首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The function of vitamin D receptor in vitamin D action   总被引:5,自引:0,他引:5  
  相似文献   

2.
A W Norman  F P Ross 《Life sciences》1979,24(9):759-769
The mode of action of vitamin D3 (a seco steroid with a broken B ring) for calcium and phosphorus homeostasis is mediated at least in part through its metabolic transformation to 1, 25-dihydroxyvitamin D and 24, 25-dihydroxyvitamin D3. A vitamin D endocrine system produces in a carefully regulated fashion amounts of 1, 25(OH)2D3dictated by the calcium needs of the organism. 1, 25(OH)2D3 is known to induce the biosynthesis of a a calcium binding protein in the intestine and kidney via a mechanism similar to that of classic steroid hormones. Evidence for biological effects specifically generated by 24, 25(OH)2D3 D have also been obtained. Definite evidence for the further metabolism of these dihydroxylated metabolites exists; it probably occurs via side chain cleavage with the generation of several new molecules of unknown function. Evaluation of the unique structural aspects of these putative vitamin D metabolites suggests a second set of chemical and biological properties which could link these compounds structurally to the membrane-active polyene antibiotic filipin. These properties may rationalize some reported “rapid biological effects” pertaining to vitamin D and metabolites which hitherto have been difficult to explain in terms of classical steroid hormone theory. A key unresolved question relates to identification of the evolutionary pathways which resulted in the selection of vitamin D seco-steroids rather than classical (with intact rings) steroids for Ca and P homeostasis.  相似文献   

3.
An increased risk for multiple sclerosis and schizophrenia is observed at increasing latitude and in patients born in winter or spring. To explore a possible link between maternal vitamin D deficiency and these brain disorders, we examined the impact of prenatal hypovitaminosis D on protein expression in the adult rat brain. Vitamin D-deficient female rats were mated with vitamin D normal males. Pregnant females were kept vitamin D-deficient until birth whereupon they were returned to a control diet. At week 10, protein expression in the progeny's prefrontal cortex and hippocampus was compared with control animals using silver staining 2-D gels associated with MS and newly devised data mining software. Developmental vitamin D (DVD) deficiency caused a dysregulation of 36 brain proteins involved in several biological pathways including oxidative phosphorylation, redox balance, cytoskeleton maintenance, calcium homeostasis, chaperoning, PTMs, synaptic plasticity and neurotransmission. A computational analysis of these data revealed that (i) nearly half of the molecules dysregulated in our animal model have also been shown to be misexpressed in either schizophrenia and/or multiple sclerosis and (ii) an impaired synaptic network may be a consequence of mitochondrial dysfunction.  相似文献   

4.
The effect of the X-linked Hyp mutation on 25-hydroxyvitamin D3 (25-OH-D3) metabolism in mouse renal cortical slices was investigated. Vitamin D replete normal mice and Hyp littermates fed the control diet synthesized primarily 24,25-dihydroxyvitamin D3 (24,25-(OH)2D3); only minimal synthesis of 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3) was detected in both genotypes and 1,25-(OH)2D3 formation was not significantly greater in Hyp mice relative to normal littermates, despite hypophosphatemia and hypocalcemia in the mutants. Calcium-deficient diet fed to normal mice reduced serum calcium (p less than 0.01), increased renal 25-hydroxyvitamin D3-1-hydroxylase (1-OHase) activity (p less than 0.05), and decreased 25-hydroxyvitamin D3-24-hydroxylase (24-OHase) activity (p less than 0.05). In contrast, Hyp littermates on the calcium-deficient diet had decreased serum calcium (p less than 0.01), without significant changes in the renal metabolism of 25-OH-D3. Both normal and Hyp mice responded to the vitamin D-deficient diet with a fall in serum calcium (p less than 0.01), significantly increased renal 1-OHase, and significantly decreased renal 24-OHase activities. In Hyp mice, the fall in serum calcium on the vitamin D-deficient diet was significantly greater than that observed on the calcium-deficient diet. Therefore the ability of Hyp mice to increase renal 1-OHase activity when fed the vitamin D-deficient diet and their failure to do so on the calcium-deficient diet may be related to the resulting degree of hypocalcemia. The results suggest that although Hyp mice can respond to a disturbance of calcium homeostasis, the in vivo signal for the stimulation of renal 1-OHase activity may be set at a different threshold in the Hyp mouse; i.e. a lower serum calcium concentration is necessary for Hyp mice to initiate increased synthesis of 1,25(-OH)2D3.  相似文献   

