首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
Dissolved Organic Carbon in Terrestrial Ecosystems: Synthesis and a Model   总被引:34,自引:3,他引:34  
The movement of dissolved organic carbon (DOC) through soils is an important process for the transport of carbon within ecosystems and the formation of soil organic matter. In some cases, DOC fluxes may also contribute to the carbon balance of terrestrial ecosystems; in most ecosystems, they are an important source of energy, carbon, and nutrient transfers from terrestrial to aquatic ecosystems. Despite their importance for terrestrial and aquatic biogeochemistry, these fluxes are rarely represented in conceptual or numerical models of terrestrial biogeochemistry. In part, this is due to the lack of a comprehensive understanding of the suite of processes that control DOC dynamics in soils. In this article, we synthesize information on the geochemical and biological factors that control DOC fluxes through soils. We focus on conceptual issues and quantitative evaluations of key process rates to present a general numerical model of DOC dynamics. We then test the sensitivity of the model to variation in the controlling parameters to highlight both the significance of DOC fluxes to terrestrial carbon processes and the key uncertainties that require additional experiments and data. Simulation model results indicate the importance of representing both root carbon inputs and soluble carbon fluxes to predict the quantity and distribution of soil carbon in soil layers. For a test case in a temperate forest, DOC contributed 25% of the total soil profile carbon, whereas roots provided the remainder. The analysis also shows that physical factors—most notably, sorption dynamics and hydrology—play the dominant role in regulating DOC losses from terrestrial ecosystems but that interactions between hydrology and microbial–DOC relationships are important in regulating the fluxes of DOC in the litter and surface soil horizons. The model also indicates that DOC fluxes to deeper soil layers can support a large fraction (up to 30%) of microbial activity below 40 cm. Received 14 January 2000; accepted 6 September 2000  相似文献   

2.
Net primary productivity (NPP) is one of the most important ecosystem parameters, representing vegetation activity, biogeochemical cycling, and ecosystem services. To assess how well the scientific community understands the biospheric function, a historical meta‐analysis was conducted. By surveying the literature from 1862 to 2011, I extracted 251 estimates of total terrestrial NPP at the present time (NPPT) and calculated their statistical metrics. For all the data, the mean±standard deviation and median were 56.2±14.3 and 56.4 Pg C yr–1, respectively. Even for estimates published after 2000, a substantial level of uncertainty (coefficient of variation by ±15%) was inevitable. The estimates were categorized on the basis of methodology (i.e., inventory analysis, empirical model, biogeochemical model, dynamic global vegetation model, and remote sensing) to examine the consistency among the statistical metrics of each category. Chronological analysis revealed that the present NPPT estimates were directed by extensive field surveys in the 1960s and 1970s (e.g., the International Biological Programme). A wide range of uncertainty remains in modern estimates based on advanced biogeochemical and dynamic vegetation models and remote‐sensing techniques. Several critical factors accounting for the estimation uncertainty are discussed. Ancillary analyses were performed to derive additional ecological and human‐related parameters related to NPP. For example, interannual variability, carbon‐use efficiency (a ratio of NPP to gross photosynthesis), human appropriation, and preindustrial NPPT were assessed. Finally, I discuss the importance of improving NPPT estimates in the context of current global change studies and integrated carbon cycle research.  相似文献   

3.
ABSTRACT Because freshwater covers such a small fraction of the Earth’s surface area, inland freshwater ecosystems (particularly lakes, rivers, and reservoirs) have rarely been considered as potentially important quantitative components of the carbon cycle at either global or regional scales. By taking published estimates of gas exchange, sediment accumulation, and carbon transport for a variety of aquatic systems, we have constructed a budget for the role of inland water ecosystems in the global carbon cycle. Our analysis conservatively estimates that inland waters annually receive, from a combination of background and anthropogenically altered sources, on the order of 1.9 Pg C y−1 from the terrestrial landscape, of which about 0.2 is buried in aquatic sediments, at least 0.8 (possibly much more) is returned to the atmosphere as gas exchange while the remaining 0.9 Pg y−1 is delivered to the oceans, roughly equally as inorganic and organic carbon. Thus, roughly twice as much C enters inland aquatic systems from land as is exported from land to the sea. Over prolonged time net carbon fluxes in aquatic systems tend to be greater per unit area than in much of the surrounding land. Although their area is small, these freshwater aquatic systems can affect regional C balances. Further, the inclusion of inland, freshwater ecosystems provides useful insight about the storage, oxidation and transport of terrestrial C, and may warrant a revision of how the modern net C sink on land is described.  相似文献   

