首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 922 毫秒
1.
Studies have been made on the content and distribution of Cd, K, Mg, Ca, S and P in organs and cells of mussels and scallops before and after immersion in water containing cadmium chloride. In normal molluscs, the lowest content of Cd was found in the gonads; cadmium content of the hepatopancreas and kidney in the scallop is correspondingly 20 and 40 times higher than in the mussel. After immersion in water with cadmium (250 micrograms/l in summer experiments and 500 micrograms/l in spring ones), cadmium content of the hepatopancreas and kidney of the scallop was found to be also higher than that in the mussel, although the difference is less significant, being dependent on the season of year. The highest accumulation of cadmium (9.760 +/- 790 micrograms/g dry weight) was observed in the scallop kidney in summer period. After immersion in cadmium-containing water, the content of sulphur in the kidney and hepatopancreas increases, positive correlation being observed between the distribution of Cd and S. Exposure to cadmium results in the increase of Ca and Mg content in the gonads of scallops, as well as in the increase in Ca content of the gonads of mussels. Accumulation of cadmium in the gonads is rather small, maximum density of the material being observed histochemically in the gonadal wall. Morphological changes in the gonadal cells of mussels in summer period may be associated with the increase in cellular calcium.  相似文献   

2.
The determination of cadmium in whole blood, urine, or plasma by atomic absorption using electrothermal atomization is described. In preparation for atomic absorption analysis, cadmium was concentrated on an anion-exchange column, significantly lowering the limit of detection and allowing for the first time the accurate and precise determination of plasma cadmium concentrations in persons/animals with low-level cadmium exposures. Recovery of 109Cd from spiked whole blood, plasma, and urine into supernatants of nitric acid-deproteinated samples averaged 99, 100, and 95%, respectively. Anion-exchange isolation of the anionic chlorocadmium complex removed 99.8% of the major elements associated with a deproteinated whole blood sample. The recovery of 109Cd from the anion-exchange column was 92.2 +/- 0.9% (mean +/- SE, N = 35). The separation of cadmium from constituents in blood, urine, or plasma in this manner allowed comparison of unknown samples to aqueous standards with a defined acid matrix using commercially available acids. The mean intra-assay coefficient of variation (CV) was 12 +/- 3% (mean +/- SE, N = 6) for blood, plasma, and urine samples having cadmium concentrations of 0.1-0.8 microgram/liter. The interassay CV was 13% (N = 7) for a blood sample containing 0.6 microgram Cd/liter. The recovery of known amounts of cadmium added to blood, plasma, and urine in the range of 0.2 to 5.0 micrograms Cd/liter was 97 +/- 6% (mean +/- SE, N = 4).  相似文献   

3.
Two species of coarse fish that are relatively resistant to cadmium poisoning were exposed to sub-lethal concentrations of the metal in their aquarium water. Thus, roach were exposed to cadmium concentrations between 30 and 500 micrograms/l for periods of 14-70 days whereas stone loach were exposed to 1250 micrograms Cd/l for 21-77 days. Under all conditions of exposure, it was found upon analysis of the major organs of accumulation of cadmium in the two species that the toxic metal was sequestered by a single isoform of metallothionein. The amino acid compositions of roach and stone loach metallothionein were determined and found to be similar to those reported for other piscine metallothioneins. The two proteins were found to contain Cd:Zn:Cu in approximate ratios of 4:1:2 per mole of protein. The sequestration of Cd by metallothionein in the two resistant species of fish is contrasted with the situation observed previously in a cadmium-sensitive species, the rainbow trout.  相似文献   

4.
Eggs of Oryzius latipes in the blastula stage were exposed to M/100 artificial sea water which contained cadmium at the concentrations of 0.1, 1.0, 10.0, 20.0 or 50.0 mg 1−1. The 96 h TL50, value for cadmium was estimated to be 20 5 mg 1−1. When the eggs were incubated for 24 h in the M/100 sea water with 10.0 mg Cd 1−1 and then rinsed in glycine buffer solution (pH; 2.0), the cadmium content of the egg decreased markedly. Cadmium levels were determined in parts of the embryonic body, the chorion and the yolk sac. The most cadmium was detected in the chorion (94.6%). Prolonged cadmium exposure revealed that most of the cadmium was absorbed by the chorion and little was detected in the embryonic body and the yolk sac.  相似文献   

