首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Plant cells face unique challenges to efficiently export cargo from the endoplasmic reticulum (ER) to mobile Golgi stacks. Coat protein complex II (COPII) components, which include two heterodimers of Secretory23/24 (Sec23/24) and Sec13/31, facilitate selective cargo export from the ER; however, little is known about the mechanisms that regulate their recruitment to the ER membrane, especially in plants. Here, we report a protein transport mutant of Arabidopsis thaliana, named maigo5 (mag5), which abnormally accumulates precursor forms of storage proteins in seeds. mag5-1 has a deletion in the putative ortholog of the Saccharomyces cerevisiae and Homo sapiens Sec16, which encodes a critical component of ER exit sites (ERESs). mag mutants developed abnormal structures (MAG bodies) within the ER and exhibited compromised ER export. A functional MAG5/SEC16A–green fluorescent protein fusion localized at Golgi-associated cup-shaped ERESs and cycled on and off these sites at a slower rate than the COPII coat. MAG5/SEC16A interacted with SEC13 and SEC31; however, in the absence of MAG5/SEC16A, recruitment of the COPII coat to ERESs was accelerated. Our results identify a key component of ER export in plants by demonstrating that MAG5/SEC16A is required for protein export at ERESs that are associated with mobile Golgi stacks, where it regulates COPII coat turnover.  相似文献   

2.
After exposure of cells of the methylotrophic yeast Hansenula polymorphaHF246leu1-1 to N-nitro-N-nitrosoguanidine, a collection of 227 mutants unable to grow on methanol at elevated temperature (45°C) was obtained. Ninety four ts mutants (35% of the total number of mutants), which were unable to grow on methanol only at 45°C but could grow at optimal temperature (37°C), were isolated. Complementation analysis of mutants using 12 deletion mutants for genes of peroxisome biogenesis (PEX) (available in this yeast species by the beginning of our work) allowed to assign 51 mutants (including 16 ts) to the separate group of mutants unable to complement deletion mutants with defects in eight PEX genes. These mutants were classified into three groups: group 1 contained 10pex10 mutants (4ts mutants among them); group 2 included 19 mutants that failed to complement otherpex testers: 1 pex1; 2 pex4(1ts); 6 pex5(5ts); 3 pex8; 1 pex13; 6 (3ts) pex19; group 3 contained 22 multiple mutants. In mutants of group 3, hybrids with several testers do not grow on methanol. All mutants (51) carried recessive mutations, except for mutant 108, in which the mutation was dominant only at 30°C, which suggests that it is ts-dominant. Recombination analysis of mutants belonging to group 2 revealed that only five mutants (two pex5 and three pex8) carried mutations for the corresponding PEX genes. Analysis of the spore population from the hybrids of remaining 14 mutants with the pex tester demonstrated the presence of methanol-utilizing segregants, which indicates mutation localization in other genes. In 19 mutants, random analysis of ascospores from hybrids obtained upon crossing mutants of group 3 with a strain lacking peroxisomal disorders (ade11) revealed a single mutation causing the appearance of a multiple phenotype. A more detailed study of two mutants from this group allowed us to localize this mutation in the only PEX gene (PEX1 or PEX2). The revealed disorder of complementation interactions between nonallelic genes is under debate.  相似文献   

3.
4.
A genomic comparison of Yarrowia lipolytica and Saccharomyces cerevisiae indicates that the metabolism of Y. lipolytica is oriented toward the glycerol pathway. To redirect carbon flux toward lipid synthesis, the GUT2 gene, which codes for the glycerol-3-phosphate dehydrogenase isomer, was deleted in Y. lipolytica in this study. This Δgut2 mutant strain demonstrated a threefold increase in lipid accumulation compared to the wild-type strain. However, mobilization of lipid reserves occurred after the exit from the exponential phase due to β-oxidation. Y. lipolytica contains six acyl-coenzyme A oxidases (Aox), encoded by the POX1 to POX6 genes, that catalyze the limiting step of peroxisomal β-oxidation. Additional deletion of the POX1 to POX6 genes in the Δgut2 strain led to a fourfold increase in lipid content. The lipid composition of all of the strains tested demonstrated high proportions of FFA. The size and number of the lipid bodies in these strains were shown to be dependent on the lipid composition and accumulation ratio.  相似文献   

