首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Seki T  Shioda S  Izumi S  Arimura A  Koide R 《Peptides》2000,21(1):109-113
The distribution and localization of pituitary adenylate cyclase-activating polypeptide (PACAP) in the rat retina were studied by immunocytochemistry with both light and electron microscopy. PACAP-like immunoreactivity (PACAP-LI) was detected in the amacrine and horizontal cells as well as in the inner plexiform layer, the ganglion cell layer and the nerve fiber layer. PACAP-LI seemed to be concentrated predominantly in the neuronal perikarya and their processes, but not in other cells in the retina. At the ultrastructural level, PACAP-LI was visible in the plasma membranes, rough endoplasmic reticulum, and cytoplasmic matrix in the PACAP-positive neurons in the inner nuclear layer. In the inner plexiform layer, PACAP-positive amacrine cell processes made synaptic contact with immunonegative amacrine cell processes, bipolar cell processes, and ganglion cell terminals. These findings suggest that PACAP may function as a neurotransmitter and/or neuromodulator.  相似文献   

2.
3.
4.
5.
Pituitary adenylate cyclase-activating polypeptide (PACAP) interacts with three types of PACAP/VIP-receptors. The PAC1-receptor accepts PACAP as a high affinity ligand but not vasoactive intestinal peptide (VIP) similarly binding to VPAC1- and VPAC2-receptors. To identify those amino acids not present in VIP defining PAC1-receptor selectivity of PACAP, radio receptor binding assays on AR4-2J cells were performed. It could be shown that PACAP(1-27) exhibited a distinct and much higher susceptibility to VIP-amino acid substitutions, compared to PACAP(1-38). Positions 4 and 5 seem to be most important for receptor binding of PACAP(1-27), whereas position 13 was identified to be crucial for maximal affinity of PACAP(1-38). PACAP(29-38) extension analogues of VIP revealed a stabilizing effect of the C-terminus of PACAP(1-38) on the optimal peptide conformation. The substitution analogues were also checked for their capacity to stimulate IP3 and cAMP formation in AR4-2J cells. Compared to PACAP(1-27) and PACAP(1-38), most analogues revealed potencies reduced congruously to their lower binding affinities. However, one of the analogues, PACAP(1-27) substituted in position 5, may represent a weak antagonist since this peptide was less potent in inducing second messengers than in label displacement. Our findings indicate that PACAP(1-27) and PACAP(1-38) differ in terms of their requirement of the amino acids in positions 4, 5, 9, 11 and 13 for maximal interaction with the PAC1-receptor.  相似文献   

6.
The present study demonstrates the occurrence of PACAP-immunoreactive (PACAP-IR) nerve fibers in different compartments of the pig pineal gland, including glandular capsule (where they form a very dense network) and subependymal tissue close to the pineal recess (moderate to dense meshwork of varicose fibers). Furthermore, several varicose fibers penetrate from the capsule into the connective tissue septa and then into the parenchyma, where they form unequally distributed, fine network and, in some cases, basket-like structures around pinealocytes. Some of the PACAP-IR nerve fibers, observed both in the habenular and posterior epithalamic areas, extend to the pineal gland. PACAP-IR cells could be demonstrated neither in the pineal gland, nor in epithalamic areas.  相似文献   

7.
8.
Pituitary adenylate cyclase-activating polypeptide (PACAP) and helospectin are two vasoactive intestinal polypeptide (VIP)-related neuropeptides that have recently been demonstrated in the mammalian gut; the aim of this study was to reveal their occurrence and localisation in the gastrointestinal tract, swimbladder, urinary bladder and the vagal innervation of the gut of teleosts, using immunohistochemical methods on whole-mounts and sections of these tissues from the Atlantic cod, Gadus morhua and the rainbow trout, Oncorhynchus mykiss. Both PACAP-like and helospectin-like peptides were present in the gut wall of the two species. Immunoreactive nerve fibres were found in all layers but were most frequent in the myenteric plexus and along the circular muscle fibres. Immunoreactivity was also demonstrated in nerves innervating the swimbladder wall, the urinary bladder and blood vessels to the gut. Immunoreactive nerve cell bodies were found in the myenteric plexus of the gut and in the muscularis mucosae of the swimbladder. In the vagus nerve, non-immunoreactive nerve cells were surrounded by PACAP-immunoreactive fibres. Double staining revealed the coexistence of PACAP-like and helospectin-like peptides with VIP in all visualized nerve fibres and in some endocrine cells. It is concluded that PACAP-like and helospectin-like peptides coexist with VIP in nerves innervating the gut of two teleost species. The distribution suggests that both PACAP and helospectin, like VIP, are involved in the control of gut motility and secretion.  相似文献   

