首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previous studies on the carbohydrate specificities of Erythrina cristagalli lectin (ECL) were mainly limited to analyzing the binding of oligo-antennary Galβ1→4GlcNAc (II). In this report, a wider range of recognition factors of ECL toward known mammalian ligands and glycans were examined by enzyme-linked lectinosorbent and inhibition assays, using natural polyvalent glycotopes, and a glycan array assay. From the results, it is shown that GalNAc was an active ligand, but its polyvalent structural units, in contrast to those of Gal, were poor inhibitors. Among soluble natural glycans tested for 50% molecular mass inhibition, Streptococcus pneumoniae type 14 capsular polysaccharide of polyvalent II was the most potent inhibitor; it was 2.1 × 104, 3.9 × 103 and 2.4 × 103 more active than Gal, tri-antennary II and monomeric II, respectively. Most type II-containing glycoproteins were also potent inhibitors, indicating that special polyvalent II and Galβ1-related structures play critically important roles in lectin binding. Mapping all information available, it can be concluded that: [a] Galβ1→4GlcNAc (II) and some Galβ1-related oligosaccharides, rather than GalNAc-related oligosaccharides, are the core structures for lectin binding; [b] their polyvalent II forms within macromolecules are a potent recognition force for ECL, while II monomer and oligo-antennary II forms play only a limited role in binding; [c] the shape of the lectin binding domains may correspond to a cavity type with Galβ1→4GlcNAc as the core binding site with additional one to four sugars subsites, and is most complementary to a linear trisaccharide, Galβ1→4GlcNAcβ1→6Gal. These analyses should facilitate the understanding of the binding function of ECL. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

2.
Wu AM  Wu JH  Liu JH  Singh T 《Life sciences》2004,74(14):1763-1779
Bauhinia purpurea agglutinin (BPA) is a Galbeta1-3GalNAc (T) specific leguminous lectin that has been widely used in multifarious cytochemical and immunological studies of cells and tissues under pathological or malignant conditions. Despite these diverse applications, knowledge of its carbohydrate specificity was mainly limited to molecular or submolecular T disaccharides. Thus, the requirement of high density polyvalent or multi-antennary carbohydrate structural units for BPA binding and an updated affinity profile were further evaluated by enzyme-linked lectinosorbent (ELLSA) and inhibition assays. Among the glycoproteins (gps) tested and expressed as 50% nanogram inhibition, the high density polyvalent GalNAcalpha1-Ser/Thr (Tn) and Galbeta1-3/4GlcNAc (I/II) glycotopes present on macromolecules generated a great enhancement of binding affinity for BPA as compared to their monomers. The most potent inhibitors were a Tn-containing gp (asialo OSM) and a I/II containing gp (human blood group precursor gp), which were up to 1.7 x 10(4) and 2.3 x 10(3) times more potent than monovalent Gal and GalNAc, respectively. However, multi-antennary glycopeptides, such as tri-antennary Galbeta1-4GlcNAc, which was slightly more active than II or Gal, gave only a minor contribution. Regarding the carbohydrate structural units studied by the inhibition assay, blood group GalNAcbeta1-3/4Gal (P/S) active glycotopes were active ligands. The overall binding profile of BPA was: high density polyvalent T/Tn and II clusters > Tn-glycopeptides (M.W. <3.0 x 10(3))/Talpha monomer > monovalent P/S > Tn monomer and GalNAc > tri-antennary II > Gal > Man and Glc (inactive). These findings give evidence for the binding of this lectin to dense cell surface T, Tn and I/II glycoconjugates and should facilitate future usage of this lectin in biotechnological and medical applications.  相似文献   