5.
The codon-optimized genes crtB and crtI of Pantoea ananatis were expressed in Yarrowia lipolytica under the control of the TEF1 promoter of Y. lipolytica. Additionally, the rate-limiting genes for isoprenoid biosynthesis in Y. lipolytica, GGS1 and HMG1, were overexpressed to increase the production of lycopene. All of the genes were also expressed in a Y. lipolytica strain with POX1 to POX6 and GUT2 deleted, which led to an increase in the size of lipid bodies and a further increase in lycopene production. Lycopene is located mainly within lipid bodies, and increased lipid body formation leads to an increase in the lycopene storage capacity of Y. lipolytica. Growth-limiting conditions increase the specific lycopene content. Finally, a yield of 16 mg g−1 (dry cell weight) was reached in fed-batch cultures, which is the highest value reported so far for a eukaryotic host.  相似文献   

6.
7.
Following ultra-violet irradiation of the hydrocarbon-utilizing yeast, Saccharomycopsis lipolytica , a number of mutant strains were isolated which failed to show the normal staining reaction with iodine. Exponential phase cells of the mutant strains were found to contain less carbohydrate and more crude protein than wild type cells in the case of both glucose-grown and n -alkane-grown cultures. The difference between wild type and mutant carbohydrate levels was greater for glucose-grown than for n -alkane-grown cells. Carbohydrate fractionation revealed that the mutant cells were deficient in glycogen, particularly the acid-soluble fraction.  相似文献   

8.
9.
We describe an unusual mechanism for organelle division. In the yeast Yarrowia lipolytica, only mature peroxisomes contain the complete set of matrix proteins. These mature peroxisomes assemble from several immature peroxisomal vesicles in a multistep pathway. The stepwise import of distinct subsets of matrix proteins into different immature intermediates along the pathway causes the redistribution of a peroxisomal protein, acyl-CoA oxidase (Aox), from the matrix to the membrane. A significant redistribution of Aox occurs only in mature peroxisomes. Inside mature peroxisomes, the membrane-bound pool of Aox interacts with Pex16p, a membrane-associated protein that negatively regulates the division of early intermediates in the pathway. This interaction inhibits the negative action of Pex16p, thereby allowing mature peroxisomes to divide.  相似文献   

10.
11.
The consumption of lactate and amino acids is very important for microbial development and/or aroma production during cheese ripening. A strain of Yarrowia lipolytica isolated from cheese was grown in a liquid medium containing lactate in the presence of a low (0.1×) or high (2×) concentration of amino acids. Our results show that there was a dramatic increase in the growth of Y. lipolytica in the medium containing a high amino acid concentration, but there was limited lactate consumption. Conversely, lactate was efficiently consumed in the medium containing a low concentration of amino acids after amino acid depletion was complete. These data suggest that the amino acids are used by Y. lipolytica as a main energy source, whereas lactate is consumed following amino acid depletion. Amino acid degradation was accompanied by ammonia production corresponding to a dramatic increase in the pH. The effect of adding amino acids to a Y. lipolytica culture grown on lactate was also investigated. Real-time quantitative PCR analyses were performed with specific primers for five genes involved in amino acid transport and catabolism, including an amino acid transporter gene (GAP1) and four aminotransferase genes (ARO8, ARO9, BAT1, and BAT2). The expression of three genes involved in lactate transport and catabolism was also studied. These genes included a lactate transporter gene (JEN1) and two lactate dehydrogenase genes (CYB2-1 and CYB2-2). Our data showed that GAP1, BAT2, BAT1, and ARO8 were maximally expressed after 15 to 30 min following addition of amino acids (BAT2 was the most highly expressed gene), while the maximum expression of JEN1, CYB2-1, and CYB2-2 was delayed (≥60 min).  相似文献   

12.
13.
ABSTRACT

The endoplasmic reticulum (ER) is dedicated to import, folding and assembly of all proteins that travel along or reside in the secretory pathway of eukaryotic cells. Folding in the ER is special. For instance, newly synthesized proteins are N-glycosylated and by default form disulfide bonds in the ER, but not elsewhere in the cell. In this review, we discuss which features distinguish the ER as an efficient folding factory, how the ER monitors its output and how it disposes of folding failures.  相似文献   