5.
Rainbow trout were exposed to either cadmium (9 micrograms/l) or zinc (100 micrograms/l) in their aquarium water. They were then transferred to water containing concentrations of cadmium (54 micrograms/l) that would have otherwise proved fatal to the majority of the fish without the pretreatment. Most of the fish survived under both sets of conditions. However, two different mechanisms seem to be involved in the protection of the animals against the toxic manifestations of cadmium. In both cases, more than 99% of the total body load of cadmium was found in the liver, kidney and gills of the animals. Analysis of the metal-binding proteins in these organs was carried out. In the fish exposed to the two concentrations of cadmium, the toxic metal was found only in association with two low mol. wt specific binding proteins despite the presence of zinc- (and copper)-containing isometallothioneins in all three organs. On the other hand, cadmium was distributed between these binding-proteins and metallothioneins in the liver, kidney and gill of the trout pretreated with zinc before their exposure to cadmium.  相似文献   

6.
A hydroponic experiment was carried out to characterize the oxidative stress responses of two potato cultivars (Solanum tuberosum L. cvs. Asterix and Macaca) to cadmium (Cd). Plantlets were exposed to four Cd levels (0, 50, 100, 150 and 200 μM) for 7 days. Cd concentration was increased in both roots and shoot. Number of sprouts and roots was not decreased, whereas Cd treatment affected the number of nodal segments. Chlorophyll content and ALA-D activity were decreased in both cultivars, whereas carotenoids content was decreased only in Macaca. Cd caused lipid peroxidation in roots and shoot of both cultivars. Protein oxidation was only verified at the highest Cd level. H2O2 content was increased in roots and shoot of Asterix, and apparently, a compensatory response between roots and shoot of Macaca was observed. SOD activity was inhibited in roots of Asterix at all Cd treatments, whereas in Macaca it was only increased at two highest Cd levels. Shoot SOD activity increased in Asterix and decreased in Macaca. Root CAT activity in Asterix decreased at 100 and 150 μM, whereas in Macaca it decreased only at 50 μM. Shoot CAT activity was decreased in Macaca. Root AsA content in Macaca was not affected, whereas in shoot it was reduced at 100 μM and increased at 200 μM. Cd caused increase in NPSH content in roots and shoot. Our results suggest that Cd induces oxidative stress in both potato cultivars and that of the two cultivars, Asterix showed greater sensitivity to Cd levels.  相似文献   

7.
柱状田头菇菌丝对镉胁迫的抗氧化响应   总被引:2,自引:0,他引:2  
研究了不同浓度Cd处理对柱状田头菇菌丝抗氧化酶及谷胱甘肽含量的影响.结果表明,在低浓度范围内随着Cd处理浓度的增加,菌丝抗氧化酶的活力上升,过氧化氢酶(CAT)与超氧化物歧化酶(SOD)的活性分别在Cd浓度为0.1和0.4mmol·L-1时达最大值;过氧化物酶(POD)、谷胱甘肽还原酶(GR)和脂氧合酶(LOX)的活性在Cd浓度为0.2mmol·L-1时达到峰值.而在高Cd浓度处理时,柱状田头菇菌丝抗氧化酶系(POD、CAT、SOD等)显著受到抑制.0.4~1.6mmol·L-1Cd处理可显著提高菌丝体内还原型谷胱甘肽(GSH)水平,却不影响氧化型谷胱甘肽(GSSG)含量.在整个试验过程中,均未检测到抗坏血酸及抗坏血酸过氧化物酶(APX)的活性.用聚丙烯酰胺凝胶电泳分析Cd胁迫下柱状田头菇菌丝抗氧化酶的同工酶谱发现,0.1~0.8mmol·L-1Cd处理可诱导过氧化物酶(POD)、酯酶(EST)和脂氧合酶(LOX)新同工酶的表达,提高组成型过氧化氢酶(CAT)、超氧化物歧化酶(SOD)同工酶的表达强度;1.6mmol·L-1Cd处理显著抑制POD、CAT、SOD等的表达.  相似文献   