9.
Pituitary adenylate cyclase activating polypeptide (PACAP), a member of the vasoactive intestinal polypeptide (VIP) family of peptides, is present in the brain and in neuronal elements of a number of peripheral organs. Since no information on PACAP in the mammary gland exists, we have investigated, by radioimmunoassay and immunohistochemistry, the occurrence and distribution of PACAP immunoreactivity in the mammary gland of lactating and non-lactating rats. A specific monoclonal mouse anti-PACAP antibody'has been used to show that the peptide is located in nerve fibres associated with bundles of circular and longitudinal smooth muscle surrounding the lactiferous duct of the nipple. PACAP-immunoreactive nerve fibres and nerve bundles are present in the subepidermal connective tissue of the nipple and in the mammary parenchyma, some of the fibres being in close contact with blood vessels. Occasionally, a few delicate varicose fibres are associated with secretory alveoli and lactiferous ducts. The majority of PACAP-positive nerve fibres are, however, located in the glabrous skin of the nipple and the hairy skin adjacent to the nipple forming a subepithelial plexus from which delicate varicose nerve fibres enter the overlying epithelium. Double immunostaining for PACAP and a marker for sensory neurons, calcitonin gene-related peptide, has disclosed that the two peptides are almost completely co-localized. A minor population of the PACAP-immunoreactive nerve fibres shows co-existence with VIP. Although no obvious changes at the immunohistochemical level could be observed during pregnancy or lactation, elevated concentrations of immunoreactive PACAP-38 in mammary extracts have been found during lactation. Our data suggest that PACAP is involved in the nervous control of mammary gland function, probably in the transmission of suckling stimuli.  相似文献   

10.
Pituitary adenylate cyclase-activating polypeptide (PACAP) plays a role in mediating growth hormone and gonadotropin release in the teleost pituitary. In the present study, we examined the immunohistochemical relationship between PACAP nerve fibers and prolactin (PRL)- and somatolactin (SL)-producing cells in the goldfish pituitary. Nerve fibers with PACAP-like immunoreactivity (PACAP-LI) were identified in the neurohypophysis in close proximity to cells containing PRL-LI or SL-LI. Several cells with PRL-LI or SL-LI showed PACAP receptor (PAC(1)R)-LI. The cell immunoblot assay method was used to examine the effect of PACAP on PRL and SL release from dispersed goldfish pituitary cells. Treatment with PACAP increased the immunoblot area for PRL- and SL-LI from individual pituitary cells in a dose-dependent manner. The effect of PACAP on the expression of mRNAs for PRL and SL in cultured pituitary cells was also tested. Semiquantitative analysis revealed that the expression of SL mRNA, but not PRL mRNA, was increased significantly by the treatment with PACAP. The effect of PACAP on intracellular calcium mobilization in isolated pituitary cells was also investigated using confocal laser-scanning microscopy. The amplitude of Ca(2+) mobilization in individual cells showing PRL- or SL-LI was increased significantly following exposure of cells to PACAP. These results indicate that PACAP can potentially function as a hypophysiotropic factor mediating PRL and SL release in the goldfish pituitary.  相似文献   

11.
Neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) is a pleiotropic hormone that is involved in numerous physiologic functions. The present study examines the presence and the functional significance of PACAP and its receptor in the brain and astrocytes of tilapia (Oreochromis mossambicus). This is the first demonstration of the full-length nucleotide sequence of tPACAP gene in tilapia pituitary, brain, and cultured astrocytes. Two cDNA variants of the growth hormone-releasing hormone (GHRH)-PACAP gene were identified in tilapia pituitary, brain, and cultured astrocytes as a result of exon skipping with a long form (271 bp) encoding both tPACAP(38) and tGHRH and a short form (166 bp) encoding only tPACAP(38). The short form was found to be more abundant in astrocytes. Addition of ovine PACAP(38) (1 nM) to cultured astrocytes significantly stimulated the expression of tPACAP(38) at 4 hrs, but the effect dropped after 8 hrs of treatment. By contrast, the expression of PACAP type I receptor (PAC(1)-R) mRNA in the astrocytes was not responsive to PACAP(38) treatment. The tPACAP(38) expression also was activated by the cAMP analog, dibutyryl-cAMP, in a dose-dependent manner. Adding high salinity (170 mM NaCl, 500 mOsm/kg osmolarity) to cultured medium substantially increased astroglial tPACAP(38) expression over 4 hrs to a level that was maintained for 16 hrs. This observation was not found when mannitol (270 mM) was supplemented as an osmolarity-enhancing agent (500 mOsm/ kg). Taken together, tPACAP expression in tilapia astrocytes was well regulated by exogenous PACAP, cAMP, and salinity and might be involved in the adaptation to high salinity when the fish is in a seawater environment.  相似文献   