5.
Calbindin (CaBP)-D28k and CaBP-D9k are cytosolic vitamin D-dependent calcium-binding proteins long thought to play an important role in transepithelial calcium transport. However, recent genetic studies suggest that CaBP-D28k is not essential for calcium metabolism. Genetic ablation of this gene in mice leads to no calcemic abnormalities. Genetic inactivation of the vitamin D receptor (VDR) gene leads to hypocalcemia, secondary hyperparathyroidism, rickets, and osteomalacia, accompanied by 90% reduction in renal CaBP-D9k expression but little change in CaBP-D28k. To address whether the role of CaBP-D28k in calcium homeostasis is compensated by CaBP-D9k, we generated VDR/CaBP-D28k double knockout (KO) mice, which expressed no CaBP-D28k and only 10% of CaBP-D9k in the kidney. On a regular diet, the double KO mice were more growth-retarded and 42% smaller in body weight than VDRKO mice and died prematurely at 2.5-3 months of age. Compared with VDRKO mice, the double KO mice had higher urinary calcium excretion and developed more severe secondary hyperparathyroidism and rachitic skeletal phenotype, which were manifested by larger parathyroid glands, higher serum parathyroid hormone levels, much lower bone mineral density, and more distorted growth plate with more osteoid formation in the trabecular region. On high calcium, high lactose diet, blood-ionized calcium levels were normalized in both VDRKO and the double KO mice; however, in contrast to VDRKO mice, the skeletal abnormalities were not completely corrected in the double KO mice. These results directly demonstrate that CaBP-D28k plays a critical role in maintaining calcium homeostasis and skeletal mineralization and suggest that its calcemic role can be mostly compensated by CaBP-D9k.  相似文献   

6.
In calcium homeostasis, vitamin D3 is a potent serum calcium-raising agent which in vivo regulates both calcitonin (CT) and parathyroid hormone (PTH) gene expression. Serum calcium is the major secretagogue for CT, a hormone product whose biosynthesis is the main biological activity of thyroid C-cells. Taking advantage of this regulatory mechanism, long-term vitamin D3-induced hypercalcemia has been extensively used as a model to produce hyperactivation, hyperplasia and even proliferative lesions of C-cells, supposedly to reduce the sustained high calcium serum concentrations. We have recently demonstrated that CT serum levels did not rise after long-term hypervitaminosis D3. Moreover, C-cells did not have a proliferative response, rather a decrease in CT-producing C-cell number was observed. In order to confirm the inhibitory effect of vitamin D3 on C-cells, Wistar rats were administered vitamin D3 chronically (25,000 IU/d) with or without calcium chloride (CaCl2). Under these long-term vitamin D3-hypercalcemic conditions, calcium, active metabolites of vitamin D3, CT and PTH serum concentrations were determined by RIA; CT and PTH mRNA levels were analysed by Northern blot and in situ hybridization; and, finally, the ultrastructure of calciotrophic hormone-producing cells was analysed by electron microscopy. Our results show, that, in rats, long term administration of vitamin D3 results in a decrease in hormone biosynthetic activities of both PTH and CT-producing cells, albeit at different magnitudes. Based upon these results, we conclude that hypervitaminosis D3-based methods do not stimulate C-cell activity and can not be used to induce proliferative lesions of calcitonin-producing cells.  相似文献   

