases. The photoaffinity labeling with 8-N3-[32P]cAMP can be used to estimate quantitatively the amounts of regulatory subunit of type I and type II cAMP-dependent protein kinases in various tissues.  相似文献   

14.
The effects of numerous cAMP analogs present in the [3H]cAMP binding reaction on subsequent dissociation of [3H]cAMP from the regulatory subunit of cAMP-dependent protein kinase I and II were analyzed. Certain analogs with modification at either C-8 or C-2 showed relative selectivity for one (site 1) of two intrachain cAMP binding sites of both isozymes. Modification at C-6 caused selectivity for the second site (site 2). The combination of a site-1-directed and site-2-directed analog inhibited [3H]cAMP binding much more than did either analog alone. In general, there was a correlation between the site 1 selectivity and the ability of the analog to stimulate the binding of [3H]cIMP, which selects site 2. The site-1-directed analogs stimulated the initial rate of [3H]cIMP binding. The stimulatory effect was enhanced in the presence of a polycationic protein such as histone and was inhibited by high ionic strength. The type I and II isozymes exhibited large differences in analog specificity for this effect. For type I, of the analogs tested the most efficacious for stimulating [3H]cIMP binding were those containing a nitrogen atom attached to C-8, 8-aminobutylamino-cAMP being the most effective. Type II responded best to analogs containing a sulfur atom attached to C-8, 8-SH-cAMP being the most effective of those tested. The stimulatory effect was accentuated in the presence of MgATP when using type I, but this nucleotide had no effect when using type II. It is proposed that in intact tissues cAMP binding to site 1 of either isozyme stimulates the binding to site 2.  相似文献   

15.
Previous independent studies suggested that type II cAMP-dependent protein kinase and the p34cdc2 protein kinase cell cycle regulator co-localize at centrosomes. In order to investigate whether there is an association of type II cAMP-dependent protein kinase with p34cdc2 in human fibroblasts, we used three different approaches. First, the regulatory subunits RI and RII were photoaffinity-labeled with 8-N3-[32P]cAMP, and anti-p34cdc2 immunoprecipitates were screened for the presence of either RI or RII regulatory subunits by one- or two-dimensional gel electrophoresis. Second, anti-RII alpha immunoprecipitates were screened for the presence of p34cdc2 by Western blot using three different affinity-purified antibodies recognizing different domains of human p34cdc2. Conversely, anti-p34cdc2 immunoprecipitates (three different antibodies), as well as the material retained on p13suc1-Sepharose Bio-Beads, which binds specifically p34cdc2, were screened for the presence of RII alpha. Finally, we have looked for cAMP-dependent protein kinase activity specifically inhibited by PKI in immunoprecipitates obtained from extracts treated with different anti-p34cdc2 antibodies. All these experiments gave concordant results and demonstrate that at least at G0/G1, human fibroblasts contain a complex of active type II cAMP-dependent protein kinase associated through its RII alpha subunit with p34cdc2.  相似文献   

16.
Dissociation and reassociation of regulatory (R) and catalytic (C) subunits of cAMP-dependent protein kinases I and II were studied in intact AtT20 cells. Cells were stimulated with 50 microM forskolin to raise intracellular cAMP levels and induce complete dissociation of R and C subunits. After the removal of forskolin from the incubation medium cAMP levels rapidly declined to basal levels. Reassociation of R and C subunits was monitored by immunoprecipitation of cAMP-dependent protein kinase activity using anti-R immunoglobulins. The time course for reassociation of R and C subunits paralleled the loss of cellular cAMP. Total cAMP-dependent protein kinase activity and the ratio of protein kinase I to protein kinase II seen 30 min after the removal of forskolin was the same as in control cells. Similar results were seen using crude AtT20 cell extracts treated with exogenous cAMP and Mg2+. Our data showed that after removal of a stimulus from AtT20 cells inactivation of both cAMP-dependent protein kinase isoenzymes occurred by the rapid reassociation of R and C subunits to form holoenzyme. Our studies also showed that half of the type I regulatory subunit (RI) present in control cells contained bound cAMP. This represented approximately 30% of the cellular cAMP in nonstimulated cells. The cAMP bound to RI was resistant to hydrolysis by cyclic nucleotide phosphodiesterase but was dissociated from RI in the presence of excess purified bovine heart C. The RI subunits devoid of C may function to sequester cAMP and, thereby, prevent the activation of cAMP-dependent protein kinase activity in nonstimulated AtT20 cells.  相似文献   

17.
Summary Protein-bound cyclic AMP (cAMP) levels in cultured rat Sertoli cells have been determined after exposure to follicle-stimulating hormone (FSH) and agents which elevate intracellular cAMP or mimic cAMP action. Changes in the content of protein-bound cAMP were correlated with changes in receptor availability determined by measuring [3H] cAMP binding. Using the photoaffinity analog of cAMP, 8-N3 [32P] cAMP, two major cAMP-binding proteins in Sertoli cell cytosol, with molecular weights of 47 000 and 53 000 daltons, were identified as regulatory subunits of type I and type II cAMP-dependent protein kinases, respectively. Densitometric analysis of autoradiograms demonstrated differential activation of the two isozymes in response to treatment with FSH and other agents. Results of this study demonstrate the value of measuring changes in protein-bound cAMP and the utility of the photoaffinity labeling technique in correlating hormone-dependent processes in which activation of cAMP-dependent protein kinase occurs.  相似文献   