4.
5.
Forest age, which is affected by stand‐replacing ecosystem disturbances (such as forest fires, harvesting, or insects), plays a distinguishing role in determining the distribution of carbon (C) pools and fluxes in different forested ecosystems. In this synthesis, net primary productivity (NPP), net ecosystem productivity (NEP), and five pools of C (living biomass, coarse woody debris, organic soil horizons, soil, and total ecosystem) are summarized by age class for tropical, temperate, and boreal forest biomes. Estimates of variability in NPP, NEP, and C pools are provided for each biome‐age class combination and the sources of variability are discussed. Aggregated biome‐level estimates of NPP and NEP were higher in intermediate‐aged forests (e.g., 30–120 years), while older forests (e.g., >120 years) were generally less productive. The mean NEP in the youngest forests (0–10 years) was negative (source to the atmosphere) in both boreal and temperate biomes (?0.1 and –1.9 Mg C ha?1 yr?1, respectively). Forest age is a highly significant source of variability in NEP at the biome scale; for example, mean temperate forest NEP was ?1.9, 4.5, 2.4, 1.9 and 1.7 Mg C ha?1 yr?1 across five age classes (0–10, 11–30, 31–70, 71–120, 121–200 years, respectively). In general, median NPP and NEP are strongly correlated (R2=0.83) across all biomes and age classes, with the exception of the youngest temperate forests. Using the information gained from calculating the summary statistics for NPP and NEP, we calculated heterotrophic soil respiration (Rh) for each age class in each biome. The mean Rh was high in the youngest temperate age class (9.7 Mg C ha?1 yr?1) and declined with age, implying that forest ecosystem respiration peaks when forests are young, not old. With notable exceptions, carbon pool sizes increased with age in all biomes, including soil C. Age trends in C cycling and storage are very apparent in all three biomes and it is clear that a better understanding of how forest age and disturbance history interact will greatly improve our fundamental knowledge of the terrestrial C cycle.  相似文献   

6.
The Lund–Potsdam–Jena Dynamic Global Vegetation Model (LPJ) combines process‐based, large‐scale representations of terrestrial vegetation dynamics and land‐atmosphere carbon and water exchanges in a modular framework. Features include feedback through canopy conductance between photosynthesis and transpiration and interactive coupling between these ‘fast’ processes and other ecosystem processes including resource competition, tissue turnover, population dynamics, soil organic matter and litter dynamics and fire disturbance. Ten plants functional types (PFTs) are differentiated by physiological, morphological, phenological, bioclimatic and fire‐response attributes. Resource competition and differential responses to fire between PFTs influence their relative fractional cover from year to year. Photosynthesis, evapotranspiration and soil water dynamics are modelled on a daily time step, while vegetation structure and PFT population densities are updated annually. Simulations have been made over the industrial period both for specific sites where field measurements were available for model evaluation, and globally on a 0.5°° × 0.5°° grid. Modelled vegetation patterns are consistent with observations, including remotely sensed vegetation structure and phenology. Seasonal cycles of net ecosystem exchange and soil moisture compare well with local measurements. Global carbon exchange fields used as input to an atmospheric tracer transport model (TM2) provided a good fit to observed seasonal cycles of CO2 concentration at all latitudes. Simulated inter‐annual variability of the global terrestrial carbon balance is in phase with and comparable in amplitude to observed variability in the growth rate of atmospheric CO2. Global terrestrial carbon and water cycle parameters (pool sizes and fluxes) lie within their accepted ranges. The model is being used to study past, present and future terrestrial ecosystem dynamics, biochemical and biophysical interactions between ecosystems and the atmosphere, and as a component of coupled Earth system models.  相似文献   