3.
Artocarpus lakoocha agglutinin (ALA), isolated from the seeds of A. lakoocha fruit, is a galactose-binding lectin and a potent mitogen of T and B cells. Knowledge obtained from previous studies on the affinity of ALA was limited to molecular and submolecular levels of Galbeta1-->3GalNAc (T) and its derivatives. In the present study, the carbohydrate specificity of ALA was characterized at the macromolecular level according to the mammalian Gal/GalNAc structural units and corresponding glycoconjugates by an enzyme-linked lectinosorbent (ELLSA) and inhibition assays. The results indicate that ALA binds specifically to tumor-associated carbohydrate antigens GalNAcalpha1-->Ser/Thr (Tn) and Galbeta1-->3 GalNAcalpha1-->Ser/Thr (Talpha). It barely cross-reacts with other common glycotopes on glycoproteins, including ABH blood group antigens, Galbeta1-->3/4GlcNAc (I/II) determinants, T/Tn covered by sialic acids, and N-linked plasma glycoproteins. Dense clustering structure of Tn/Talpha-containing glycoproteins tested resulted in 2.4 x 10(5)-6.7 x 10(5)-fold higher affinities to ALA than the respective GalNAc and Gal monomer. According to our results, the overall affinity of ALA for glycans can be ranked respectively: polyvalent Tn/Talpha glycotopes > monomeric Talpha and simple clustered Tn > monomeric Tn > GalNAc > Gal; while other glycotopes: Galalpha1-->3/4Gal (B/E), Galbeta1-->3/4GlcNAc (I/II), GalNAcalpha1-->3Gal/GalNAc (A/F), and GalNAcbeta1-->3/4Gal (P/S) were inactive. The strong specificity of ALA for Tn/Talpha cluster suggests the importance of glycotope polyvalency during carbohydrate-receptor interactions and emphasizes its value as an anti-Tn/T lectin for analysis of glycoconjugate mixtures or transformed carbohydrates.  相似文献   

4.
Ricin B is a galactose-binding protein, which contains two binding sites. We have compared the binding properties of the two binding sites of ricin B chain toward different mono- and disaccharide ligands. The free energies of binding are calculated using the free energy perturbation simulation (thermodynamic integration method) and linear interaction energy approach using CHARMM force field. The second binding site of the protein was found to be weaker compared to the first. The details of the hydrogen-bonding scheme suggested the origin of the epimeric specificity of the protein. The reason for the weaker binding capacity of the second binding site has been addressed.  相似文献   

5.
Wu AM  Wu JH  Singh T  Liu JH  Herp A 《Life sciences》2004,75(9):1085-1103
Anguilla anguilla agglutinin (AAA) is a fucose-specific lectin found in the serum of the fresh water eel. It is suggested to be associated with innate immunity by recognizing disease-associated cell surface glycans, and has been widely used as a reagent in hematology and glycobiology. In order to gain a better understanding of AAA for further applications, it is necessary to elucidate its binding profile with mammalian glycotopes. We, therefore, analyzed the detailed carbohydrate specificity of AAA by enzyme-linked lectinosorbent assay (ELLSA) with our extended glycan/ligand collection and lectin-glycan inhibition assay. Among the glycans tested, AAA reacted well with nearly all human blood group Ah (GalNAcalpha1-->3[LFucalpha1-->2]Gal), Bh (Galalpha1-->3[LFucalpha1-->2]Gal), H LFucalpha1-->2Gal) and Leb (Fucalpha1-->2Galbeta1-->3[Fucalpha1-->4]GlcNAc) active glycoproteins (gps), but not with blood group Lea (Galbeta1-->3[Fucalpha1-->4]GlcNAc) substances, suggesting that residues and optimal density of alpha1-2 linked LFuc to Gal at the non-reducing end of glycoprotein ligands are essential for lectin-carbohydrate interactions. Blood group precursors, Galbeta1-3GalNAc (T), GalNAcalpha1-Ser/Thr (Tn) containing glycoproteins and N-linked plasma gps, gave only negligible affinity. Among the mammalian glycotopes tested, Ah, Bh and H determinants were the best, being about 5 to 6.7 times more active than LFuc, but were weaker than p-nitrophenylalphaFuc indicating that hydrophobic environment surrounding the LFuc moiety enhance the reactivity. The hierarchy of potency of oligo- and monosaccharides can be ranked as follows: p-nitrophenyl-alphaFuc > Ah, Bh and H > LFuc > LFucalpha1-->2Galbeta1-->4Glc (2'-FL) and Galbeta1-->4[LFucalpha1-->3]Glc (3'-FL), while LNDFH I (Leb hexa-), Lea, Lex (Galbeta1-->4[Fucalpha1-->3]GlcNAc), and LDFT (gluco-analogue of Ley) were inactive. From the present observations, it can be concluded that the combining site of AAA should be a small cavity-type capable of recognizing mainly H/crypto H and of binding to specific polyvalent ABH and Leb glycotopes.  相似文献   

6.
A rapid method for purifying ricin toxin from castor beans is presented which uses a single affinity column step to obtain pure toxin from a crude extract of castor beans. A galactosyl-Sepharose affinity matrix was used to bind ricin toxin and its associated agglutinin, which both bind specifically to galactose, from a crude extract. The selective elution of ricin toxin and agglutinin was then achieved by eluting the affinity column with a galactose gradient, which sequentially elutes the two proteins due to a difference in binding avidity to the matrix.  相似文献   

