首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Kinases have been often targeted in drug therapy aimed at blocking signaling pathways. However, the conservation of protein structure across homologs often leads to uncontrolled cross-reactivity. On the other hand, sticky packing defects in proteins are typically not conserved across homologs, making them ligand-anchoring sites potentially important to enhance selectivity. Thus, we introduce a hierarchical clustering of PDB-reported kinases according to packing differences. This kinome partitioning is highly correlated with proximity relations arising from the pharmacological profiling of kinases. A variable packing sensitivity is observed for individual drugs, with highly promiscuous ligands being the most insensitive to packing differences. Our classifier enables a strategy to design selective inhibitors.  相似文献   

2.
Protease inhibitors are key components in the chemotherapy of HIV-1 infection. However, the long term efficacy of antiretroviral therapies is hampered by issues of patient compliance often associated with the presence of severe side effects, and above all by the appearance of drug resistance. The development of new protease inhibitors with high potency, low susceptibility to mutations and minimal affinity for unwanted targets is an urgent goal. The engineering of these adaptive inhibitors requires identification of the critical determinants of affinity, adaptability, and selectivity. Analysis of the binding database for existing clinical and experimental inhibitors has allowed us to address the following questions in a quantitative fashion: (1) Is there an optimal binding affinity? Or, are the highest affinity inhibitors necessarily the best inhibitors? (2) What is the dependence of optimal affinity on adaptability and selectivity? (3) What are the determinants of adaptability to mutations associated with drug resistance? (4) How selectivity against unwanted targets can be improved? It is shown that the optimal affinity is a function of the effective target concentration and the desired adaptability and selectivity factors. Furthermore, knowledge of the enthalpic and entropic contributions to the binding affinity to the wild type provides a way of anticipating the response of an inhibitor to mutations associated with drug resistance, and therefore, a valuable guideline for optimization.  相似文献   

3.
The similarity of human carbonic anhydrase (CA) active sites makes it difficult to design selective inhibitors for one or several CA isoforms that are drug targets. Here we synthesize a series of compounds that are based on 5-[2-(benzimidazol-1-yl)acetyl]-2-chloro-benzenesulfonamide (1a) which demonstrated picomolar binding affinity and significant selectivity for CA isoform five A (VA), and explain the structural influence of inhibitor functional groups to the binding affinity and selectivity. A series of chloro-substituted benzenesulfonamides bearing a heterocyclic tail, together with molecular docking, was used to build inhibitors that explore substituent influence on the binding affinity to the CA VA isoform.  相似文献   

4.
Inhibition of protein kinase activity is a focus of intense drug discovery efforts in several therapeutic areas. Major challenges facing the field include understanding of the factors determining the selectivity of kinase inhibitors and the development of compounds with the desired selectivity profile. Here, we report the analysis of sequence variability among high and low affinity targets of eight different small molecule kinase inhibitors (BIRB796, Tarceva, NU6102, Gleevec, SB203580, balanol, H89, PP1). It is observed that all high affinity targets of each inhibitor are found among a relatively small number of kinases, which have similar residues at the specific positions important for binding. The findings are highly statistically significant, and allow one to exclude the majority of kinases in a genome from a list of likely targets for an inhibitor. The findings have implications for the design of novel inhibitors with a desired selectivity profile (e.g. targeted at multiple kinases), the discovery of new targets for kinase inhibitor drugs, comparative analysis of different in vivo models, and the design of "a-la-carte" chemical libraries tailored for individual kinases.  相似文献   

5.
Although tumors frequently show elevated protease activities, the concept of anti-proteolytic cancer therapy has lost momentum after failure of clinical trials with broad-spectrum matrix metalloproteinase inhibitors. Thus we need to adapt our design strategies for protease inhibitors. Here, we employed a series of seven structurally fine-modulated and pharmacokinetically closely related synthetic 4-amidinobenzylamine-based inhibitors with distinct selectivity for prototypical serine proteases in a murine T cell lymphoma liver metastasis model. This in vivo screening revealed efficacy of urokinase inhibitors but no correlation between urokinase selectivity or affinity and anti-metastatic effect. In contrast, factor Xa-selective inhibitors were more potent, demonstrating factor Xa or a factor Xa-like serine protease likely to be more determinant in this model. Factor Xa selectivity, but not affinity, significantly improved anti-metastatic efficacy. For example, factor Xa inhibitors CJ-504 and CJ-510 exert similar affinity for factor Xa (K(i)=14 nM versus 8.8 nM) but CJ-504 was 70-fold more selective for factor Xa. This correlated with higher anti-metastatic efficacy (58.8% with CJ-504; 28.2% with CJ-510). Our results show that among the protease inhibitors employed that have affinities in the nanomolar range, the strategy of selectivity-optimization is superior to further improvement of affinity to significantly enhance anti-metastatic efficacy. This appreciation may be important for the future rational design of new anti-proteolytic agents for cancer therapy.  相似文献   

