首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Corticotropin releasing factor (CRF)-immunoreactive neurons were detected in the paraventricular nuclei (PVN) of the rat brain, using both the traditional and the recently developed silver-gold intensified PAP methods at light and electron microscopic levels. The latter technique was more sensitive, compared to the classical PAP method, and proved to be highly specific at the ultrastructural level. The immunolabeled perikarya showed smooth or rough contoured fusiform or multipolar shape. Bilateral surgical destruction of PVN caused a gradual decrease in the number of CRF-immunopositive fibers of the median eminence. Following the second post-operative week, CRF-immunoreactivity practically disappeared from this area. In the case of unilateral lesion of PVN, the diminution of immunoreactivity was restricted to the ipsilateral side of the median eminence-pituitary stalk region. Applying the silver-gold intensified PAP method to electron microscopy, the detection of immuno-labeled degenerating fibers became possible, among morphologically similar, densely degenerating, but unlabeled, profiles. This study reports that CRF fibers to the capillary system of the median eminence of the rat originate principally from PVN.  相似文献   

3.
After the surgical interruption of connections between the medial and lateral hypothalamus of the rat axonal (transient) and nerve terminal degeneration was shown in the medial forebrain bundle (MFB) with light and electron microscopy. Following 1 mm long parasagittal cuts at various rostro-caudal levels the degeneration pattern within the MFB indicated a certain territoral arrangement of terminating fibres from the medial hypothalamus. After a parasagittal cut through the lateral retrochiasmatic area, degeneration was observed in the full length of the MFB. This suggests that a number of axons connect the medial and lateral hypothalamus through this area. With the aid of a parasagittal cut separating totally the medial and lateral hypothalamus, the degeneration of dendrites in the middle portion of the lateral hypothalamus was also revealed. These proved to derive from cells of the ventromedial nucleus.  相似文献   

4.
5.
1. In the mucous membrane of the duodenum and pylorus there have been identified free club- and tree like endings by ligth and electron microscopy. These endings lie flat between the muscularis mucosae and the glandular basis. 2. In the duodenum of the dog the receptors are undoubtly formed by myelinated axons. 3. According to neurophysiological results these free afferent endings are similar to PAINTAL'S (1957, 1963) mucosal mechanoreceptors.  相似文献   

6.
The hyaluronic acid-binding region was prepared by trypsin digestion of chondroitin sulfate proteoglycan aggregate from the Swarm rat chondrosarcoma, and biotinylated in the presence of hyaluronic acid and link protein. After isolation by gel filtration and HPLC in 4 M guanidine HCl, the biotinylated hyaluronic acid-binding region was used, in conjunction with avidin-peroxidase, as a specific probe for the light and electron microscopic localization of hyaluronic acid in developing and mature rat cerebellum. At 1 w postnatal, there is strong staining of extracellular hyaluronic acid in the presumptive white matter, in the internal granule cell layer, and as a dense band at the base of the molecular layer, surrounding the parallel fibers. This staining moves progressively towards the pial surface during the second postnatal week, and extracellular staining remains predominant through postnatal week three. In adult brain, there is no significant extracellular staining of hyaluronic acid, which is most apparent in the granule cell cytoplasm, and intra-axonally in parallel fibers and some myelinated axons. The white matter is also unstained in adult brain, and no staining was seen in Purkinje cell bodies or dendrites at any age. The localization of hyaluronic acid and its developmental changes are very similar to that previously found in immunocytochemical studies of the chondroitin sulfate proteoglycan in nervous tissue (Aquino, D. A., R. U. Margolis, and R. K. Margolis. 1984. J. Cell Biol. 99:1117-1129; Aquino, D. A., R. U. Margolis, and R. K. Margolis. J. Cell Biol. 99:1130-1139), and to recent results from studies using monoclonal antibodies to the hyaluronic acid-binding region and link protein. The presence of brain hyaluronic acid in the form of aggregates with chondroitin sulfate proteoglycans would be consistent with their similar localizations and coordinate developmental changes.  相似文献   