7.
8.
The effect of chemical modification of amino acid residues essential for sugar binding in the α-D-galactoside specific jack fruit (Artocarpus integrifolia) seed lectin and the protection of the residues by specific sugar from modification were studied. Citraconylation or maleylation of 75 % of its lysyl residues or acetylation of 70 % of the tyrosyl residues completely abolished sugar binding and agglutination without dissociation of subunits. 1-O-methyl α-D-galactoside could protect its essential lysyl and tyrosyl groups from modification. Tryptophan could not be detected in the protein. Difference absorption spectra on binding of the above sugar confirmed the role of tyrosine residues and showed an association constantK = 0.4 × 103 M−1. Data suggests that the lectin could be immobilized without any loss of sugar binding activity  相似文献   

9.
The metal micronutrients (MN) copper, iron, manganese, and zinc are transported via the phloem in the course of remobilization and circulation. The extent of these processes and transport species are still largely unknown. The Ricinus seedling was used to study the transport of these metal micronutrients as well as their interactions with the plant-endogenous chelator nicotianamine (NA) by daily measurements of the concentrations in the seedling parts and in the sieve tube sap obtained from a cut at the hypocotyl hook. The concentrations of these micronutrients in the phloem exudate decreased slightly from day 4 to day 8 of seedling development. Maximum values at day 4 were 65 μM for Zn, 63 μM for Fe, 27 μM for Cu, and 12 μM for Mn. The phloem transport rates reached maxima of 0.12 nmol cm?2h?1 for Zn and Fe at days 6 and 7, corresponding to the maximum exudation rates. The magnitude of these transport rates were in agreement with the net translocation rates estimated by analyses of the concentrations in the individual seedling parts. The NA content of the seedlings increased from day 0 (seed before sowing) until day 8, from 16 nmol to 474 nmol, which corresponds to an average net synthesis rate of about 100 nmol day?1 between the days 4 and 8. The NA:MN ratio was constant at 0.5 in the seedlings within this period. The NA concentrations and the sum of the concentrations of all four micronutrients in the sieve tube sap showed a constant ratio of 1.25 over the entire experimental period. Thus, both complex partners were subject to a cotransport in the phloem. Removal of the supplying endosperm led to a decrease in MN and NA concentrations in the sieve tube sap to about 80% while an average excess of NA of 1.1 was maintained. Since the concentrations of other amino acids, also possible chelators of metal micronutrients, fall to about 10% after removal of the endosperm, their role seems to be negligible as vehicles of MN transport in the phloem. Thus it is suggested that the divalent micronutrients considered in this study are loaded and maybe transported as NA complexes.  相似文献   

10.
11.
GATA proteins are considered to be broadly involved in yield associated biological process, such as photoresponse, chlorophyll biosynthesis, and carbon and nitrogen metabolism. Based on castor bean genome database, a total of 19 GATA genes were identified and classified into 4 subfamilies according to gene structure, protein structure and their phylogenetic relationships. Results exhibited that GATA factors were hydrophilic proteins. Analysis of gene structure and protein structure revealed the conserved structural features of GATA factors between castor bean and Arabidopsis thaliana. The high throughput RNA seq data were used to define the expressional profiles of GATA genes among tissues. The results showed that most of the castor GATA genes preferentially expressed in leaf and root in contrast to their expression in developing seeds. In particular, the expression of GATA genes responding to darkness treatment in leaves was detected using semi quantitative RT PCR. It was shown that expression of three genes was down regulated under darkness treatment, which suggests a role for GATA genes of castor bean in light mediated regulation. These results provide important theoretical basis to the functions identification of castor GATA genes and increase castor yields.  相似文献   

12.
Wu AM  Wu JH  Herp A  Chow LP  Lin JY 《Life sciences》2001,69(17):2027-2038
To elucidate of the mechanism of intoxication, the affinity of a toxic lectin, abrin A, from the seeds of Abrus precatorius for mammalian carbohydrate ligands, was studied by enzyme linked lectinosorbent assay and by inhibition of abrin A-glycan interaction. From the results, it is concluded that: (1) abrin A reacted well with Gal beta1-->4GlcNAc (II), Gal alpha1-->4Gal (E), and Gal beta1-->3GalNAc (T) containing glycoproteins. But it reacted weakly with sialylated gps and human blood group A,B,H active glycoproteins (gps); (2) the combining site of abrin A lectin should be of a shallow groove type as this lectin is able to recognize from monosaccharides with specific configuration at C-3, C-4, and deoxy C-6 of the (D)Fuc pyranose ring to penta-saccharides and probably internal Gal alpha,beta-->; and (3) its binding affinity toward mammalian structural features can be ranked in decreasing order as follows: cluster forms of II, T, B/E (Gal alpha1-->3/4Gal) > monomeric T > monomeric II > monomeric B/E, Gal > GalNAc > monomeric I > Man and Glc (inactive). These active glycotopes can be used to explain the possible structural requirements for abrin A toxin attachment.  相似文献   