6.
All parasitic protozoa lack the ability to synthesize purine nucleotides de novo, relying instead on purine salvage enzymes for their survival. Hypoxanthine-guanine-xanthine phosphoribosyltransferase (HGXPRT) from the protozoan parasite Tritrichomonas foetus is a rational target for antiparasitic drug design because it is the primary enzyme the parasite uses to salvage purine bases from the host. The study presented here is a continuation of our efforts to use the X-ray structure of the T. foetus HGXPRT-GMP complex to design compounds that bind tightly to the purine pocket of HGXPRT. The goal of the current project was to improve the affinity and selectivity of previously identified HGXPRT inhibitor TF1 [4-(3-nitroanilino)phthalic anhydride]. A virtual library of substituted 4-phthalimidocarboxanilides was constructed using methods of structure-based drug design, and was implemented synthetically on solid support. Compound 20 [(4'-phthalimido)carboxamido-3-benzyloxybenzene] was then used as a secondary lead for the second round of combinatorial chemistry, producing a number of low-micromolar inhibitors of HGXPRT. One of these compounds, TF2 [(4'-phthalimido)carboxamido-3-(4-bromobenzyloxy)benzene], was further characterized as a competitive inhibitor of T. foetus HGXPRT with respect to guanine with a K(I) of 0.49 microM and a 30-fold selectivity over the human HGPRT. TF2 inhibited the growth of cultured T. foetus cells in a concentration-dependent manner with an ED(50) of 2.8 microM, and this inhibitory effect could be reversed by addition of exogenous hypoxanthine. These studies underscore the efficiency of combining structure-based drug design with combinatorial chemistry to produce effective species-specific enzyme inhibitors of medicinal importance.  相似文献   

7.
The Y2 selective PYY derived peptide PYY3‐36 was recently shown to play a role in appetite regulation. Novel PYY3‐36 analogs with high selectivity for the Y2 receptor could be potential drug candidates for the treatment of obesity. The C‐terminal pentapeptide segment of PYY3‐36 is believed to bind to the Y receptors. Tyr‐36 is highly conserved across species and only few successful modifications of Tyr‐36 have been documented. PYY3‐36 analogs were prepared using solid‐phase peptide chemistry and tested for binding to the Y1, Y2 and Y4 receptor subtypes by radioligand displacement assay. The Y2 receptor agonists with the best affinity and selectivity were further investigated for activity towards the Y1 and Y2 receptor subtypes. Unexpectedly, modifications of Tyr‐36 were well‐tolerated, and the analogs of PYY3‐36 in which the Tyr‐36 hydroxyl group was substituted with a halogen or an amino group were particularly well tolerated and yielded an improved selectivity and approximately equipotent affinity to the Y2 receptor. These modifications could be used to design new potential drug candidates for the treatment of obesity. Copyright © 2009 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

8.
Since apoptosis is impaired in malignant cells overexpressing prosurvival Bcl-2 proteins, drugs mimicking their natural antagonists, BH3-only proteins, might overcome chemoresistance. Small molecule inhibitors of Bcl-XL function have been discovered from diverse structure classes using rational drug design as well as high-throughput screening (HTS) approaches. However, most of the BH3 mimetics that have been identified via screening based on fluorescence polarization displayed an affinity for their presumed protein targets that is far lower than that of BH3-only proteins. Therefore, it is important to establish a simple and inexpensive secondary platform for hit validation which is pertinent to current efforts for developing compounds that mimic the action of BH3-only proteins as novel anticancer agents. These considerations prompted us to explore the differential scanning fluorimetry (DSF) method that is based on energetic coupling between ligand binding and protein unfolding. We have systematically tested known Bcl-XL/Bcl-2 inhibitors using DSF and have revealed distinct subsets of inhibitors. More importantly, we report that some of these inhibitors interacted selectively with glutathione S-transferase tagged Bcl-XL, whereas certain inhibitors exhibited marked selectivity towards native untagged Bcl-XL. Therefore, we propose that the affinity tag may cause a significant conformational switch in the Bcl-XL, which results in the selectivity for certain subsets of small molecule inhibitors. This finding also implies that the previous screens involving tagged proteins need to be carefully reexamined while further investigations must ensure that the right conformation of protein is used in future screens.  相似文献   