7.
《Endocrine practice》2004,10(3):203-207
ObjectiveTo describe a patient who presented with hypocalcemia and hypocalciuria as the initial manifestations of celiac disease, despite a normal vitamin D status.MethodsWe review the diagnostic evaluation, treatment, and biochemical and bone mineral density responses of a patient with asymptomatic celiac disease, which was initially suggested because of a low serum calcium level that became attributable to isolated malabsorption of calcium.ResultsA 36-year-old woman presented with hypocalcemia in the presence of normal serum 25- hydroxyvitamin D and high serum 1,25-dihydroxyvitamin D levels. She had hypocalciuria and secondary hyperparathyroidism that were refractory to pharmacologic calcium and cholecalciferol supplementation. Fecal calcium excretion indicated malabsorption of calcium, and biopsy of the small intestine demonstrated pathologic changes characteristic of celiac disease. Bone mineral density, determined by dual-energy x-ray absorptiometry, was in the osteopenic range at the femoral neck. The initiation of a gluten-free diet resulted in correction of all biochemical abnormalities and a substantial increase in bone mineral density.ConclusionPrimary intestinal malabsorption of calcium without concomitant vitamin D deficiency is possible in celiac disease because of the preferential involvement of the proximal small intestine early in the disease process. Our patient had hypocalcemia caused by celiac disease and values for serum 25-hydroxyvitamin D and 1,25-dihydroxyvitamin D that were normal and elevated, respectively. Correction was demonstrated after dietary gluten withdrawal. (Endocr Pract. 2004;10:203-207)  相似文献   

8.
9.
The hormonal form of vitamin D appears to be a physiological regulator of the epidermogenesis. While its differentiation-promoting effect is well accepted, there are conflicting reports of its action on keratinocyte proliferation. This study evaluates the specific changes induced by vitamin D treatment in the epidermis of rats nutritionally deprived of vitamin D by cell size analysis, acridine orange flowcytometry, and the immunohistochemical detection of proteins related to the different stages of differentiation (epidermal calcium binding protein and suprabasal keratins recognized by KL1 antibody) The total keratinocyte and isolated keratinocyte subpopulations were studied. Vitamin D deficiency was associated in the total population with a lower percentage of actively proliferating cells and with a lack of differentiation markers. Study of the isolated cell populations demonstrated, however, that small cells were actively proliferating, whereas they were mainly in the resting stage in the normal epidermis. Treatment with vitamin D dramatically increased cell proliferation and stimulated the appearance of differentiation markers. Some of the observed effects, such as an increase in proliferation and the appearance of epidermal calcium binding protein, were due to the normalisation of the vitamin D deficiency-induced hypocalcemia, whereas the expression of suprabasal keratins was directly dependent on vitamin D. We conclude that the action of vitamin D on the epidermis is associated with increases in both proliferation and differentiation of keratinocytes. Vitamin D itself and its resulting action on calcium homeostasis appear to contribute to the observed effects. © 1996 Wiley-Liss, Inc.  相似文献   

10.
Epidemiology has highlighted the links between season of birth, latitude and the prevalence of brain disorders such as multiple sclerosis and schizophrenia. In line with these data, we have hypothesized that ‘imprinting’ with low prenatal vitamin D could contribute to the risk of these two brain disorders. Previously, we have shown that transient developmental hypovitaminosis D induces permanent changes in adult nervous system. The aim of this study was to examine the impact of prenatal hypovitaminosis D on gene expression in the adult rat brain. Vitamin D deficient female rats were mated with undeprived males and the offspring were fed with a control diet after birth. At Week 10, gene expression in the progeny's brain was compared with control animals using Affymetrix gene microarrays. Prenatal hypovitaminosis D causes a dramatic dysregulation of several biological pathways including oxidative phosphorylation, redox balance, cytoskeleton maintenance, calcium homeostasis, chaperoning, post-translational modifications, synaptic plasticity and neurotransmission. A computational analysis of these data suggests that impaired synaptic network may be a consequence of mitochondrial dysfunction. Since disruptions of mitochondrial metabolism have been associated with both multiple sclerosis and schizophrenia, developmental vitamin D deficiency may be a heuristic animal model for the study of these two brain diseases.  相似文献   