7.
8.
The carbon balance of tropical, temperate and boreal forests   总被引:28,自引:0,他引:28  
Forest biomes are major reserves for terrestrial carbon, and major components of global primary productivity. The carbon balance of forests is determined by a number of component processes of carbon acquisition and carbon loss, and a small shift in the magnitude of these processes would have a large impact on the global carbon cycle. In this paper, we discuss the climatic influences on the carbon dynamics of boreal, temperate and tropical forests by presenting a new synthesis of micrometeorological, ecophysiological and forestry data, concentrating on three case-study sites. Historical changes in the carbon balance of each biome are also reviewed, and the evidence for a carbon sink in each forest biome and its likely behaviour under future global change are discussed. We conclude that there have been significant advances in determining the carbon balance of forests, but there are still critical uncertainties remaining, particularly in the behaviour of soil carbon stocks.  相似文献   

9.
Tropical forest ecosystems play an important role in regulating the global climate, yet deforestation and land‐use change mean that the tropical carbon sink is increasingly influenced by agroecosystems and pastures. Despite this, it is not yet fully understood how carbon cycling in the tropics responds to land‐use change, particularly for pasture and afforestation. Thus, the objectives of our study were: (1) to elucidate the environmental controls and the impact of management on gross primary production (GPP), total ecosystem respiration (TER) and net ecosystem CO2 exchange (NEE); (2) to estimate the carbon sequestration potential of tropical pasture compared with afforestation; and (3) to compare eddy covariance‐derived carbon budgets with biomass and soil inventory data. We performed comparative measurements of NEE in a tropical C4 pasture and an adjacent afforestation with native tree species in Sardinilla (Panama) from 2007 to 2009. Pronounced seasonal variation in GPP, TER and NEE were closely related to radiation, soil moisture, and C3 vs. C4 plant physiology. The shallow rooting depth of grasses compared with trees resulted in a higher sensitivity of the pasture ecosystem to water limitation and seasonal drought. During 2008, substantial amounts of carbon were sequestered by the afforestation (–442 g C m–2, negative values denote ecosystem carbon uptake), which was in agreement with biometric observations (–450 g C m–2). In contrast, the pasture ecosystem was a strong carbon source in 2008 and 2009 (261 g C m–2), associated with seasonal drought and overgrazing. In addition, soil carbon isotope data indicated rapid carbon turnover after conversion from C4 pasture to C3 afforestation. Our results clearly show the potential for considerable carbon sequestration of tropical afforestation and highlight the risk of carbon losses from pasture ecosystems in a seasonal tropical climate.  相似文献   

10.
Nitrogen deposition: a component of global change analyses   总被引:9,自引:0,他引:9  
  相似文献   

11.
12.
The ability of plant species to migrate is one of the critical issues in assessing accurately the future response of the terrestrial biosphere to climate change. This ability is confined by both natural and human‐induced changes in land cover. In this paper we present land‐cover and Carbon (C) cycle models designed to simulate the biospheric consequences of different types of land‐cover changes. These models, imbedded in the larger integrated assessment model IMAGE 2, were used to demonstrate the importance of considering spatial aspects for global C‐cycle modelling. A gradual‐migration, an unlimited‐migration and a no‐migration case were compared to show the range of possible consequences. Major differences between these cases were simulated for land‐cover patterns and the carbon budget. A large geographical variation in the biospheric response was also simulated. The strongest response was simulated in high‐latitude regions, especially for the migration cases in which land‐cover changes were permitted. In low‐latitudes regions the differences between the migration cases were smaller, mainly due to the effects of land‐use changes. The geographical variation among, and the different responses, the migration cases clearly demonstrate how essential it is to assess biospheric responses to climate change and land use simultaneously. Moreover, it also shows the urgent need for enhanced understanding of spatial and temporal dynamics of the biospheric responses.  相似文献   

