首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
During acute inflammation, monocytes are essential in abolishing invading micro-organisms and encouraging wound healing. Recruitment by CC chemokines is an important step in targeting monocytes to the inflamed tissue. However, cell surface expression of the corresponding chemokine receptors is subject to regulation by various endogenous stimuli which so far have not been comprehensively identified. We report that the platelet-derived CXC chemokine ligand 4 (CXCL4), a known activator of human monocytes, induces down-regulation of CC chemokine receptors (CCR) 1, -2, and -5, resulting in drastic impairment of monocyte chemotactic migration towards cognate CC chemokine ligands (CCL) for these receptors. Interestingly, CXCL4-mediated down-regulation of CCR1, CCR2 and CCR5 was strongly dependent on the chemokine's ability to stimulate autocrine/paracrine release of TNF-α. In turn, TNF-α induced the secretion CCL3 and CCL4, two chemokines selective for CCR1 and CCR5, while the secretion of CCR2-ligand CCL2 was TNF-α-independent. Culture supernatants of CXCL4-stimulated monocytes as well as chemokine-enriched preparations thereof reproduced CXCL4-induced CCR down-regulation. In conclusion, CXCL4 may act as a selective regulator of monocyte migration by stimulating the release of autocrine, receptor-desensitizing chemokine ligands. Our results stress a co-ordinating role for CXCL4 in the cross-talk between platelets and monocytes during early inflammation.  相似文献   

2.
Chemokines and their receptors play a key role in immune homeostasis regulating leukocyte migration, differentiation, and function. Viruses have acquired and optimized molecules that interact with the chemokine system. These virus-encoded molecules promote cell entry, facilitate dissemination of infected cells, and enable the virus to evade the immune response. One such molecule in the murine gammaherpesvirus 68 genome is the M3 gene, which encodes a secreted 44-kDa protein that binds with high affinity to certain murine and human chemokines and blocks chemokine signaling in vitro. To test the hypothesis that M3 directly interferes with diverse chemokines in vivo, we examined the interaction of M3 with CCL2 and CXCL13 expressed in the pancreas of transgenic mice. CCL2 expression in the pancreas promoted recruitment of monocytes and dendritic cells; CXCL13 promoted recruitment of B and T lymphocytes. Coexpression of M3 in the pancreas blocked cellular recruitment induced by both CCL2 and CXCL13. These results define M3 as multichemokine blocker and demonstrate its use as a powerful tool to analyze chemokine biology.  相似文献   

3.
Wang Y  Zhang Y  Yang X  Han W  Liu Y  Xu Q  Zhao R  Di C  Song Q  Ma D 《Life sciences》2006,78(6):614-621
Chemokine-like factor 1 (CKLF1) exhibits chemotactic effects on leukocytes. Its amino acid sequence shares similarity with those of TARC/CCL17 and MDC/CCL22, the cognate ligands for CCR4. The chemotactic effects of CKLF1 for CCR4-transfected cells could be desensitized by TARC/CCL17 and markedly inhibited by PTX. CKLF1 induced a calcium flux in CCR4-transfected cells and fully desensitized a subsequent response to TARC/CCL17, and TARC/CCL17 could partly desensitize the response to CKLF1. CKLF1 caused significant receptor internalization in pCCR4-EGFP transfected cells. Taken together, CKLF1 is a novel functional ligand for CCR4.  相似文献   