8.
The purpose of the present study was to evaluate the effect of cadmium on some protein digestive and absorption enzymes in rats. Thirty-six rats were grouped into three groups of 12 animals each; one group received deionised water and acted as control. One group received 445 μM Cd and the last group received 890 μM Cd in their drinking water for a period of one month. The results obtained indicate that increasing the level of cadmium from 445 μM to 890 μM in the drinking water of the rats led to 29 and 23 increase in accumulated cadmium in the proximal and distal small intestine respectively. The body weight gain of rats exposed to 445 μM and 890 μMCd was decreased by about 24 and 43 respectively when compared with the control. The activities of carboxypeptidase A, dipeptidase and Na+/K+ ATPase were reduced in the mucosa of the proximal end of the small intestine of cadmium exposed rats. The reduction was dose dependent; with the 890 μM Cd exposed rats displaying the least activities. In the distal small intestine, the activities of these enzymes were restored in the 445 μM Cd exposed rats to levels that were not statistically different (P>0.05) from those observed in the controls. In the 890 μMCd exposed rats, dipeptidase activity improved by about 80 compared with the activity of the enzyme in the proximal small intestine. Likewise, Na+/K+ ATPase activity increased by about 125 compared with the observed level in the proximal small intestine. The study suggests that cadmium given to rats in drinking water compromise protein digestion and absorption of nutrients particularly in the proximal region of small intestine and could account for weight reduction associated with cadmium toxicity. Published online December 2004  相似文献   

9.
Roach and stone loach were exposed to cadmium dissolved in their aquarium water at 500 and 1250 micrograms/l, respectively, and the distribution of the metal accumulated in the major body organs was determined. The pattern of distribution for each species was somewhat different and was distinct in each case from that observed previously with rainbow trout. The total body loads of cadmium accumulated by the three species were assessed during the period of exposure and found not to correlate directly with the concentration of cadmium to which the individual species had been exposed. An alternative comparator was devised which as the quotient of the total body cadmium accumulation (microgram/100 g body wt) and the notional cadmium dose (microgram/l) X weeks was described as a fractional retention coefficient for cadmium. The coefficient was constant for each species at different periods of exposure to cadmium alone. The values of the coefficient for roach and stone loach were however much lower than that for rainbow trout. When rainbow trout were preexposed to zinc (100 micrograms/l, 5 days) before being exposed to cadmium, the fractional retention coefficient for cadmium fell to a value similar to those seen with roach and stone loach exposed to cadmium alone. The significance of these observations in relation to the nature of the intracellular proteins to which cadmium is bound in the three species is discussed in the light of their differential susceptibility to the toxic effects of cadmium.  相似文献   

10.
The effects of synthetic atrial natriuretic factor (ANF) on the renin-aldosterone axis were studied in fifteen 4-7 day-old male milk-fed calves divided into 3 groups of 5 animals each. Synthetic ANF intravenous (i.v.) administration (1.6 micrograms/kg body wt over 30 min) induced a transient significant fall in plasma renin activity (from 2.5 +/- 0.3 to 1.7 +/- 0.3 ng angiotensin l/ml/h; P less than 0.05) but failed to reduce basal plasma aldosterone levels in the first group of animals. Administration (i.v.) of angiotensin II (AII) (0.8 micrograms/kg body wt for 75 min) was accompanied by a progressive fall in plasma renin activity (from 2.2 +/- 0.3 to 0.8 +/- 0.1 ng angiotensin l/ml/h; P less than 0.01) and by an increase in plasma aldosterone levels (from 55 +/- 3 to 86 +/- 5 pg/ml; P less than 0.01) both in the second and the third groups; addition of ANF to AII infusion (AII: 0.5 mu/kg body wt for 45 min; AII: 0.3 micrograms/kg body wt and ANF 1.6 micrograms/kg body wt during 30 min) in the third group did not modify plasma renin activity or AII-stimulated plasma aldosterone levels when compared to the AII-treated group. These findings show that in the newborn calf ANF is able to reduce plasma renin activity but fails to affect basal and AII-stimulated plasma aldosterone levels, suggesting that the zona glomerulosa of the newborn adrenal cortex is insensitive to a diuretic, natriuretic and hypotensive dose of the atrial peptide.  相似文献   