13.
In this study, we take an ecosystem approach to examine the degree of biological self-organization at the ecosystem level. An integrated set of indicators is derived from a theoretical framework and tested by field data from an ecosystem research project focusing on the Bornhöved Lake district in northern Germany. This field test is based on a comparison of the self-organized phenomena that comprise the carbon, water, and energy budgets of two adjacent edaphically and climatically similar ecosystems, that have vastly different levels of human interference—a crop field and a beech forest. In terms of biomass storage, biologically incorporated nitrogen and phosphorus, species number, total ecosystem respiration per total biomass (qCO2), total ecosystem assimilation per available nutrients, and transpiration per total evapotranspiration, we found clear differences between the systems. Ecosystem surface temperature and Rn/K* were found to be of limited utility in characterizing the two systems. The study is rooted in the concept of ecological integrity, an influential idea at the interface of ecological and environmental debate that has acquired a number of different meanings. Among other interpretations, it can be viewed as a guiding principle for sustainable land use that aims at long-term protection of ecological life-support systems. Effective use of any interpretation of this concept requires a theoretically consistent and applicable set of indicators. Therefore, we also discuss the integration of the indicator set and its potential use in monitoring programs.  相似文献   

14.
The changes in the rate of photosynthetic and dark CO2 assimilation and the activity of key enzymes of carboxylation were studied during the main developmental stages (shoots, juvenile plants, and mature plants) of red macroalga Gracilaria verrucosa (Huds.) Papenf. Changes in the direction of primary carbon metabolism were also investigated. It was estimated that the transition of metabolism related to the shift in the pathways of carboxylation did not occur during development of G. verrucosa. During all developmental stages, the level of dark CO2 assimilation was by at least one order of magnitude lower than that of photosynthetic assimilation The predominant pathway of CO2 assimilation was ribulosobisphosphate carboxylation. At the same time, the transition of metabolism related to the changes in the type of phosphoglyceric acid utilization was found. At the early developmental stages, a substantial part of phosphoglyceric acid was directed into the amino acid metabolism via the anaplerotic pathway of photosynthesis similar to that in higher plants.  相似文献   

15.
Eight terrestrial biospheric models (TBMs) calculating the monthly distributions of both net primary productivity (NPP) and soil heterotrophic respiration (RH) in the Potsdam NPP Model Intercomparison workshop are used to simulate seasonal patterns of atmospheric CO2 concentration. For each model, we used net ecosystem productivity (NEP = NPP – RH) as the source function in the TM2 atmospheric transport model from the Max-Planck Institute for Meteorology. Comparing the simulated concentration fields with detrended measurements from 25 monitoring stations spread over the world, we found that the decreasing seasonal amplitude from north to south is rather well reproduced by all the models, though the amplitudes are slightly too low in the north. The agreement between the simulated and observed seasonality is good in the northern hemisphere, but poor in the southern hemisphere, even when the ocean is accounted for. Based on a Fourier analysis of the calculated zonal atmospheric signals, tropical NEP plays a key role in the seasonal cycle of the atmospheric CO2 in the whole southern hemisphere. The relatively poor match between measured and predicted atmospheric CO2 in this hemisphere suggests problems with all the models. The simulation of water relations, a dominant regulator of NEP in the tropics, is a leading candidate for the source of these problems.  相似文献   

16.
We outline a method of inferring rooting depth from a Terrestrial Biosphere Model by maximizing the benefit of the vegetation within the model. This corresponds to the evolutionary principle that vegetation has adapted to make best use of its local environment. We demonstrate this method with a simple coupled biosphere/soil hydrology model and find that deep rooted vegetation is predicted in most parts of the tropics. Even with a simple model like the one we use, it is possible to reproduce biome averages of observations fairly well. By using the optimized rooting depths global Annual Net Primary Production (and transpiration) increases substantially compared to a standard rooting depth of one meter, especially in tropical regions that have a dry season. The decreased river discharge due to the enhanced evaporation complies better with observations. We also found that the optimization process is primarily driven by the water deficit/surplus during the dry/wet season for humid and arid regions, respectively. Climate variability further enhances rooting depth estimates. In a sensitivity analysis where we simulate changes in the water use efficiency of the vegetation we find that vegetation with an optimized rooting depth is less vulnerable to variations in the forcing. We see the main application of this method in the modelling communities of land surface schemes of General Circulation Models and of global Terrestrial Biosphere Models. We conclude that in these models, the increased soil water storage is likely to have a significant impact on the simulated climate and the carbon budget, respectively. Also, effects of land use change like tropical deforestation are likely to be larger than previously thought.  相似文献   