14.
Members of the eukaryotic heat shock protein 70 family (Hsp70s) are regulated by protein cofactors that contain domains homologous to bacterial DnaJ. Of the three DnaJ homologues in the yeast rough endoplasmic reticulum (RER; Scj1p, Sec63p, and Jem1p), Scj1p is most closely related to DnaJ, hence it is a probable cofactor for Kar2p, the major Hsp70 in the yeast RER. However, the physiological role of Scj1p has remained obscure due to the lack of an obvious defect in Kar2p-mediated pathways in scj1 null mutants. Here, we show that the Δscj1 mutant is hypersensitive to tunicamycin or mutations that reduce N-linked glycosylation of proteins. Although maturation of glycosylated carboxypeptidase Y occurs with wild-type kinetics in Δscj1 cells, the transport rate for an unglycosylated mutant carboxypeptidase Y (CPY) is markedly reduced. Loss of Scj1p induces the unfolded protein response pathway, and results in a cell wall defect when combined with an oligosaccharyltransferase mutation. The combined loss of both Scj1p and Jem1p exaggerates the sensitivity to hypoglycosylation stress, leads to further induction of the unfolded protein response pathway, and drastically delays maturation of an unglycosylated reporter protein in the RER. We propose that the major role for Scj1p is to cooperate with Kar2p to mediate maturation of proteins in the RER lumen.  相似文献   

15.
16.
17.
The recently discovered Canis familiaris papillomavirus (PV) type 2 (CfPV2) provides a unique opportunity to study PV gene functions in vitro and in vivo. Unlike the previously characterized canine oral PV, CfPV2 contains an E5 open reading frame and is associated with progression to squamous cell carcinoma. In the current study, we have expressed and characterized the CfPV2-encoded E5 protein, a small, hydrophobic, 41-amino-acid polypeptide. We demonstrate that, similar to the E5 protein from high-risk human PV type 16, the CfPV2 E5 protein is localized in the endoplasmic reticulum (ER) and that its expression decreases keratinocyte proliferation and cell life span. E5 expression also increases the percentage of cells in the G1 phase of the cell cycle, with a concomitant decrease in the percentage of cells in S phase. To identify a potential mechanism for E5-mediated growth inhibition from the ER, we developed a real-time PCR method to quantify the splicing of XBP1 mRNA as a measure of ER stress. We found that the CfPV2 E5 protein induced ER stress and that this, as well as the observed growth inhibition, is tempered significantly by coexpression of the CfPV2 E6 and E7 genes. It is possible that the spatial/temporal regulation of E6/E7 gene expression during keratinocyte differentiation might therefore modulate E5 activity and ER stress.Papillomaviruses (PVs) are a large group of DNA tumor viruses that infect differentiated cutaneous and mucosal epithelia in a wide variety of mammalian species. There are nearly 200 types of human PVs (HPVs) (61), some of which are termed high risk (e.g., HPV type 16 [HPV-16]) and have the potential to immortalize primary cells and facilitate malignant progression to cervical cancer (52). An estimated 20 million cases of HPV infection occur each year in the United States alone, and cervical cancer is the second most common cause of cancer deaths among women worldwide. In general, PV infections are species specific, making it impossible to study the in vivo life cycle of HPV and the roles of its encoded proteins in viral replication and tumorigenesis. However, a few animal models do exist and the canine oral PV (COPV) has been helpful in mimicking certain biological properties of the high-risk mucosatropic HPVs, leading to the development of highly effective prophylactic vaccines (39, 49, 56). Although COPV mimics the mucosal tropism of the high-risk HPVs, it rarely progresses to cancer and lacks one of the early viral genes that may play an important role in tumorigenesis, E5. Recently, a new canine PV (Canis familiaris PV type 2 [CfPV2]) was isolated from the footpads of dogs (43). Unlike COPV, CfPV2 induces epidermal tumors and, when persistent, these benign infections progress to squamous cell carcinoma and metastasize widely. CfPV2 also encodes an E5 protein. In general, PV E5 proteins are small hydrophobic oncoproteins that localize to the endoplasmic reticulum (ER) or Golgi membranes (11, 16) but have limited amino acid sequence homology. Numerous cellular binding partners have been described for HPV-16 E5 proteins, including the V-ATPase 16-kDa subunit (1, 16), the nuclear import protein karyopherin beta 3 (25), the ER-resident protein Bap31 (40), proteins involved in zinc transport (ZnT1, EVER1, and EVER2) (27, 35), erbB4 (24), and HLA I (2). The HPV-16 E5 protein alters signaling pathways, predominantly the epidermal growth factor receptor (EGFR) pathway (17, 21, 46, 58); induces koilocytosis in cooperation with the E6 protein (26); and alters the plasma membrane expression of caveolin (47), HLA (3), and ganglioside GM1 (47). The last two changes might explain the ability of HPV-16-infected cells to circumvent detection by the host immune response and initiate tumor formation (3, 4, 21, 36, 46, 47).To provide a foundation for future in vivo studies, we initiated a series of in vitro experiments to define the intracellular localization and biological activity of CfPV2 E5. The current study demonstrates that CfPV2 E5 exhibits several properties of the HPV-16 E5 protein, including ER localization and inhibition of cell proliferation. A novel finding is that CfPV2 E5 activates the ER stress-signaling pathway, which may explain some of E5''s growth-related activities.  相似文献   