13.
Phytoextraction has been identified as one of the most propitious methods of phytoremediation. This pot experiment were treated with varying amounts of (ethylenediamine triacetic acid) EDTA 3–15, (Nitriloacetic acid) NTA 3–10, (Ammonium citrate) NH4 citrate 10 – 25 mmol and one mg kg–1Cd, filled with 5 kg soil. The addition of chelators significantly increased Cd concentration in soil and plant. The results showed that maximum Cd uptake was noted under root, shoot and leaf of castor plant tissue (2.26, 1.54, and 0.72 mg kg–1) under EDTA 15, NTA 10, and NH4 citrate 25 mmol treatments respectively, and in soil 1.08, 1.06 and 0.52 mg kg–1 pot–1 under NH4 citrate 25, NTA 10 and EDTA 15 mmol treatments respectively, as against to control (p < 0.05). Additions of chelators reduction biomass under the EDTA 15 mmol as compared to other treatments, However, Bioconcentration factor (BCF), translocation factor (TF) and remediation factor (RF) were significantly increased under EDTA 15 and NH4 citrate 25 mmol as against control. Our results demonstrated that castor plant proved satisfactory for phytoextraction on contaminated soil, and EDTA 15 and NH4 citrate 25 mmol had the affirmative effect on the Cd uptake in the artificial Cd-contaminated soil.  相似文献   

14.
Mucous consists of glycoproteins and proteoglycans produced by specific secretory cells (mucocytes). In anurans the cutaneous mucous is produced by intradermal glands and displays both mechanical and chemical protection functions. Indeed, mucous maintains the integument moist and facilitates gas exchange (cutaneous respiration). In this work, the carbohydrate moiety distribution was investigated in the integument of Bufo ictericus using conventional and lectin histochemistry to describe the pattern of cutaneous glycoconjugate expression, including both secretory and structural proteoglycans. As a preliminary step, the descendent chromatography in Whatmann 1MM paper was undertaken to prepare the histochemical trials involving the lectins. In B. ictericus, the integument exhibits the basic morphological structure found in lower terrestrial vertebrates: the epidermis is a keratinized squamous stratified epithelium supported by spongious and compact layers. The spongy dermis contain secretory portion of both mucous and serous (or poison) glands. The paper chromatography identified galactose, fucose and mannose as characteristic sugar residues. The secretory cells of the mucous gland in the dermis, as well as the interstice between the stratum corneum and the subjacent stratum spinosum in the epidermis exhibit alpha-l-fucose and alpha-galactose residues. The serous glands give no reaction. The alpha-mannose residue was detected in the extracellular matrix of spongious dermis, but not in the dermal glands. The different glycoconjugate location reflects in two glycoconjugates categories: the secretory which participate in the water flow regulation, and the structural which is involved in the dermal maintenance.  相似文献   

15.
P0, the most abundant glycoprotein of PNS myelin, is a homophilic and heterophilic adhesion molecule. P0 is known to contain a glycoform population that expresses the L2/HNK-1 carbohydrate epitope found on other neural adhesion molecules, and to be functionally implicated centrally in neural cell adhesion and neurite outgrowth. This carbohydrate epitope has been characterized previously from glycolipid structures and contains a sulphated glucuronic acid residue. However, the L2/HNK-1 carbohydrate epitope has not been characterized in glycoproteins. Because P0 possesses only one glycosylation sequon, the number of P0 glycoforms is equal to the heterogeneity of the glycan species. Here we report that the carbohydrate analysis of L2/HNK-1-reactive P0 showed the presence of anionic structures containing sialic acid and sulphate in various combinations. At least one sulphate residue was present in 80% of the monosaccharide sequences, and 20% contained three sulphates. High-resolution P4 gel chromatography of the desialylated and desulphated oligosaccharides showed substantial heterogeneity of monosaccharide sequences. Sequential exoglycosidase digestions indicated that the majority of the structures were of the hybrid class, although the sulphated structures were found to be endoglycosidase H-resistant.  相似文献   