9.
Plasmodium falciparum cell cycle regulators are promising targets for antimalarial drug design. We have determined the structure of PfPK5, the first structure of a P. falciparum protein kinase and the first of a cyclin-dependent kinase (CDK) not derived from humans. The fold and the mechanism of inactivation of monomeric CDKs are highly conserved across evolution. ATP-competitive CDK inhibitors have been developed as potential leads for cancer therapeutics. These studies have identified regions of the CDK active site that can be exploited to achieve significant gains in inhibitor potency and selectivity. We have cocrystallized PfPK5 with three inhibitors that target such regions. The sequence differences between PfPK5 and human CDKs within these inhibitor binding sites suggest that selective inhibition is an attainable goal. Such compounds will be useful tools for P. falciparum cell cycle studies, and will provide lead compounds for antimalarial drug development.  相似文献   

10.
Existing experimental as well as computational screening methods select potential ligands or drug candidates on the basis of binding affinity. Since the binding affinity is a function of the enthalpy (DeltaH) and entropy (DeltaS) changes, it is apparent that improved binding can be achieved in different ways: by optimizing DeltaH, DeltaS, or a combination of both. However, the behavior of enthalpically or entropically optimized inhibitors is fundamentally different, including their response to mutations that may elicit drug resistance. In the design of HIV-1 protease inhibitors, high binding affinity has usually been achieved by preshaping lead compounds to the geometry of the binding site and by incorporating a high degree of hydrophobicity. The thermodynamic consequence of that approach is that the binding affinity of the resulting inhibitors becomes entropically favorable but enthalpically unfavorable. Specifically, the resulting high binding affinity is due to an increased solvation entropy (hydrophobic effect) combined with a reduced loss of conformational entropy of the inhibitor upon binding (structural rigidity). Here we report that tripeptide inhibitors derived from the transframe region of Gag-Pol (Glu-Asp-Leu and Glu-Asp-Phe) bind to the HIV-1 protease with a favorable enthalpy change. This behavior is qualitatively different from that of known inhibitors and points to new strategies for inhibitor design. Since the binding affinities of enthalpically favorable and enthalpically unfavorable inhibitors have opposite temperature dependence, it is possible to design fast screening protocols that simultaneously select inhibitors on the basis of affinity and enthalpy.  相似文献   

11.
BACKGROUND: Several cholinesterase inhibitors are either being utilized for symptomatic treatment of Alzheimer's disease or are in advanced clinical trials. E2020, marketed as Aricept, is a member of a large family of N-benzylpiperidine-based acetylcholinesterase (AChE) inhibitors developed, synthesized and evaluated by the Eisai Company in Japan. These inhibitors were designed on the basis of QSAR studies, prior to elucidation of the three-dimensional structure of Torpedo californica AChE (TcAChE). It significantly enhances performance in animal models of cholinergic hypofunction and has a high affinity for AChE, binding to both electric eel and mouse AChE in the nanomolar range. RESULTS: Our experimental structure of the E2020-TcAChE complex pinpoints specific interactions responsible for the high affinity and selectivity demonstrated previously. It shows that E2020 has a unique orientation along the active-site gorge, extending from the anionic subsite of the active site, at the bottom, to the peripheral anionic site, at the top, via aromatic stacking interactions with conserved aromatic acid residues. E2020 does not, however, interact directly with either the catalytic triad or the 'oxyanion hole', but only indirectly via solvent molecules. CONCLUSIONS: Our study shows, a posteriori, that the design of E2020 took advantage of several important features of the active-site gorge of AChE to produce a drug with both high affinity for AChE and a high degree of selectivity for AChE versus butyrylcholinesterase (BChE). It also delineates voids within the gorge that are not occupied by E2020 and could provide sites for potential modification of E2020 to produce drugs with improved pharmacological profiles.  相似文献   

12.
Immobilized kinase inhibitors have emerged as powerful reagents for the determination of kinase inhibitor selectivity and for the enrichment of protein targets from cellular lysates. Here, we report the design and synthesis of a set of "clickable" 4-anilinoquinazoline kinase inhibitors. We demonstrate that the attachment of a flexible tether that contains a bio-orthogonal azide functionality does not adversely affect the potency or selectivity of these inhibitors. Furthermore, we demonstrate the utility of these inhibitors through the generation of an affinity matrix for the enrichment of interacting proteins from cellular lysates.  相似文献   