11.
镉对蟾蜍的4种器官乳酸脱氢酶同工酶的影响   总被引:6,自引:0,他引:6  
以腹腔注射法对蟾蜍(Bufo bufo gargarizans)给镉,处理一周后,观察了4种镉中毒浓度(0.1、0.2、0.4、0.8mg/kg)条件下的蟾蜍心、肝、肾和睾丸中乳酸脱氢酶(LDH)同工酶的变化。结果表明:随着镉中毒浓度的升高,心脏LDH同工酶的活性明显升高,睾丸LDH同工酶的活性明显下降,肝中的LDH1、LDH2、LDH3、LDH5在0.4、0.8mg/kg浓度组酶活性明显增加,而LDH4则明显减弱,肾中LDH1的活性随镉浓度的升高而明显升高,其它各酶带活性出现先增强而后又逐渐减弱的现象。结果提示了镉对蟾蜍主要器官LDH同工酶的影响具有组织差异性。  相似文献   

12.
The effects of waterborne iron (FeCl3 X 6H2O) on growth, reproduction, survival and haemoglobin content in Daphnia magna were studied from subnormal to toxic concentrations in hard reconstituted water. Low concentrations of iron stimulated reproduction and haemoglobin synthesis after chronic exposure for 21 days. Maximum reproduction occurred between 0.1 and 1 microgram Fe 1(-1). Juvenile growth was not stimulated by iron but was slightly inhibited between 1 and 8 micrograms Fe 1(-1) and above 128 micrograms Fe 1(-1). A slight inhibition of growth persisted for 21 days. Total haemoglobin content was above the control with no waterborne iron at all but one concentration (512 micrograms Fe 1(-1]. The highest value (3.8 X control value) was found at 2 micrograms Fe 1(-1). The haemoglobin content decreased between 64 and 512 micrograms Fe 1(-1) and increased at higher concentrations. The decrease coincided with an inhibited reproduction. The increase was found in non reproductive survivors. A comparison with a previous study in D. magna suggests that ambient conditions (hardness and pH) and ageing of the water are important for the effects of waterborne iron. At a hardness of 250 mg 1(-1) as CaCO3 and a pH range of 7.0-8.0 the ZEP (Zero Equivalent Point) for reproduction was 158 micrograms Fe 1(-1). Continuous exposure to higher concentrations is expected to lead to extinction of a D. magna population.  相似文献   

13.
The effects of additions of CuSO4 X 5H2O to final concentrations between 0.0004 and 105 micrograms Cu l-1 on growth, reproduction, survival and haemoglobin content of Daphnia magna were studied in hard reconstituted water and compared to the response in the dilution water without addition of copper. Concentrations of copper are nominal values. The 48-hr EC50 (immobilization) for unfed neonates was 6.5 micrograms Cu l-1 and the 48-hr and 21-day LC50 for fed neonates were 18.5 and 1.4 microgram Cu l-1, respectively. Growth expressed as body length of juveniles after 7 days and adult females after 21 days was only reduced in survivors at the highest non-lethal concentration (6.6 micrograms Cu l-1). Reproduction was stimulated by low concentrations of copper. Optimal reproduction after 21 days was found between 0.001 and 0.1 microgram Cu l-1. Higher concentrations were partially inhibitory (0.4 microgram Cu l-1), stimulatory (0.8 and 1.6 microgram Cu l-1) or completely inhibitory (3.2 micrograms Cu l-1 and above). The stimulatory peak around 1 microgram Cu l-1 was accompanied by a reduced survival (above 0.4 microgram Cu l-1). The Zero Equivalent Point (ZEP) for reproduction at non-reduced survival was 0.23 microgram Cu l-1. This concentration should be "safe" for D. magna under prevailing conditions (reconstituted water with a hardness of 250 mg l-1 as CaCo3 and a synthetic diet based on fish food and baby gruel). The haemoglobin content was affected by copper in a complex pattern which was not related to growth, reproduction or survival.  相似文献   