12.
13.
A neuropeptide, pituitary adenylate cyclase-activating polypeptide (PACAP) has possible potency as a hypothalamic factor mediating the release of pituitary hormones, especially growth hormone (GH), in the fish pituitary. We used double-immunostaining to examine the relationship between PACAP nerve fibers and adenohypophysial hormone-producing cells in the pituitary of a teleost, the stargazer Uranoscopus japonicus, and enzyme immunoassay to determine the quantity of PACAP in the stargazer brain, in conjunction with the body mass and gonad somatic index (GSI) of fish. In adult stargazer, PACAP-like immunoreactive (PACAP-LI) nerve fibers and endings were identified in both the neurohypophysis and adenohypophysis in close proximity to pituitary cells containing immunoreactive hormones such as prolactin, somatolactin, the N-terminal peptide of proopiomelanocortin, and N-acetyl endorphin. PACAP-LI nerve fibers were also identified close to immunoreactive GH cells in the pituitary of young fish. The concentration of immunoreactive PACAP in whole brain ranged from 100 to 800 pmol/g wet weight, in fish with weighing 70-480 g. A negative correlation was found between the concentration of immunoreactive PACAP in the whole brain and body weight, but there was no relation between the former and GSI. These results suggest that PACAP may act as a hypophysiotropic factor in the stargazer pituitary.  相似文献   

14.
Pituitary adenylate cyclase-activating polypeptide (PACAP) is known to regulate gastric acid secretion and intestinal motility. In the present study, the pattern of distribution of PACAP and PACAP type 1 receptor (PAC1) immunoreactivities were examined in the rat stomach and distal colon using a specific polyclonal antibody raised against rat/human PAC1. Western blot of the membrane preparations of NIH/3T3 cells transfected with the human PAC1 obtained by using rabbit polyclonal anti-PAC1 antibody showed a protein band with a molecular mass of approximately 50 kDa. NIH/3T3 cells transfected with the human PAC1 and incubated with the anti-PAC1 antibody displayed surface cell-type immunoreactivity, which was internalized following ligand exposure. In gastric or colonic longitudinal muscle/myenteric plexus (LMMP) whole mount preparations as well as cryostat sections, PACAP immunoreactivity was observed in cell bodies within the myenteric ganglia and nerve fibers in the muscle layers and mucosa. PAC1 immunoreactivity was confined mainly on the surface of the nerve cells. PACAP and PAC1 immunoreactivities showed a similar pattern of distribution in gastric and colonic tissues. Adjacent sections or LMMP whole mount preparations labeled with protein gene product 9.5 (PGP 9.5) revealed the neuronal identity of myenteric cells bearing PAC1. The neuronal localization of PACAP and PAC1 receptors supports their role in the neural regulation of gastric acid secretion and gastrointestinal motor function.  相似文献   

15.
Potent small molecule antagonists for the PAC(1)-R have been discovered. Previously known antagonists for the PAC(1)-R were slightly truncated peptide ligands. The hydrazides reported here are the first small molecule antagonists ever reported for this class B GPCR.  相似文献   

16.
Pituitary adenylate cyclase-activating polypeptide (PACAP), a hypophysiotropic neurohormone, participates in the regulation of pleiotropic functions. The recent discovery of intracellular PACAP receptors in the brain and the testis as well as the physico-chemical characteristics of PACAP, i.e. extended α-helix containing basic residues, prompted us to evaluate the propensity of PACAP to cross the plasma membrane in a receptor-independent manner. Using confocal microscopy and flow cytometry, we demonstrated the ability of FITC-conjugated PACAP to efficiently penetrate into the internal cell compartment by direct translocation and endocytosis through clathrin-coated pits and macropinocytosis. Our study also revealed that, once inside the cells, PACAP38 is not entirely degraded by intracellular enzymes and that a significant amount of intact PACAP38 is also able to exit cells. Moreover, using binding assay on rat nuclear fractions from various tissues, PACAP nuclear receptors were identified. We also found that PACAP stimulates calcium release in rat testis nuclei. Interestingly, PACAP27 and PACAP38 but not VIP were able to upregulate de novo DNA synthesis in testis nuclei and that this effect was abolished by PACAP(6-38). These results support the presence of PAC1 receptors at the nuclear membrane and raise questions about their role in the biological activity of the peptide. These findings contribute to the characterization of PACAP as an intracrine factor and suggest that these intracellular PAC1 binding sites, probably associated with specific biological activities, should be taken into account during the development of PACAP-based drugs.  相似文献   