17.
The Kyoto protocol has focused the attention of the public and policymarkers on the earth's carbon (C) budget. Previous estimates of the impacts of vegetation change have been limited to equilibrium “snapshots” that could not capture nonlinear or threshold effects along the trajectory of change. New models have been designed to complement equilibrium models and simulate vegetation succession through time while estimating variability in the C budget and responses to episodic events such as drought and fire. In addition, a plethora of future climate scenarios has been used to produce a bewildering variety of simulated ecological responses. Our objectives were to use an equilibrium model (Mapped Atmosphere–Plant–Soil system, or MAPSS) and a dynamic model (MC1) to (a) simulate changes in potential equilibrium vegetation distribution under historical conditions and across a wide gradient of future temperature changes to look for consistencies and trends among the many future scenarios, (b) simulate time-dependent changes in vegetation distribution and its associated C pools to illustrate the possible trajectories of vegetation change near the high and low ends of the temperature gradient, and (c) analyze the extent of the US area supporting a negative C balance. Both models agree that a moderate increase in temperature produces an increase in vegetation density and carbon sequestration across most of the US with small changes in vegetation types. Large increases in temperature cause losses of C with large shifts in vegetation types. In the western states, particularly southern California, precipitation and thus vegetation density increase and forests expand under all but the hottest scenarios. In the eastern US, particularly the Southeast, forests expand under the more moderate scenarios but decline under more severe climate scenarios, with catastrophic fires potentially causing rapid vegetation conversions from forest to savanna. Both models show that there is a potential for either positive or negative feedbacks to the atmosphere depending on the level of warming in the climate change scenarios. Received 12 May 2000; accepted 22 November 2000.  相似文献   

18.
The thermoacidophilic iron-oxidizing chemolithotroph Sulfobacillus sibiricus N1T is characterized by steady growth and amplified cell yield when grown in vigorously aerated medium containing Fe2+, glucose, and yeast extract as energy sources. In this case, carbon dioxide, glucose, and yeast extract are used as carbon sources. Glucose is assimilated through the fructose-bisphosphate pathway and the pentose-phosphate pathway. The glyoxylate bypass does not function in S. sibiricus, and the tricarboxylic acid cycle is disrupted at the level of 2-oxoglutarate dehydrogenase. The presence of ribulose-bisphosphate carboxylase indicates that carbon dioxide fixation proceeds through the Calvin cycle. The activity of ribulose-bisphosphate carboxylase is highest in autotrophically grown cells. The cells also contain pyruvate carboxylase, phosphoenolpyruvate carboxylase, phosphoenolpyruvate carboxykinase, and phosphoenolpyruvate carboxytransphosphorylase.  相似文献   

19.
工业化程度的不断提高给环境带来的压力是全球性的普遍问题。矿物燃料的大量使用 ,使大气中SO2 、NOX 和其它酸性颗粒物等污染物浓度增加 ,导致大气环境质量恶化 ,影响全球植被生态系统的生产力。排放到大气中的SO2 、NOX 是形成酸雨的重要来源 ,大范围的迁移是它的一个重要特征。国内外已取得的研究结果证明 ,SO2 、NOX等污染气体及其沉降化合物直接导致植物生长量生物量的下降、叶伤害、光合作用减弱、呼吸作用增强。另一方面 ,酸雨的形成导致土壤酸化、土壤缓冲能力下降、A1离子的释放、盐基离子的淋洗、营养亏损 ,使树…  相似文献   

20.
对虾养殖围隔生态系浮游生物群落有机碳的代谢   总被引:1,自引:0,他引:1  
浮游生物是虾池养殖生态系统生物群落的重要组分 ,在系统的物质循环和能量流动中发挥着重要作用。开展对虾养殖水体浮游生物群落有机碳代谢的研究 ,对阐明虾池养殖生态系统的结构与功能以及指导水质管理均有重要意义。本采用原位实验生态学方法 ,用中尺度实验围隔开展了研究。1 材料与方法1 1 实验围隔及管理实验围隔为 5m× 5m的陆基围隔。以高密度两面涂塑的聚乙烯编织布做围隔幔 ,围隔幔下部埋入池塘底泥 0 5m ,并以木桩和青竹为支架架设于池塘中 (围隔内水深 1 0m )。为了模拟池塘水体的自然混合状况 ,在围隔中间架设了一台 90W…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号