4.
CCR3 is responsible for tissue infiltration of eosinophils, basophils, mast cells, and Th2 cells, particularly in allergic diseases. In this context, CCR3 has emerged as a target for the treatment of allergic asthma. It is well known that the N-terminal domain of chemokines is crucial for receptor binding and, in particular, its activation. Based on this background, we investigated a number of N-terminally truncated or modified peptides derived from the chemokine CCL14/hemofiltrate CC chemokine-1 for their ability to modulate the activity of CCR3. Among 10 derivatives tested, n-nonanoyl (NNY)-CCL14[10-74] (NNY-CCL14) was the most potent at evoking the release of reactive oxygen species and inducing chemotaxis of human eosinophils. In contrast, NNY-CCL14 has inactivating properties on human eosinophils, because it is able to induce internalization of CCR3 and to desensitize CCR3-mediated intracellular calcium release and chemotaxis. In contrast to naturally occurring CCL11, NNY-CCL14 is resistant to degradation by CD26/dipeptidyl peptidase IV. Because inhibition of chemokine receptors through internalization is a reasonable therapeutic strategy being pursued for HIV infection, we tested a potential inhibitory effect of NNY-CCL14 in two murine models of allergic airway inflammation. In both OVA- and Aspergillus fumigatus-sensitized mice, i.v. treatment with NNY-CCL14 resulted in a significant reduction of eosinophils in the airways. Moreover, airway hyper-responsiveness was shown to be reduced by NNY-CCL14 in the OVA model. It therefore appears that an i.v. administered agonist internalizing and thereby inhibiting CCR3, such as NNY-CCL14, has the potential to alleviate CCR3-mediated diseases.  相似文献   

5.
The promiscuous D6 receptor binds several inflammatory CC chemokines and has been recently proposed to act as a chemokine-scavenging decoy receptor. The present study was designed to better characterize the spectrum of CC chemokines scavenged by D6, focusing in particular on CCR4 ligands and analyzing the influence of NH(2)-terminal processing on recognition by this promiscuous receptor. Using D6 transfectants, it was found that D6 efficiently bound and scavenged most inflammatory CC chemokines (CCR1 through CCR5 agonists). Homeostatic CC chemokines (CCR6 and CCR7 agonists) were not recognized by D6. The CCR4 agonists CC chemokine ligand 17 (CCL17) and CCL22 bound to D6 with high affinity. CCL17 and CCL22 have no agonistic activity for D6 (chemotaxis and calcium fluxes), but were rapidly scavenged, resulting in reduced chemotactic activity on CCR4 transfectants. CD26 mediates NH(2) terminus processing of CCL22, leading to the production of CCL22 (3-69) and CCL22 (5-69) that do not interact with CCR4. These NH(2)-terminal truncated forms of CCL22 were not recognized by D6. The results presented in this study show that D6 recognizes and scavenges a wide spectrum of inflammatory CC chemokines, including the CCR4 agonists CCL22 and CCL17. However, this promiscuous receptor is not engaged by CD26-processed, inactive, CCL22 variants. By recognizing intact CCL22, but not its truncated variants, D6 expressed on lymphatic endothelial cells may regulate the traffic of CCR4-expressing cells, such as dendritic cells.  相似文献   

6.
The hypothesis was tested that different chemoattractants have different effects on the activity of integrins expressed by the human eosinophil. Three chemoattractants, CXCL8 (IL-8), CCL11 (eotaxin-1), and C5a were tested with respect to their ability to induce migration and the transition of eosinophils from a rolling interaction to a firm arrest on activated endothelial cells under flow conditions. CCL11 and C5a induced a firm arrest of eosinophils rolling on an endothelial surface, whereas CXCL8 induced only a transient arrest of the cells. The CXCL8- and CCL11-induced arrest was inhibited by simultaneously blocking alpha4 integrins (HP2/1) and beta2 integrins (IB4). In contrast, the C5a-induced arrest was only inhibited by 30% under these conditions. The potency differences of C5a>CCL11>CXCL8 to induce firm adhesion under flow condition was also observed in migration assays and for the activation of the small GTPase Rap-1, which is an important signaling molecule in the inside-out regulation of integrins. Interestingly, only C5a was able to induce the high activation epitope of alphaMbeta2 integrin recognized by MoAb CBRM1/5. The C5a-induced appearance of this epitope and Rap activation was controlled by phospholipase C (PLC), as was shown with the PLC inhibitor U73122. These data show that different chemoattractants are able to induce distinct activation states of integrins on eosinophils and that optimal chemotaxis is associated with the high activation epitope of the alphaMbeta2 integrin. Furthermore, PLC plays an important role in the inside-out signaling and, thus, the activation status of integrins on eosinophils.  相似文献   