13.
Drug screening is often limited to cell-free assays involving purified enzymes, but it is arguably best applied against systems that represent disease states or complex physiological cellular networks. Here, we describe a high-content, cell-based drug discovery platform based on phosphospecific flow cytometry, or phosphoflow, that enabled screening for inhibitors against multiple endogenous kinase signaling pathways in heterogeneous primary cell populations at the single-cell level. From a library of small-molecule natural products, we identified pathway-selective inhibitors of Jak-Stat and MAP kinase signaling. Dose-response experiments in primary cells confirmed pathway selectivity, but importantly also revealed differential inhibition of cell types and new druggability trends across multiple compounds. Lead compound selectivity was confirmed in vivo in mice. Phosphoflow therefore provides a unique platform that can be applied throughout the drug discovery process, from early compound screening to in vivo testing and clinical monitoring of drug efficacy.  相似文献   

14.
Classifying kinases based entirely on small molecule selectivity data is a new approach to drug discovery that allows scientists to understand relationships between targets. This approach combines the understanding of small molecules and targets, and thereby assists the researcher in finding new targets for existing molecules or understanding selectivity and polypharmacology of molecules in related targets. Currently, structural information is available for relatively few of the protein kinases encoded in the human genome (7% of the estimated 518); however, even the current knowledge base, when paired with structure-based design techniques, can assist in the identification and optimization of novel kinase inhibitors across the entire protein class. Chemogenomics attempts to combine genomic data, structural biological data, classical dendrograms, and selectivity data to explore, define, and classify the medicinally relevant kinase space. Exploitation of this information in the discovery of kinase inhibitors defines practical kinase chemogenomics (kinomics). In this paper, we review the available information on kinase targets and their inhibitors, and present the relationships between the various classification schema for kinase space. In particular, we present the first dendrogram of kinases based entirely on small molecule selectivity data. We find that the selectivity dendrogram differs from sequence-based clustering mostly in the higher-level groupings of the smaller clusters, and remains very comparable for closely homologous targets. Highly homologous kinases are, on average, inhibited comparably by small molecules. This observation, although intuitive, is very important to the process of target selection, as one would expect difficulty in achieving inhibitor selectivity for kinases that share high sequence identity.  相似文献   

15.
A series of macrocyclic factor XIa (FXIa) inhibitors was designed based on an analysis of the crystal structures of the acyclic phenylimidazole compounds. Further optimization using structure-based design led to inhibitors with pM affinity for FXIa, excellent selectivity against a panel of relevant serine proteases, and good potency in the activated partial thromboplastin time (aPTT) clotting assay.  相似文献   

16.
Selectivity plays a crucial role in the design of enzyme inhibitors as novel antiparasitic agents, particularly in cases where the target enzyme is also present in the human host. Purine nucleoside phosphorylase from Schistosoma mansoni (SmPNP) is an attractive target for the discovery of potential antischistosomal agents. In the present work, kinetic studies were carried out in order to determine the inhibitory potency, mode of action and enzyme selectivity of a series of inhibitors of SmPNP. In addition, crystallographic studies provided important structural insights for rational inhibitor design, revealing consistent structural differences in the binding mode of the inhibitors in the active sites of the SmPNP and human PNP (HsPNP) structures. The molecular information gathered in this work should be useful for future medicinal chemistry efforts in the design of new inhibitors of SmPNP having increased affinity and selectivity.  相似文献   

17.

Background

Identifying selective kinase inhibitors remains a major challenge. The design of bivalent inhibitors provides a rational strategy for accessing potent and selective inhibitors. While bivalent kinase inhibitors have been successfully designed, no comprehensive assessment of affinity and selectivity for a series of bivalent inhibitors has been performed. Here, we present an evaluation of the structure activity relationship for bivalent kinase inhibitors targeting ABL1.

Methods

Various SNAPtag constructs bearing different specificity ligands were expressed in vitro. Bivalent inhibitor formation was accomplished by synthesizing individual ATP-competitive kinase inhibitors containing a SNAPtag targeting moiety, enabling the spontaneous self-assembly of the bivalent inhibitor. Assembled bivalent inhibitors were incubated with K562 lysates, and then subjected to affinity enrichment using various ATP-competitive inhibitors immobilized to sepharose beads. Resulting eluents were analyzed using Tandem Mass Tag (TMT) labeling and two-dimensional liquid chromatography-tandem mass spectrometry (2D–LC-MS/MS). Relative binding affinity of the bivalent inhibitor was determined by calculating the concentration at which 50% of a given kinase remained bound to the affinity matrix.