18.
Rat GH-releasing factor (rGRF) stimulated GH release and intracellular cAMP accumulation in cultured rat anterior pituitary cells with EC50 values of approximately 10 and 150 pm, respectively. Consistent with an effect on cellular cAMP levels, rGRF stimulated the adenylate cyclase activity of rat anterior pituitary membranes with an EC50 value of approximately 60 pm. Using antisera directed against the regulatory subunits of type I and II cAMP-dependent protein kinases, these enzymes were immunoprecipitated from the cytosolic fraction of cultured cells in order to monitor the degree of their activation by rGRF. Both isoenzymes were rapidly activated in cells incubated with rGRF but with different kinetics; full activation of protein kinase I was evident within 3-5 min and activation of protein kinase II occurred between 5 and 15 min. The magnitude of activation was differentially regulated by rGRF in a concentration-dependent manner. Somatostatin only partially attenuated rGRF-stimulated GH release, cAMP accumulation, and adenylate cyclase activation. Somatostatin was effective in partially antagonizing activation of protein kinase II at all concentrations of rGRF and of protein kinase I only at intermediate concentrations of rGRF. The significance of this rGRF-induced differential activation of the two isoenzymes of cAMP-dependent protein kinase is discussed in terms of the multiple effects of rGRF on somatotropic cells of the rat anterior pituitary.  相似文献   

19.
The exchange rate of unlabeled adenosine 3',5'-monophosphate (cAMP) with labeled [3H]cAMP in the dimeric regulatory subunit-cAMP complex of cAMP-dependent protein kinase, type I, purified from rabbit skeletal muscle is described by using the equilibrium isotope exchange technique. Results indicate that the rate of exchange carried out in the absence of the catalytic subunit (C) is rather slow with a half-life of approximately 870 s. This slow exchange rate is not affected by the presence of MgATP (50 microM). However, when both MgATP (50 microM) and C (1-13 NM) are present, the rate of isotope exchange is observed to increase markedly. Furthermore, less than stoichiometric amounts of C are required for the increase in the rate of cAMP exchange, indicating that the effect of C on the rate enhancement is a catalytic process. These results indicate that in the presence of MgATP, a ternary complex between C and regulatory subunit-cAMP complex must be formed, and a dynamic equilibrium between the eternary complex and its dissociable species must be reached within seconds. On the basis of our kinetic data, it is proposed that the formation of this ternary complex intermediate allows the rapid activation or the inactivation of cAMP-dependent protein kinase following changes in the cellular cAMP levels.  相似文献   

20.
By a new procedure, the holoenzyme of bovine heart type II cAMP-dependent protein kinase was purified to homogeneity as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). A high performance liquid chromatography-DEAE purification step resolved two distinct peaks of protein kinase activity, which were designated Peak 1 and Peak 2 based on their order of elution. The two peaks exhibited similar Stokes radii and sedimentation coefficients. They had similar ratios of regulatory to catalytic subunits both by densitometric scanning of SDS-PAGE bands and by the ratios of equilibrium [3H]cAMP binding to maximal kinase activity. These results suggested that the holoenzyme of each peak contained two regulatory subunits and two catalytic subunits, although a subpopulation of holoenzyme lacking one catalytic subunit also appeared to be present in Peak 2. Assays of cAMP indicated that the Peak 1 holoenzyme was cAMP-free, but half of the Peak 2 holoenzyme cAMP binding sites contained cAMP. Determination of [3H]cAMP dissociation rates showed that the cAMP was equally distributed in binding Site 1 and Site 2 of Peak 2. Although SDS-PAGE analysis ruled out conversions by proteolysis or autophosphorylation-dephosphorylation, Peak 1 could be partially converted to Peak 2 by the addition of subsaturating amounts of cAMP. Interconvertibility of the two holoenzyme peaks strongly suggested that the difference between the two peaks was caused by the presence of cAMP in Peak 2. Peak 2 holoenzyme, as compared to Peak 1, had enhanced binding in nonequilibrium [3H]cIMP and [3H]cAMP binding assays, as was expected due to the presence of cAMP and to the known positive cooperativity in binding of cyclic nucleotides to the kinase. The positive cooperativity in kinase activation, as indicated by the Hill coefficient, was greater for Peak 2 than Peak 1, but the cAMP concentration required for half-maximal activation (Ka) of each of the two peaks was very similar. In conclusion, Peak 2 is an inactive ternary complex of cAMP, regulatory subunit, and catalytic subunit, and Peak 1 is a cAMP-free holoenzyme. The cAMP-bound form may represent a major cellular form of the enzyme which is primed for activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号