14.
The purpose of the present study was to evaluate the effect of a dietary vitamin C supplement on cadmium absorption and distribution in an animal model. An aqueous solution of cadmium chloride (labelled with cadmium-109) was given by gavage to male Wistar rats for 28 days at a daily dose corresponding to 10 mg Cd/kg diet (1.0-1.2 mg Cd/kg b.w.). The animals assigned to groups 1 and 2 (45 animals per group) received a standard laboratory diet LSM, and tap water or tap water supplemented with ascorbic acid (1.5 mg/l), respectively. The radioactivity of the samples was measured using a liquid scintillation counter (tissue samples) and a gas-flow automatic counter (ashed carcasses). The fractional uptake of cadmium-109 in the carcass and organs was evaluated within 32 days after treatment by dividing the cadmium-109 activity in the whole sample by the total activity of cadmium-109 administered for 28 days. Results were compared using AUC (areas under the concentration time curve) values. The vitamin C supplement decreased the carcass cadmium burden and the cadmium content in the liver, kidneys, testicles and muscles; the highest decreases were found in the testicles, the lowest ones in the muscles. In addition, the rats supplemented with vitamin C revealed an improved body weight gain during the experimental period.  相似文献   

15.
Studies have been made on cadmium accumulation in tissues of mussels kept within 20-60 days in water artificially enriched by Cd up to 20-100 micrograms/l. Irrespectively of cadmium concentration in the medium, its accumulation in tissues decreases in the following order: mid-gut gland, gills, gonads, mantle, adductor. Maximum concentration of Cd was found in the digestive tubuli of the mid-gut gland by X-ray microanalysis. The increase in S and, to a lower extent, P concentrations in these tubuli was also observed. It is suggested that the latter is due to immobilization of Cd by metal-binding proteins as well as to lyzosomal vesicles involved into detoxication of Cd. The increase in the external cadmium up to 100 micrograms/l did not affect the level of K, Ca and Mg in tissues of the mussel.  相似文献   

16.
The toxic action of cadmium in the bone tissue is known, but its mechanisms are still unexplained. We examined whether Cd influences collagen content and its solubility in the femoral bone of three-week-old female rats exposed to 5 or 50 mg Cd/l in drinking water. Non-cross linked collagen was extracted with 0.5 M acetic acid, and two acid-insoluble collagen fractions were extracted with pepsin and 4.0 M guanidine hydrochloride, respectively. SDS/PAGE showed the presence of two collagen types, I and V, in all three extracted fractions. Exposure of rats to Cd for 6 months increased the amount of acid-soluble collagens type I and V and decreased the level of acid-insoluble collagens. The amount of total collagen extracted from the bones of rats exposed to 50 mg Cd/l was reduced by about 14% as compared to control and those intoxicated with 5 mg Cd/l. The solubility of type I bone collagen (determined as the percentage of acetic-soluble fraction of total collagen) was increased 2.9- and 3.0-fold in rats intoxicated with 5 and 50 mg Cd/l, respectively. Similarly, the solubility of type V collagen was increased 2.3- and 2.7-fold, respectively. Our results indicate that Cd treatment affects bone collagen by decreasing its content and increasing its solubility.  相似文献   

17.
Gibels were exposed to cadmium in their aquarium at a concentration of 10 micrograms Cd/l for up to 39 weeks. Distributions of cadmium, copper and zinc in the liver soluble fraction were determined along with sulfur by high performance liquid chromatography-inductively coupled argon plasma-atomic emission spectrometry. Cadmium was sequestered by the two major isoforms of gibel metallothionein as in the case of cadmium injected intraperitoneally into gibel. Several peaks with cadmium, copper, zinc and sulfur were observed other than the two major isoforms and their relative ratios were different between the control and cadmium-exposed fishes.  相似文献   