Results

The profiling of three parental ATP-competitive inhibitors and nine SNAPtag conjugates led to the identification of 349 kinase proteins. In all cases, the bivalent inhibitors exhibited enhanced binding affinity and selectivity for ABL1 when compared to the parental compound conjugated to SNAPtag alone. While the rank order of binding affinity could be predicted by considering the binding affinities of the individual specificity ligands, the resulting affinity of the assembled bivalent inhibitor was not predictable. The results from this study suggest that as the potency of the ATP-competitive ligand increases, the contribution of the specificity ligand towards the overall binding affinity of the bivalent inhibitor decreases. However, the affinity of the specificity components in its interaction with the target is essential for achieving selectivity.

Conclusion

Through comprehensive chemical proteomic profiling, this work provides the first insight into the influence of ATP-competitive and specificity ligands binding to their intended target on a proteome-wide scale. The resulting data suggest a subtle interplay between the ATP-competitive and specificity ligands that cannot be accounted for by considering the specificity or affinity of the individual components alone.
  相似文献   

18.
Botulinum neurotoxin serotype A (BoNTA) is one of the most toxic substances known. Currently, there is no antidote to BoNTA. Small molecules identified from high-throughput screening reportedly inhibit the endopeptidase--the zinc-bound, catalytic domain of BoNTA--at a drug concentration of 20 microM. However, optimization of these inhibitors is hampered by challenges including the computational evaluation of the ability of a zinc ligand to compete for coordination with nearby residues in the active site of BoNTA. No improved inhibitor of the endopeptidase has been reported. This article reports the development of a serotype-selective, small-molecule inhibitor of BoNTA with a K(i) of 12 microM. This inhibitor was designed to coordinate the zinc ion embedded in the active site of the enzyme for affinity and to interact with a species-specific residue in the active site for selectivity. It is the most potent small-molecule inhibitor of BoNTA reported to date. The results suggest that multiple molecular dynamics simulations using the cationic dummy atom approach are useful to structure-based design of zinc protease inhibitors.  相似文献   

19.
We disclose herein our efforts aimed at discovery of selective PARP-1 and PARP-2 inhibitors. We have recently discovered several novel classes of quinazolinones, quinazolidinones, and quinoxalines as potent PARP-1 inhibitors, which may represent attractive therapeutic candidates. In PARP enzyme assays using recombinant PARP-1 and PARP-2, the quinazolinone derivatives displayed relatively high selectivity for PARP-1 and quinoxaline derivatives showed superior selectivity for PARP-2, and the quinazolidinone derivatives did not have selectivity for PARP-1/2. Structure-based drug design analysis via a combination of X-ray structural study utilizing the complexes of inhibitors and human PARP-1 catalytic domain, and homology modeling using murine PARP-2 suggested distinct interactions of inhibitors with PARP-1 and PARP-2. These findings provide a new structural framework for the design of selective inhibitors for PARP-1 and PARP-2.  相似文献   

20.
A significant obstacle to the efficacy of drugs directed against viral targets is the presence of amino acid polymorphisms in the targeted molecules. Amino acid polymorphisms may occur naturally due to the existence of variations within and between viral strains or as the result of mutations associated with drug resistance. An ideal drug will be one that is extremely effective against a primary target and maintains its effectiveness against the most important variations of the target molecule. A drug that simultaneously inhibits different variants of the target will lead to a faster suppression of the virus, retard the appearance of drug-resistant mutants and provide more efficacious and, in the long range, more affordable therapies. Drug molecules with the ability to inhibit several variants of a target with high affinity have been termed adaptive drugs (Nat. Biotechnol. 20 (2002) 15; Biochemistry 42 (2003) 8459; J. Cell. Biochem. S37 (2001) 82). Current drug design paradigms are predicated upon the lock-and-key hypothesis, which emphasizes shape complementarity as a way to attain specificity and improved binding affinity. Shape complementarity is accomplished by the introduction of conformational constraints in the drug molecule. While highly constrained molecules do well against a unique target, they lack the ability to adapt to target variations like those originating from naturally occurring polymorphisms or drug-resistant mutations. Targeting an array of closely related targets rather than a single one while still maintaining selectivity, requires a different approach. A plausible strategy for designing high affinity adaptive inhibitors is to engineer their most critical interactions (for affinity and specificity) with conserved regions of the target while allowing for adaptability through the introduction of flexible asymmetric functionalities in places facing variable regions of the target. The fundamental thermodynamics and structural principles associated with this approach are discussed in this chapter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号