16.
The high abundance of repetitive but nonidentical proline-rich sequences in spliceosomal proteins raises the question of how these known interaction motifs recruit their interacting protein domains. Whereas complex formation of these adaptors with individual motifs has been studied in great detail, little is known about the binding mode of domains arranged in tandem repeats and long proline-rich sequences including multiple motifs. Here we studied the interaction of the two adjacent WW domains of spliceosomal protein FBP21 with several ligands of different lengths and composition to elucidate the hallmarks of multivalent binding for this class of recognition domains. First, we show that many of the proteins that define the cellular proteome interacting with FBP21-WW1-WW2 contain multiple proline-rich motifs. Among these is the newly identified binding partner SF3B4. Fluorescence resonance energy transfer (FRET) analysis reveals the tandem-WW domains of FBP21 to interact with splicing factor 3B4 (SF3B4) in nuclear speckles where splicing takes place. Isothermal titration calorimetry and NMR shows that the tandem arrangement of WW domains and the multivalency of the proline-rich ligands both contribute to affinity enhancement. However, ligand exchange remains fast compared with the NMR time scale. Surprisingly, a N-terminal spin label attached to a bivalent ligand induces NMR line broadening of signals corresponding to both WW domains of the FBP21-WW1-WW2 protein. This suggests that distinct orientations of the ligand contribute to a delocalized and semispecific binding mode that should facilitate search processes within the spliceosome.  相似文献   

17.
18.
Peptidoglycan recognition proteins (PGRPs) are important components of the innate immune system which provide the first line of defense against invading microbes. There are four members in the family of PGRPs in animals of which PGRP-S is a common domain. It is responsible for the binding to microbial cell wall molecules. In order to understand the mode of binding of PGRP-S to the components of the bacterial cell wall, the structure of the complex of camel PGRP-S (CPGRP-S) with heptanoic acid has been determined at 2.15 Å resolution. The structure determination showed the presence of four crystallographically independent protein molecules which are designated as A, B, C, and D. These four protein molecules associate in the form of two homodimers which are represented as A-B and C-D dimers. The association between molecules A and B gives rise to a shallow cleft on the surface at one end of the dimeric interface. One molecule of heptanoic acid is observed at this binding site in the A-B dimer. The association of C and D molecules results in the formation of a long zig-zag tunnel along with the C-D interface. In the cleft at the C-D interface, three molecules of hydrogen peroxide along with other non-water solvent molecules have been observed. The analysis of the several complexes of CPGRP-S with fatty acids and non-fatty acids such as peptidoglycan, lipopolysaccharide, and lipoteichoic acid shows that the fatty acids bind at the A-B site while non-fatty acids interact through C-D interface.  相似文献   

19.
The phloem transport system is a complex tissue that primarily carries photoassimilate from source to sink. Its function depends on anucleate sieve elements (SE) supported by companion cells (CC). In this study, SE sap was sampled and the protein identity of soluble proteins was determined with the aim of understanding the function of proteins within the conduit. Unlike many plants, SE sap exudes from incisions in the bark of Ricinus communis and, although there is a greater possibility of contamination from tissues other than SE, sap can be obtained in sufficient quantities to separate proteins using 2D electrophoresis. Spots were excised for trypsin digest, then analysed by quadrupole time of flight (Q-TOF) mass spectrometry (MS) and database searched to determine sequence identity. Overall, 18 proteins were identified in the SE-enriched sap. Proteins identified that have not previously been identified directly from SE sap included a glycine-rich RNA-binding protein, metallothionein, phosphoglycerate mutase, and phosphopyruvate hydratase. The potential role of the identified protein in SE function is discussed. The protein identification in this study provides a first step towards the goal of a greater understanding of the function of proteins within the SE.  相似文献   

20.
The hemocyanin of Rapana thomasiana grosse (marine snail, gastropod) is a glycoprotein with a carbohydrate content of 8.9% (w/w) and monosaccharide constituents xylose, fucose, 3-OOmethylgalactose, mannose, galactose, N-acetylgalactosamine and N-acetylglucosamine residues. The two structural subunits of this oxygen carrier, RHSS1 and RHSS2, are unevenly glycosylated. On subtracting the carbohydrate contribution from the Mr values of 250 and 450 kDa attributed to the two subunits, values of 2.18 × 105 daltons and 4.30 × 105 daltons were calculated for the polypeptide part of the “light” and “heavy” subunits, respectively. Comparison of the monosaccharide compositions of gastropodan hemocyanins revealed qualitative similarities, as well as relationships between the quantities, of the individual monosaccharides: Man 3MeGal > GlcNAc GalNAc and Fuc Xyl  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号