11.
W Wang  E Lewin  K Olgaard 《Steroids》1999,64(10):726-734
Results from our lab have shown previously that parathyroid hormone (PTH) is not the key factor in the rapid regulation of plasma Ca2+. The possible role of 1,25(OH)2D3 in the rapid minute-to-minute regulation of plasma Ca2+, as addressed by a possible rapid non-genomic action of 1,25(OH)2D3, was therefore studied in vivo in rats. The rapid calcemic recovery from induction of hypocalcemia by a brief EGTA infusion was examined in vitamin D-depleted rats with intact parathyroid glands and in vitamin D depleted rats 1 h after parathyroidectomy (PTX). The influence of different levels of plasma 1,25(OH)2D3 on the rapid calcemic recovery from hypocalcemia was examined in PTX rats treated with 1,25(OH)2D3 for two days at two different doses of 0.2 microg/day, 0.05 microg/day or vehicle, and in PTX rats being BNX for two days, as well. Additionally, the long-term effect of 1,25(OH)2D3 on plasma Ca2+ homeostasis was examined. Plasma Ca2+ recovered significantly (P<0.05) 10 min after discontinuing EGTA in vitamin D-depleted rats with or without parathyroid glands. Plasma Ca2+ increased significantly (P<0.05) and at the same rate after induction of hypocalcemia in PTX rats with different levels of plasma 1,25(OH)2D3. The final levels of plasma Ca2+ obtained were set by 1,25(OH)2D3 in a dose-related manner. 1,25(OH)2D3 did not affect the rapid calcemic recovery from EGTA induced hypocalcemia, but only had an effect on the long-term plasma Ca2+ homeostasis in the rat.  相似文献   

12.
Chronic inflammatory disorders such as inflammatory bowel diseases (IBDs) affect bone metabolism and are frequently associated with the presence of osteopenia, osteoporosis, and increased risk of fractures. Although several mechanisms may contribute to skeletal abnormalities in IBD patients, inflammation and inflammatory mediators such as TNF, IL-1β, and IL-6 may be the most critical. It is not clear whether the changes in bone metabolism leading to decreased mineral density are the result of decreased bone formation, increased bone resorption, or both, with varying results reported in experimental models of IBD and in pediatric and adult IBD patients. New data, including our own, challenge the conventional views, and contributes to the unraveling of an increasingly complex network of interactions leading to the inflammation-associated bone loss. Since nutritional interventions (dietary calcium and vitamin D supplementation) are of limited efficacy in IBD patients, understanding the pathophysiology of osteopenia and osteoporosis in Crohn's disease and ulcerative colitis is critical for the correct choice of available treatments or the development of new targeted therapies. In this review, we discuss current concepts explaining the effects of inflammation, inflammatory mediators and their signaling effectors on calcium and phosphate homeostasis, osteoblast and osteoclast function, and the potential limitations of vitamin D used as an immunomodulator and anabolic hormone in IBD.  相似文献   

13.
Rats fed a diet deficient in vitamin D were found to exhibit a refractory cyclic AMP response of kidney slices to parathyroid hormone and a marked decrease in membrane parathyroid hormone-dependent adenylate cyclase activity. Both the characteristic calcium deficiency (hypocalcemia) and secondary elevation of circulating parathyroid hormone appeared before the first noticeable decrease in hormone-dependent enzyme activity. After repletion of D-deficient rats with vitamin D2, we found that serum calcium and parathyroid hormone were both restored to normal levels before the depressed enzyme response to the hormone was reversed. Moreover, infusion of parathyroid hormone into vitamin D-replete rats led to a marked reduction in parathyroid hormone-dependent adenylate cyclase activity, which was partly restored to control level 3 hours after discontinuing the hormone infusion. Taken as a whole, this study suggests that the elevated endogenous parathyroid hormone in the vitamin D-deficient rat is involved in the “down-regulation” of renal cyclic AMP responsiveness to the hormone. However, these experiments do not rule out the possibility that calcium deficiency and/or vitamin D per se participate in the regulation of the renal cyclic AMP response to parathyroid hormone.  相似文献   