7.
Previously, we mapped the novel CC chemokine myeloid progenitor inhibitory factor 2 (MPIF-2)/eotaxin-2 to chromosome 7q11.23 (Nomiyama, H., Osborne, L. R., Imai, T., Kusuda, J., Miura, R., Tsui, L.-C., and Yoshie, O. (1998) Genomics 49, 339-340). Since chemokine genes tend to be clustered, unknown chemokines may be present in the vicinity of those mapped to new chromosomal loci. Prompted by this hypothesis, we analyzed the genomic region containing the gene for MPIF-2/eotaxin-2 (SCYA24) and have identified a novel CC chemokine termed eotaxin-3. The genes for MPIF-2/eotaxin-2 (SCYA24) and eotaxin-3 (SCYA26) are localized within a region of approximately 40 kilobases. By Northern blot analysis, eotaxin-3 mRNA was constitutively expressed in the heart and ovary. We have generated recombinant eotaxin-3 in a baculovirus expression system. Eotaxin-3 induced transient calcium mobilization specifically in CC chemokine receptor 3 (CCR3)-expressing L1.2 cells with an EC(50) of 3 nM. Eotaxin-3 competed the binding of (125)I-eotaxin to CCR3-expressing L1.2 cells with an IC(50) of 13 nM. Eotaxin-3 was chemotactic for normal peripheral blood eosinophils and basophils at high concentrations. Collectively, eotaxin-3 is yet another functional ligand for CCR3. The potency of eotaxin-3 as a CCR3 ligand seems, however, to be approximately 10-fold less than that of eotaxin. Identification of eotaxin-3 will further promote our understanding of the control of eosinophil trafficking and other CCR3-mediated biological phenomena. The strategy used in this study may also be applicable to identification of other unknown chemokine genes.  相似文献   

8.
The chemokine CC chemokine ligand (CCL)5/RANTES as well as its respective receptor CCR5 mediate leukocyte infiltration during inflammation and are up-regulated early during the course of glomerulonephritis (GN). We tested the effects of the two CCL5/RANTES blocking analogs, Met-RANTES and amino-oxypentane-RANTES, on the course of horse apoferritin (HAF)-induced GN. HAF-injected control mice had proliferative GN with mesangial immune complex deposits of IgG and HAF. Daily i.p. injections of Met-RANTES or amino-oxypentane-RANTES markedly reduced glomerular cell proliferation and glomerular macrophage infiltration, which is usually associated with less glomerular injury and proteinuria in HAF-GN. Surprisingly, however, HAF-GN mice treated with both analogs showed worse disease with mesangiolysis, capillary obstruction, and nephrotic range albuminuria. These findings were associated with an enhancing effect of the CCL5/RANTES analogs on the macrophage activation state, characterized by a distinct morphology and increased inducible NO synthetase expression in vitro and in vivo, but a reduced uptake of apoptotic cells in vivo. The humoral response and the Th1/Th2 balance in HAF-GN and mesangial cell proliferation in vitro were not affected by the CCL5/RANTES analogs. We conclude that, despite blocking local leukocyte recruitment, chemokine analogs can aggravate some specific disease models, most likely due to interactions with systemic immune reactions, including the removal of apoptotic cells and inducible NO synthetase expression.  相似文献   

9.
The identification, optimization, and structure-activity relationship (SAR) of small-molecule CCR4 antagonists is described. An initial screening hit with micromolar potency was identified that was optimized to sub-micromolar binding potency by enantiomer resolution, halogenation of the naphthalene ring, and extension of the alkyl chain linker between the central piperidine ring and the terminal aryl group. An antagonist was identified that showed good cross-reactivity against the mouse receptor and inhibited CCR4-based cell recruitment in dose-dependent fashion.  相似文献   

