首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
AIMS: Kloeckera apiculata and Saccharomyces cerevisiae yeast species are dominant, respectively, at the early and at the following stages of wine fermentation. In the present study, PCR fingerprinting and NTS region amplification and restriction were applied as techniques for monitoring yeast population performing Aglianico of Vulture grape must fermentation. METHODS AND RESULTS: Thirty S. cerevisiae and 30 K. apiculata strains were typed by PCR fingerprinting with (GAC)5 and (GTG)5 primers and by complete NTS region amplification followed by restriction with HaeIII and MspI enzymes. S. cerevisiae strains generated two patterns with (GAC)5 primer, while (GTG)5 primer yielded a higher genetic polymorphism. Conversely, in K. apiculata Aglianico wine strains (GAC)5 and (GTG)5 primers generated the same profile for all strains. Restriction analysis of the amplified NTS region gave the same profile for all strains within the same species, except for one strain of S. cerevisiae. CONCLUSIONS: The PCR fingerprinting technique was useful in discriminating at strain level S. cerevisiae, particularly with the primer (GTG)5. RFLP patterns generated from the NTS region of the two species can be more easily compared than the patterns resulting from PCR fingerprinting, thus RFLP is more suitable for the rapid monitoring of the species involved in different stages of fermentation. SIGNIFICANCE AND IMPACT OF THE STUDY: The molecular techniques used allow discrimination of S. cerevisiae at strain level and monitoring of the ratio of S. cerevisiae/K. apiculata during the fermentation process. Thus, their application can assure technological adjustments in a suitable time.  相似文献   

2.
Abstract The lipid composition of a strain of each of two yeasts, Saccharomyces csrevisiae and Kloeckera apiculata , with different ethanol tolerances, was determined for cells grown with or without added ethanol. An increase in the proportion of ergosterol, unsaturated fatty acid levels and the maintenance of phospholipid biosynthesis seemed to be responsible for ethanol tolerance. The association of ethanol tolerance of yeast cells with plasma membrane fluidity, measured by fluorescence anisotropy, is discussed. We propose that an increase in plasma membrane fluidity may be correlated with a decrease in the sterol: phospholipid and sterol: protein ratios and an increase in unsaturation index.  相似文献   

3.
4.
Physiological variants of Saccharomyces cerevisiae and Kloeckera apiculata have been identified in oil palm wine and cashew juice from Nigeria. Genomic DNA from the four S. cerevisiae variants had a % G + C of 36-41% while that of K. apiculata was 32.2%. Fermentation of cashew juice produced wine of alcoholic contents of 10% with S. cerevisiae, 8% with K. apiculata and 9.3% with both yeasts simultaneously.  相似文献   

5.
Physiological variants of Saccharomyces cerevisiae and Kloeckera apiculata have been identified in oil palm wine and cashew juice from Nigeria. Genomic DNA from the four S. cerevisiae variants had a % G + C of 36–41% while that of K. apiculata was 32.2%. Fermentation of cashew juice produced wine of alcoholic contents of 10% with S. cerevisiae , 8% with K. apiculata and 9.3% with both yeasts simultaneously. and accepted 31 August 1989  相似文献   

6.
Comparative cellular metabolism can be a difficult area of biochemistry to teach in the undergraduate laboratory class. Student practicals involving animal tissues generally require approval from animal ethic committees, and the relevance for students whose primary interest in biochemistry is in the area of food and wine sciences, is often questioned. In this report, we present an undergraduate practical exercise in which glucose catabolism via the pentose phosphate pathway is compared in two types of yeast with direct relevance to the wine and food industries, Saccharomyces cerevisiae and Kloeckera apiculata. The exercise is carried out as a demonstration to second year undergraduate students, studying metabolic biochemistry. It is of some value in that it illustrates comparative cellular metabolism in wine yeasts and introduces the students to the safe use of radioisotopes.  相似文献   

7.
The floc-forming ability of flocculent strains of Kloeckera apiculata, isolated from musts, was tested for susceptibility to proteinase and sugar treatments. Three different flocculation phenotypes were discriminated by protease digestion, whereas the inhibition of flocculation by sugars distinguished two definite patterns: one mechanism of flocculation involved a galactose-specific protein and the other a broad-specificity lectin. SEM and TEM observation of the cell surface of two different Kloeckera strains revealed fine fibrils and a diffuse structure at the point of contact in one strain, and thick masses of mucus on the cell wall of the other strain.  相似文献   

8.
The (R)/(S) ratios of acetoin were always higher in wines obtained by Saccharomyces cerevisiae than in those obtained by Kloeckera apiculata. A significantly different behaviour was determined between the two species as regards contents and ratios of 2,3-butanediols: S. cerevisiae produced more (R,R)-2,3-butanediol (about 80%), whereas K. apiculata produced more meso-form (about 90%).  相似文献   