14.
Abstract: Rats fed diets deficient in calcium or vitamin D for 4 weeks displayed hypocalcemia, as indicated by a 50% reduction in serum calcium and a sevenfold elevation of serum parathyroid hormone. These treatments also decreased the calcium content of brain tissue. On a regional basis. this effect was greatest in the brain stem (24% decrease) and least in striatum (10% decrease). Subcellular analysis indicated that the depletion of brain calcium was greatest in the soluble and the microsomal fractions. Infusion of calcium solutions reversed the depletion of brain calcium produced by dietary deficiencies. In control rats. parathyroidectomy or infusion of parathyroid hormone did not alter the calcium content of brain tissue, although these treatments affected the levels of calcium in the serum. In general, these treatments had no effect on the magnesium content of serum or brain tissue. However, vitamin D deficiency did increase the magnesium content of the myelin and synaptosomal fractions. This increase was reversed by parathyroidectomy. These observations demonstrate that long-term hypocalcemia produces distinct changes in the localization of calcium and magnesium in brain tissue. Furthermore. these studies suggest that though brain calcium levels are influenced by serum concentrations, serum changes must be of large magnitude and long duration for brain calcium levels to be affected.  相似文献   

15.
The photobiogenesis and metabolism of vitamin D.   总被引:5,自引:0,他引:5  
Provitamin D3 (7-dehydrocholesterol) is converted to previtamin D3 by the action of ultraviolet radiation on the skin. Previtamin D3 thermally isomerizes to vitamin D3 in the skin and the vitamin is then transported to the liver on the vitamin D-binding protein. Although there are extrahepatic vitamin D-25-hydroxylases, the liver is the major site for the 25-hydroxylation of vitamin D. In response to hypocalcemia and hypophosphatemia, 25-OH-D is metabolized by a renal-cytochrome. P450-dependent mixed function oxidase system is 1alpha,25(OH)2D. When calcium and phosphate homeostasis prevails the renal 25-OH-D-1alpha-hydroxylase activity is limited and instead a non-cytochrome P450 mixed function oxidase metabolizes 25-OH-D to 24R,25(OH)2D. Parathyroid hormone has clearly been shown to be a trophin for the renal synthesis of 1,25(OH)2D; however, the role and significance of the adrenal steroids, or gonadal and pituitary hormones, on the renal 25-OH-D-1alpha-hydroxylase is not well defined. The regulation of the photometabolism of provitamin D3 to vitamin D3, the role and significance of the side-chain metabolism of 1,25(OH)2D by the small intestine, and the metabolism of 25-OH-D to 24R,25(OH)2D by chondrocytes and its stimulation of protein synthesis in these cells are just a few issues that will require further investigation.  相似文献   

16.
17.
The vitamin D endocrine system plays a central role in mineral ion homeostasis through the actions of the vitamin D hormone, 1,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)], on the intestine, bone, parathyroid gland, and kidney. The main function of 1,25(OH)(2)D(3) is to promote the dietary absorption of calcium and phosphate, but effects on bone, kidney and the parathyroids fine-tune the mineral levels. In addition to these classical actions, 1,25(OH)(2)D(3) exerts pleiotropic effects in a wide variety of target tissues and cell types, often in an autocrine/paracrine fashion. These biological activities of 1,25(OH)(2)D(3) have suggested a multitude of potential therapeutic applications of the vitamin D hormone for the treatment of hyperproliferative disorders (e.g. cancer and psoriasis), immune dysfunction (autoimmune diseases), and endocrine disorders (e.g. hyperparathyroidism). Unfortunately, the effective therapeutic doses required to treat these disorders can produce substantial hypercalcemia. This limitation of 1,25(OH)(2)D(3) therapy has spurred the development of vitamin D analogs that retain the therapeutically important properties of 1,25(OH)(2)D(3), but with reduced calcemic activity. Analogs with improved therapeutic indices are now available for treatment of psoriasis and secondary hyperparathyroidism in chronic kidney disease, and research on newer analogs for these indications continues. Other analogs are under development and in clinical trials for treatment of various types of cancer, autoimmune disorders, and many other diseases. Although many new analogs show tremendous promise in cell-based models, this article will limit it focus on the development of analogs currently in use and those that have demonstrated efficacy in animal models or in clinical trials.  相似文献   