18.
Cadmium (Cd) a highly toxic metal is considered to be a multitarget toxicant, and it accumulates principally in the liver and kidney after absorption. In vivo studies of mouse and rat liver have shown that apoptosis plays a primary role in Cd-induced hepatotoxicity. However, the detailed mechanisms by which toxic metals such as Cd produce their effects are still largely unknown. The present study aimed at investigating the consequences of exposure to Cd, alpha-tocopherol and their combination on stress biochemical parameters (lipoperoxidation and protein carbonyls levels). Male albino Wistar rats (1 month old) were treated intravenously with cadmium (2 mg CdCl(2)/kg body weight/day), and alpha-tocopherol (100 mg/kg body weight/day), or with alpha-tocopherol+Cd (100 mg Vit E/kg body weight, 2 mg CdCl(2)/kg). The lipoperoxidation was measured by the thiobarbituric acid reactive substances (TBARS) method and oxidatively generated damage to proteins by determining carbonyl (DNPH) levels. Among the hematological parameters measured the haematocrit value and haemoglobin concentration were significantly decreased in the blood of Cd-treated rats. A significant increase was observed in the level of malondialdehyde (MDA) and protein carbonyls in the cadmium exposed group compared to control group (p<0.001), and these values were decreased after administration of alpha-tocopherol (group 4). The activity of lactate dehydrogenase in rat liver and brain showed a significant increase as compared to that found in the control group and significant decrease of catalase and superoxide dismutase activities. In the liver of the Cd-treated group the contents of reduced glutathione were decreased. Our results suggest that cadmium induces an oxidation of cellular lipids and proteins and that administration of alpha-tocopherol can reduce Cd-induced oxidative stress and improve the glutathione level together with other biochemical parameters.  相似文献   

19.
In this study, the effects of cadmium chloride (CdCl2) on plant growth, histology of roots, photosynthetic pigments content, δ-aminolevulinic acid dehydratase (ALA-D; E.C. 4.2.1.24) and acid phosphatase activities (AP; E.C. 3.1.3.2), soluble phosphorus (Pi) measurement and mineral nutrients content in cucumber seedlings (Cucumis sativus L.) were investigated. Cucumber seedlings were grown in vitro in an agar-solidified substrate containing four CdCl2 treatments (0, 100, 400, and 1000 μM) for ten days. Cd was readily absorbed by seedlings and its content was greater in the roots than in the shoot. Cd reduced shoot and root length, and fresh and dry biomass of seedlings. Inhibition of root cell elongation in Cd-treated seedlings was observed by the increase of the mean radial size of cells belonging to three zones of the root tip. The highest level of Cd reduced in a similar manner chlorophyll a, chlorophyll b and total chlorophyll contents. Increasing concentrations of Cd resulted in a linear decrease in carotenoids levels of cotyledons. Interestingly, the ALA-D activity in cotyledons was inhibited only at the highest level of Cd. Root and shoot AP activities were, respectively, activated and inhibited at all CdCl2 concentrations. Root Pi concentration was increased in all Cd treatments and it was not altered in the shoot tissues. Moreover, in general, the nutrient contents were increased in the root and decreased in the shoot. Therefore, we suggest that Cd affects negatively growth, photosynthetic pigments, ALA-D and AP activities and partition of mineral nutrients in cucumber seedlings.  相似文献   

20.
Work in cadmium (Cd) smelter and smoking cigarettes damages teeth and oral mucosa which are protected by tissue and salivary glycoconjugates: glycoproteins, glycolipids, and proteoglycans. We worked out a rat model imitating human "environmental" and "occupational" exposure to cadmium using 5 mg Cd and 50 mg Cd/l in drinking water, respectively. In submandibulary glands of exposed to Cd rats, we found the time and dose dependent accumulation of Cd and simultanous decrease in activity of beta-N-acetylhexosaminidase (HEX). In homogenates of submandibulary glands of control rats, beta-N-acetylhexosaminidase showed the highest activity. The activities of alpha-mannosidase and beta-galactosidase were very low. None of these exoglycosidases were inhibited by Cd even at 44 mM concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号