7.
8.
9.
Summary Electron microscopic data confirm the results gained with rapid Golgi preparations of adult rodent brains that tanycytes occur in clusters along the lateral wall of the third ventricle. The cytoplasmic matrix of these cells is considerably denser than that of typical ependymal cells. They have filaments and microtubules throughout their cytoplasm along with mitochondria and polysomes. At the surface is a compact group of microvilli which suggest that tanycytes might selectively absorb material from the ventricle.The tanycytes are segregated from neuropil by other tanycyte processes, by neighboring ependymal cells and by astrocytes. Yet there are gaps in this sheath. At these points tanycytes either abut upon or surround nonglial components of the neural fabric.Their cytological features and relations with the neuropil suggest that tanycytes selectively absorb material from the ventricle and release it along the basal process, primarily affecting those segments of neurons immediately adjacent to the tanycyte.Supported by: NINDS Grants 5 R01 NS 09001-02 NEUA, 5T01 NB 5309, and GM 00958, and by the Eleanor Roosevelt Cancer Foundation Research Institute.Acknowledgements: This work was initiated in the Anatomy Department of the Harvard Medical School with facilities provided by Prof. S. L. Palay (U.S. Public Health Service Grant No. NB 05591). Dr. R. B. Wuerker kindly and patiently provided the instruction and orientation to electron microscopy. The major portion of the study was completed in the Neurology Department of the University of Utah with the extremely competent, challenging assistance of Dee Lerdahl, Nina Belgarian, Keith Johnson and Lynn Kendricks.  相似文献   

10.
11.
An exotoxin (HS-6) produced by Nocardia otitidiscaviarum isolated from certain lesions of cutaneous nocardiosis of a male 82-year-old patient induced severe injuries in the pancreas, liver, stomach, small intestine, heart, thymus and kidney of male ICR mice. Mice given Nocardia-free preparation of HS-6 at a dose of 1 mg/kg of body weight developed several autophagic vacuoles in the pancreas and liver within 20 min after the i.p. injection. Thereafter, the autophagic vacuoles increased in number and size with time. About 24 hr after the administration of HS-6, the liver showed marked accumulation of fat droplets in the cytoplasm of the hepatocytes. Although they contained abundant autophagic vacuoles in the regions of RER, there were no lipomatoses in the acinar cells of the pancreas, those of the chief cells and smooth muscle cells of the stomach, Paneth cells, goblet cells, smooth muscle cells of the small intestine, and plasma cells in the digestive tract. Biochemical examinations revealed that HS-6 had no significant effect on the protein synthesis of reticulocytes. Inoculation of the Nocardia into the mouse peritoneal cavities caused marked granulomatoses in the pancreas, liver and regional lymph nodes, but did not develop autophagic vacuoles in RER regions of these organs.  相似文献   

12.
Synopsis Pineal glands of adult albino rats were examined histochemically using, first, formaldehyde-induced fluorescence to study monoamines and, second, copper thiocholine or copper ferrocyanide methods to study acetylcholinesterase and non-specific cholinesterase by light and electron microscopy. Cholinesterase was determined quantitatively by a constant pH titration assay.Fluorescent and acetylcholinesterase-positive nerve nets formed identical patterns. Nonspecific cholinesterase was observed only in nerve trunks outside the pineal. Bilateral removal of superior cervical ganglia resulted in complete disappearance of fluorescence and acetylcholinesterase from nerve fibres. Electron microscopically, acetylcholinesterase was found on sympathetic axons containing small granular vesicles. Quantitative cholinesterase determinations suggested that the pineal activity was mainly due to acetylcholinesterase. Comparison of the incubation times required for equal histochemical acetylcholinesterase reactions suggested that the activity of the sympathetic nerve fibres in the pineal is of the same order of magnitude as that in the nerve fibres of the iris.  相似文献   

13.
Using light and electron microscopy, three hemocyte types are described in the hemolymph of the crayfish. The coagulocyte comprises 65% of the total hemocyte number and contains medium-sized cytoplasmic granules, abundant dilated rough endoplasmic reticulum, and a highly developed Golgi complex. It rapidly undergoes cytolysis in vitro and participates in coagulation by releasing the contents of its granules to the hemolymph. The granulocyte comprises 31% of the total hemocyte number and is capable of phagocytosis. It contains large, irregularly shaped cytoplasmic granules, a moderately developed Golgi complex, and moderate amounts of non-dilated rough endoplasmic reticulum. During coagulation in vitro, the cell attaches and spreads onto the substratum; this is followed by a slow intracellular granule breakdown and cytolysis. The amebocyte comprises 4% of the total hemocyte number and it is also capable of phagocytosis. It possesses small cytoplasmic granules, many vacuoles, a moderately developed Golgi complex, and large amounts of smooth endoplasmic reticulum. It is distinguished from the other two cell types by being stable and motile in vitro.  相似文献   