17.
18.
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a regulatory neuropeptide which functions as a hypothalamic factor for pituitary hormone release, and as a neurotransmitter, neuromodulator and neurotrophic factor in both frogs and mammals. This study examined the quantitative distribution and chromatographic characterization of immunoreactive PACAP in the central nervous system (CNS) of the bullfrog, Rana catesbeiana, using an enzyme immunoassay (EIA), named avidin-biotin complex detectable EIA for PACAP, and high-performance liquid chromatographic (HPLC) analysis. The brain of adult bullfrogs contained relatively high levels of immunoreactive PACAP (344.63 pmol/g wet weight of tissue). The average concentrations of immunoreactive PACAP in the regions of the telencephalon, diencephalon, tectum, cerebellum, rhombencephalon, and spinal cord were 213.84, 767.14, 524.94, 192.71, 237.67, and 362.04 pmol/g wet weight of tissue, respectively. The concentrations of immunoreactive PACAP increased with the brain development during metamorphosis, and the concentration of immunoreactive PACAP in the brain of tadpoles at the end of metamorphosis was approximately 200 pmol/g wet weight of tissue. The predominant form of immunoreactive PACAP in the CNS of adult and tadpole was eluted closely with synthetic PACAP38, but another smaller immunoreactivity also appeared in a the fraction, which corresponded to the retention time of synthetic PACAP27, as analyzed by reverse-phase HPLC.  相似文献   

19.
It has been reported that pituitary adenylate cyclase-activating polypeptide (PACAP) plays an important role in preventing neuronal cell death and is also a potent vasodilator. Cerebral hypotension and hypoperfusion during cerebral ischemia and neurodegenerative diseases are well known as some of the negative factors which aggravate neuronal cell death. Nevertheless, the effect of PACAP on the cerebral circulation was not understood well. Therefore, in the present study, we determined the mean arterial blood pressure (MBP), regional cerebral blood flow (rCBF) and cerebral oxygen content (pO2) in mice, and estimated the therapeutically useful doses of PACAP. Under barbiturate anesthesia, polyethylene tubes were inserted into mice to monitor MBP and to administer PACAP (5 x 10(-13)-5 x 10(-8) mol/kg) or vasoactive intestinal peptide (VIP; 5 x 10(-12) and 5 x 10(-9) mol/kg). Then, MBP, rCBF and cerebral pO2 were simultaneously measured in the mice. PACAP (5 x 10(-10)-5 x 10(-9) mol/kg) injections transiently decreased MBP, and cerebral pO2. PACAP (5 x 10(-8) mol/kg) injections produced a long-lasting potent decline of MBP, rCBF and cerebral pO2. Therefore, PACAP should be applied at low doses which do not influence the MBP and cerebral circulation to determine the therapeutically useful doses of PACAP for neuroprotection.  相似文献   

20.
Pituitary adenylate cyclase activating peptide (PACAP) is a novel peptide isolated from the ovine hypothalamus. PACAP exists in 2 molecular forms with 27 (PACAP27) or 38 (PACAP38) amino acid residues. PACAP localization was studied by immunohistochemical methods in central (bone marrow and thymus) and peripheral (spleen, lymph nodes and duodenal mucosa) lymphoid tissues with antisera raised against PACAP27 or PACAP38. PACAP-positive cells were found in all lymphoid tissues examined. These cells were highly positive for PACAP38 but were negative for PACAP27. Morphologically, they were small mononuclear cells with relatively scarce cytoplasm and lymphocyte-like features. PACAP38-positive cells were abundant in peripheral lymphoid tissues (i.e., mesenteric lymph nodes). In the duodenal mucosa, PACAP38-positive cells were located either in the lamina propria or epithelium. These results suggest that PACAP38-positive cells are present within lymphoid tissues and may represent a lymphocyte-like cell subpopulation that has a potential role in cell-to-cell interactions in the immune system and in the integrated communication between neuroendocrine and immune systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号