18.
The potential regulation of protein trafficking by calmodulin (CaM) is a novel concept that remains to be substantiated. We proposed that KCNQ2 K+ channel trafficking is regulated by CaM binding to the C-terminal A and B helices. Here we show that the L339R mutation in helix A, which is linked to human benign neonatal convulsions, perturbs CaM binding to KCNQ2 channels and prevents their correct trafficking to the plasma membrane. We used glutathione S-transferase fused to helices A and B to examine the impact of this and other mutations in helix A (I340A, I340E, A343D, and R353G) on the interaction with CaM. The process appears to require at least two steps; the first involves the transient association of CaM with KCNQ2, and in the second, the complex adopts an “active” conformation that is more stable and is that which confers the capacity to exit the endoplasmic reticulum. Significantly, the mutations that we have analyzed mainly affect the stability of the active configuration of the complex, whereas Ca2+ alone appears to affect the initial binding step. The spectrum of responses from this collection of mutants revealed a strong correlation between adopting the active conformation and channel trafficking in mammalian cells. These data are entirely consistent with the concept that CaM bound to KCNQ2 acts as a Ca2+ sensor, conferring Ca2+ dependence to the trafficking of the channel to the plasma membrane and fully explaining the requirement of CaM binding for KCNQ2 function.M-type channels are generated by the KCNQ (Kv7) family of voltage-gated subtypes (1), and they are found throughout the nervous system where they fulfill dominant roles in the control of excitability and neural discharges (2). Like all Kv channels, the KCNQ α subunits share a common core structure of six transmembrane segments with a voltage sensing domain (S1–S4) and a pore domain (S5 and S6; see Fig. 1) (3). Sequence analysis predicts the presence of four helical regions (A–D) in all family members (4), and helices A and B constitute the binding site for calmodulin (CaM).8 CaM is a prototypical Ca2+ sensor that confers Ca2+ sensitivity to a wide array of proteins, including ion channels (5). CaM is thought to mediate Ca2+-dependent inhibition of KCNQ channels (6), and in addition, we have postulated that a direct association with CaM is required for KCNQ2 channels to exit the endoplasmic reticulum (7).Open in a separate windowFIGURE 1.Topological representation of a KCNQ subunit. The consensus IQ residues are shown in bold. Circles and squares correspond to the residues mutated here (the squares indicate the mutations causing BFNC). The boxes indicate the regions with a high probability of adopting an α helix configuration, and the thick lines delineate the region fused to GST.To gain a deeper understanding into the involvement of CaM in channel trafficking, we have studied this interaction in vitro with a set of CaM-binding site-specific mutants. Although we had previously explored the impact of some of these mutants on channel trafficking (7), here we have extended this study to the mutant L339R located in helix A. This mutation, as well as the R353G mutation in helix A, has been linked to benign familial neonatal convulsions (BFNC), a human epileptic syndrome of newborn children (2). Accordingly, we demonstrate that there is a strong correlation between the impact of these mutations on the adoption of an “active” conformation by CaM and channel subunit exit from the ER, lending further support to the concept that CaM is a critical regulator for the exit of the channel from the ER.  相似文献   

19.
We have developed Yarrowia lipolytica as a model system to study mitochondrial complex I that combines the application of fast and convenient yeast genetics with efficient structural and functional analysis of its very stable complex I isolated by his–tag affinity purification with high yield. Guided by a structural model based on homologies between complex I and [NiFe] hydrogenases mutational analysis revealed that the 49 kDa subunit plays a central functional role in complex I. We propose that critical parts of the catalytic core of complex I have evolved from the hydrogen reactive site of [NiFe] hydrogenases and that iron–sulfur cluster N2 resides at the interface between the 49 kDa and PSST subunits. These findings are in full agreement with the semiquinone switch mechanism according to which coupling of electron and proton transfer in complex I is achieved by a single integrated pump comprising cluster N2, the binding site for substrate ubiquinone, and a tightly bound quinone or quinoid group.  相似文献   

20.
Saccharomyces cerevisiae and mammals concerning the mechanisms of the translocation step and discuss the roles of the proteins implicated in this process. Received: 5 June 1996/Revised: 20 September 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号