9.
The influence of temperature (10°C and 25°C) on the survival and growth of Saccharomyces cerevisiae and Kloeckera apiculata was examined in mixed and pure cultures during fermentation in apple juice. The growth reached by S. cerevisiae did not seem to be affected by temperature and the presence of K. apiculata . However, the growth and survival of K. apiculata , both in single and mixed cultures, were substantially enhanced at 10°C. The highest amount of ethyl acetate was produced by K. apiculata in pure culture at 10°C. Nevertheless, this concentration was lowest when both yeasts were fermented together at 10°C and 25°C.  相似文献   

10.
Summary Secondary products in wines obtained by pure, mixed and sequential cultures of Saccharomyces cerevisiae, Hanseniaspora guilliermondii or Kloeckera apiculata were studied. Consistent differences in the composition were determined in wines fermented by sequential cultures. When S. cerevisiae was added to musts partially fermented by apiculate yeasts, its metabolism was significantly affected. In particular it synthesized high amounts of n-propanol and metabolized high quantities of acetoin, produced by apiculate yeasts  相似文献   

11.
AIMS: To characterize and analyze the flocculation phenomenon of Kloeckera apiculata mc1 from Argentinian wine to understand the cell-cell interaction pattern. METHODS AND RESULTS: Kloeckera apiculata mc1 possess intense cell-cell interactions in MYPG medium (0.5% malt extract, 1% yeast extract, 2% glucose, 2% peptone), pH 5.5 by shaking at 25 degrees C. Optimum flocculation is observed at pH 4.5 in the presence of 3 mmol l-1 Ca2+. The flocculation is induced by peptone and malt extract and not by yeast extract and is reversed by 50 mmol l-1 galactose or lactose. The flocculation is highly susceptible to pronase, chymotrypsine and proteases types IV and XXVII and is partially resistant to trypsin. The electronic microscopy shows that the cells are attached to each other along their sides by fine hair-like threads. CONCLUSIONS: The mechanism of flocculation of K. apiculata mc1 is mediated by protein-carbohydrate interaction, stabilized by Ca2+. SIGNIFICANCE AND IMPACT OF THE STUDY: The use of selected pure yeast inocula of known ability is preferred to wine elaboration, therefore the indigenous flora must be avoided and the flocculation of K. apiculata could be an economic method to do it.  相似文献   

12.
Saccharomyces cerevisiae is traditionally used for alcoholic beverage and bioethanol production; however, its performance during fermentation is compromised by the impact of ethanol accumulation on cell vitality. This article reviews studies into the molecular basis of the ethanol stress response and ethanol tolerance of S. cerevisiae; such knowledge can facilitate the development of genetic engineering strategies for improving cell performance during ethanol stress. Previous studies have used a variety of strains and conditions, which is problematic, because the impact of ethanol stress on gene expression is influenced by the environment. There is however some commonality in Gene Ontology categories affected by ethanol assault that suggests that the ethanol stress response of S. cerevisiae is compromised by constraints on energy production, leading to increased expression of genes associated with glycolysis and mitochondrial function, and decreased gene expression in energy‐demanding growth‐related processes. Studies using genome‐wide screens suggest that the maintenance of vacuole function is important for ethanol tolerance, possibly because of the roles of this organelle in protein turnover and maintaining ion homoeostasis. Accumulation of Asr1 and Rat8 in the nucleus specifically during ethanol stress suggests S. cerevisiae has a specific response to ethanol stress although this supposition remains controversial.  相似文献   

13.
Behaviour of Candida cantarellii and Saccharomyces cerevisiae strains during the fermentation of Syrah grape must using pure, mixed and sequential yeast cultures was studied. Different kinds of inocula have been tested according to the type of culture. Inocula proportions used in mixed C. cantarellii and S. cerevisiae strains reflect the population levels in natural grape microbiota. Biomass evolution of both strains was analysed in relation to different byproduct levels. Saccharomyces cerevisiae overcame C. cantarellii in the different co-culture assays at 48 h of fermentation. The final concentration of ethanol was similar in mixed and both sequential tests and higher (from 7.8 to 10.6%) than in S. cerevisiae pure culture. In mixed and sequential cultures, the glycerol content of the final products was 44.3 to 52.8% higher than the one obtained with pure S. cerevisiae fermentation. Wine analytical profiles of experiments that involved S. cerevisiae and C. cantarellii strains differed from the pure ones mainly in acetoin, propanol and succinic acid contents. From an enological point of view, analysed byproducts are relevant. Considering this, mixed assay and the inoculation of S. cerevisiae after 3 days of pure C. cantarellii fermentation appear to be the more appropriate options to develop the particular characteristics of Syrah wines. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
Partially (6-fold) purified plasma membrane ATPase from an ethanol-sensitive yeast, Kloeckera apiculata, had an optimum pH of 6.0, an optimum temperature of 35°C, a K m of 3.6 mm ATP and a V max of 11 mol Pi/min.mg protein. SDS-PAGE of the semi-purified plasma membrane showed a major band of 106 kDa. No in vivo activation of the ATPase by glucose was observed. Although 4% (v/v) ethanol decreased the growth rate by 50% it did not affect the ATPase. Concentrations of ethanol 2% (v/v) did, however, inhibit the enzyme in vitro. The characteristics of the enzyme did not change during growth in the presence of ethanol.  相似文献   