14.
15.
16.
17.
Summary The neurointermediate lobe of the hypophysis in the Chameleon (Chamaeleo dilepis) was examined with light and electron microscopic methods, with special reference to the cytology of the pars intermedia (PI). The PI is the largest lobe of the hypophysis consisting of (1) dark cells with secretory granules ranging from 200–600 nm; (2) light cells, far fewer in number, containing granules 150–300 nm in diameter; (3) stellate, non-secretory cells. The secretory cells abut onto the perivascular basal lamina of the capillary sinusoids while their apical part borders an intercellular space. This surface of the cells often bears a cilium. The granules arise from the Golgi cisternae while small detached vesicles are found between circumscribed sites of the cell membrane and the Golgi apparatus. No nervous elements were found in the pars intermedia and it is assumed that the regulation of this lobe is purely humoral. This is supported by the presence of three types of nerve terminals in the pars nervosa: (a) terminals with large secretory granules and small vesicles; (b) terminals with dense-core vesicles and small vesicles; (c) terminals with small vesicles only. All of these are secretory as indicated by the presence of the synaptic semidesmosomes formed with the perivascular basal lamina.I would like to thank Mr. W.N. Newton for his skill and aid in all aspects of this work, Mr. A. Ansary for expert photographic assistance and the Central Pathology Laboratory, University of Dar es Salaam, for the electron microscopic facilities provided. Research sponsored by the University of Zambia Grants J02-18-00 and Medic 74/6  相似文献   

18.
Summary Nerve endings in the extraocular muscles of the rat were submitted to histochemical tests for formalin-induced fluorescence and carboxylic esterases. Acetylthiocholine, butyrylthiocholine and -naphthyl acetate were used as substrates and iso-OMPA, 284C51, eserine and E-600 as inhibitors. The ultrastructure of the endings was studied with the electron microscope.Both single and multiple nerve terminals were observed in all six extraocular muscles. The single terminals of myelinated axons were comparable in their light and electron microscopic structure with the typical motor end plates of other striated muscles, and like these they exhibit acetylcholinesterase (AChE), non-specific cholinesterase (ns. ChE) and non-specific esterase (ns. E) activity. These endings were apposed to twitch-type muscle fibres.The multiple terminals were classified with the light microscope into two types. The larger type was 1/3 of the size of the motor end plate; 2–5 endings innervated the same muscle fibre; subneural infoldings were weakly developed and possessed only slight AChE and ns. ChE and probably no ns. E activity. No subneural lamellae were visible under the light microscope in the smaller type, which also possessed AChE and ns. ChE and was composed of 10–20 small dots dispersed along a single muscle fibre. The Schwann cells along nerve fibres leading to these two types of multiple endings exhibited ns. ChE but not AChE and ns. E activity.The ultrastructure of the two types of multiple endings was principally similar. The main difference, compared with the motor end plate, was that these endings were derived from unmyelinated axons which either make synaptic contacts along their course with the muscle fibre at variable distances (smaller-type) or these terminals were grouped closely together (larger-type).A few dense-core vesicles were observed in these unmyelinated nerves and in their terminals which were considerably smaller than those in the motor end plate. They were not always separated from each other by sarcoplasm and teloglia (larger-type) and contained also empty vesicles. The secondary synaptic clefts were often sparse and irregular or even absent, but the typical myoneural postsynaptic electron density was always observed. These multiple endings, in contrast to the motor end plate, were apposed only to muscle fibres with slow contraction.No catecholamine containing nerve endings were observed in the extraocular muscles. These observations indicate that the rat extraocular muscles have a double cholinergic innervation.The author wishes to express his gratitude to Professor Antti Telkkä, M. D., Head of the Electron Microscope Laboratory, University of Helsinki, for permission to avail himself of the electron microscope facilities.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号