18.
The vitamin D receptor (VDR) is present in mammary gland, and VDR ablation is associated with accelerated glandular development during puberty. VDR is a nuclear receptor whose ligand, 1,25-dihydroxyvitamin D [1,25-(OH)(2)D] is generated after metabolic activation of vitamin D by specific vitamin D hydroxylases. In these studies, we demonstrate that both the VDR and the vitamin D 1-alpha hydroxylase (CYP27B1), which produces 1,25-(OH)(2)D are present in mammary gland and dynamically regulated during pregnancy, lactation, and involution. Furthermore, we show that mice lacking VDR exhibit accelerated lobuloalveolar development and premature casein expression during pregnancy and delayed postlactational involution compared with mice with functional VDR. The delay in mammary gland regression after weaning of VDR knockout mice is associated with impaired apoptosis as demonstrated by reductions in terminal deoxynucleotidyl transferase-mediated deoxyuridine nick-end labeling staining, caspase-3 activation and Bax induction. Under the conditions used in this study, VDR ablation was not associated with hypocalcemia, suggesting that altered mammary gland development in the absence of the VDR is not related to disturbances in calcium homeostasis. Furthermore, in the setting of normocalcemia, VDR ablation does not affect milk protein or calcium content. These studies suggest that the VDR contributes to mammary cell turnover during the reproductive cycle, and its effects may be mediated via both endocrine and autocrine signaling pathways. Unlike many mammary regulatory factors that exert transient, stage-specific effects, VDR signaling impacts on mammary gland biology during all phases of the reproductive cycle.  相似文献   

19.
1,25-Dihydroxyvitamin D3-stimulated mRNAs in rat small intestine   总被引:5,自引:0,他引:5  
The technique of differential hybridization has been employed to study gene expression associated with vitamin D action on the mammalian intestine. A cDNA library consisting of 10(6) independent recombinants was constructed from poly(A)+ RNA extracted from vitamin D-deficient rats given 1,25-dihydroxyvitamin D3. A survey of 20,000 clones resulted in identification of four distinct cDNAs whose corresponding mRNAs are significantly increased 12 h after an intrajugular dose of 1,25-dihydroxyvitamin D3 given to vitamin D-deficient rats. DNA sequence analysis identified these mRNAs as mitochondrial ATP synthetase, vitamin D-dependent calcium binding protein, cytochrome oxidase subunit I, and cytochrome oxidase subunit III. The time course of response of three of these mRNAs was similar, with maximum values at 12 h after dosing, while that of cytochrome oxidase subunit I showed two peaks at 6 and 18 h following a single dose of 1,25-dihydroxyvitamin D3. The levels of all four mRNAs were elevated in rats supplied with vitamin D when hypocalcemia was produced by dietary calcium restriction.  相似文献   

20.
Impaired calcium absorption and impaired adaptation to a low calcium diet are common features of aging in women and these processes are even more severely impaired in patients with osteoporotic fractures. The calcium absorption defects are associated with several abnormalities of the vitamin D-endocrine system including secondary hyperparathyroidism, intestinal resistance to 1,25-dihydroxyvitamin D (1,25(OH)(2)D) action, decreased 1,25(OH)(2)D production due to impaired 25(OH)D 1alpha-hydroxylase activity, and, in some elderly persons, nutritional deficiency of vitamin D. However, in postmenopausal women, most of these abnormalities are normalized by administration of physiologic replacement dosages of estrogen and, thus, appear to be secondary consequences of estrogen deficiency. Nonetheless, a minority of them, especially nutritional vitamin D deficiency and impaired 25(OH)D 1alpha-hydroxylase activity late in life, appear to be primary and are independent of estrogen deficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号