15.
Kloeckera apiculata 34-9 was selected from the rhizosphere soil for its high efficacy in controlling citrus green and blue mold. In this study, the effect of the antagonistic yeast K. apiculata on citrus cuticular wax was investigated in ripening Newhall navel orange (Citrus sinensis L. Osbeck). Our results show that K. apiculata triggers the production of cuticular waxes and surface wax morphology changes in the fruit surface. 15 K. apiculata-responsive differentially expressed genes (DEGs) were identified for wax metabolism by using the Affymetrix citrus genome GeneChip. Using GC–MS, 46 wax compounds were found in the Newhall fruit surface. On one hand, esters including docosanoic acid, 1,2,3-propanetriyl ester and 9-hexadecenoic acid, 9-octadecenyl ester were up-regulated approximately twofold in the treatment condition compared with the control; and on the other hand, the fatty acids and fatty alcohols decreased by 74.4% and 72.3%, respectively, in the treatment condition. The new wax production and increased hydrophobicity of the Newhall surface resulting from the treatment may influence spore adhesion and germination. Furthermore, the response of the fruit waxes to the K. apiculata stimulus is likely to be regulated by intra-cellular H2O2 signaling. This study demonstrated the response fruit waxes to K. apiculata in Newhall navel oranges, thus providing new clues that aid our understanding of the mechanisms of action of antagonistic yeasts in postharvest fruits.  相似文献   

16.
17.
One of the important factors affecting wine fermentation is temperature. The influence of elevated temperatures from 10 to 25 °C at 5 °C intervals on yeast growth and fermentation products were studied in mixed cultures of Kloeckera apiculata and Saccharomyces cerevisiae in grape juice. In the experiments carried out at 10 and 15 °C, K. apiculata grew and survived longer compared to trials conducted above 20 °C. In most cases, higher temperatures stimulated the production of higher alcohols but lowered the formation of esters and acetaldehyde. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
De novo synthesis of monoterpenes by Saccharomyces cerevisiae wine yeasts   总被引:1,自引:0,他引:1  
This paper reports the production of monoterpenes, which elicit a floral aroma in wine, by strains of the yeast Saccharomyces cerevisiae. Terpenes, which are typical components of the essential oils of flowers and fruits, are also present as free and glycosylated conjugates amongst the secondary metabolites of certain wine grape varieties of Vitis vinifera. Hence, when these compounds are present in wine they are considered to originate from grape and not fermentation. However, the biosynthesis of monoterpenes by S. cerevisiae in the absence of grape derived precursors is shown here to be of de novo origin in wine yeast strains. Higher concentration of assimilable nitrogen increased accumulation of linalool and citronellol. Microaerobic compared with anaerobic conditions favored terpene accumulation in the ferment. The amount of linalool produced by some strains of S. cerevisiae could be of sensory importance in wine production. These unexpected results are discussed in relation to the known sterol biosynthetic pathway and to an alternative pathway for terpene biosynthesis not previously described in yeast.  相似文献   

19.

This study investigated the effects of temperature (20 and 30 °C) and pH (pH 3.1, 3.9) on kinetic changes of chemical constituents of the durian wine fermented with Saccharomyces cerevisiae. Temperature significantly affected growth of S. cerevisiae EC-1118 regardless of pH with a higher temperature leading to a faster cell death. The pH had a more significant effect on ethanol production than temperature with higher production at 20 °C (5.95%, v/v) and 30 °C (5.56%, v/v) at pH 3.9, relative to that at pH 3.1 (5.25 and 5.01%, v/v). However, relatively higher levels of isobutyl alcohol and isoamyl alcohol up to 64.52 ± 6.39 and 56.27 ± 3.00 mg/L, respectively, were produced at pH 3.1 than at pH 3.9 regardless of temperature. In contrast, production of esters was more affected by temperature than pH, where levels of ethyl esters (ethyl esters of octanoate, nonanoate, and decanoate) and acetate esters (ethyl acetate and isoamyl acetate) were significantly higher up to 2.13 ± 0.23 and 4.61 ± 0.22 mg/L, respectively, at 20 °C than at 30 °C. On the other hand, higher temperature improved the reduction of volatile sulfur compounds. This study illustrated that temperature control would be a more effective tool than pH in modulating the resulting aroma compound profile of durian wine.

  相似文献   

20.
The optimum temperature for fermentation by Saccharomyces uvarum was found to be higher than that for its growth. Fermentation continued at temperatures above the growth maximum (40°C). S.uvarum was most resistant to growth inhibition by ethanol at temperatures 5°C and 10°C below its growth optimum (35°C). Fermentation became more resistant to ethanol inhibition with increasing temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号