10.
Kim IS  Jang SW  Sung HJ  Lee JS  Ko J 《FEBS letters》2005,579(27):6044-6048
Human CC chemokine-4 (HCC-4)/CCL16 is a chemoattractant for monocytes and lymphocytes. Although HCC-4 binds to multiple CC chemokine receptors, the receptor-mediated signal transduction pathway induced by HCC-4 has not been characterized. Human osteogenic sarcoma cells stably expressing CCR1 were used to investigate HCC-4-mediated chemotaxis signaling events via CCR1. The chemotactic activity of HCC-4 as well as those of other CCR1-dependent chemokines including MIP-1alpha/CCL3, RANTES/CCL5, and Lkn-1/CCL15 was inhibited by the treatment of pertussis toxin, an inhibitor of Gi/Go protein, U73122, an inhibitor of phospholipase C (PLC), and rottlerin, a specific inhibitor of protein kinase Cdelta (PKCdelta). These results indicate that HCC-4-induced chemotaxis signaling is mediated through Gi/Go protein, PLC, and PKCdelta. SB202190, an inhibitor of p38 mitogen activated protein kinase, only blocked the chemotactic activity of HCC-4, but not those of other CCR1-dependent chemokines. SB202190 inhibited HCC-4-induced chemotaxis in a dose-dependent manner (P < 0.01). HCC-4 induces p38 activation in both a time and dose-dependent manner. However, such p38 activation was not induced by other CCR1-dependent chemokines. To further investigate the differential effect of HCC-4, the Ca2+ mobilization was examined. HCC-4 induced no intracellular Ca2+ flux in contrast to other CCR1-dependent chemokines. These results indicate that HCC-4 transduces signals differently from other CCR1-dependent chemokines and may play different roles in the immune response.  相似文献   

11.
Chemokines and their receptors participate in the development of cancers by enhancing tumor cell proliferation, angiogenesis, invasion, metastasis and penetration of tumor immune cells. It remains unclear whether CXC chemokine ligand 4 (CXCL4)/CXC chemokine receptor 3-B (CXCR3-B) can be used as an independent molecular marker for establishing prognosis for breast cancer patients. We evaluated CXCL4 and CXCR3-B expression in 114 breast cancer tissues and 30 matched noncancerous tissues using immunohistochemistry and western blot, and determined the correlation between their expression and clinicopathologic findings. We observed that breast cancer tissues express CXCL4 strongly and CXCR3-B weakly compared to noncancerous tissues. Strong CXCL4 expression was detected in 94.7% and weak CXCR3-B expression was detected in 78.9% of the tissues. Therefore, CXCL4/CXCR3-B might play a crucial role in breast cancer progression. We found no significant correlation between CXCL4 and age, tumor stage, tumor grade or TNM stage. CXCR3-B was associated significantly with tumor grade. Moreover, the Chi-square test of association showed that the expression of CXCL4/CXCR3-B might be an independent prognostic marker for breast cancer. Therefore, we suggest that CXCR3-B is an indicator of poor prognosis and may also be a chemotherapeutic target.  相似文献   

12.
Chemokine processing by proteases is emerging as an important regulatory mechanism of leukocyte functions and possibly also of cancer progression. We screened a large panel of chemokines for degradation by cathepsins B and D, two proteases involved in tumor progression. Among the few substrates processed by both proteases, we focused on CCL20, the unique chemokine ligand of CCR6 that is expressed on immature dendritic cells and subtypes of memory lymphocytes. Analysis of the cleavage sites demonstrate that cathepsin B specifically cleaves off four C-terminally located amino acids and generates a CCL20(1-66) isoform with full functional activity. By contrast, cathepsin D totally inactivates the chemotactic potency of CCL20 by generating CCL20(1-55), CCL20(1-52), and a 12-aa C-terminal peptide CCL20(59-70). Proteolytic cleavage of CCL20 occurs also with chemokine bound to glycosaminoglycans. In addition, we characterized human melanoma cells as a novel CCL20 source and as cathepsin producers. CCL20 production was up-regulated by IL-1alpha and TNF-alpha in all cell lines tested, and in human metastatic melanoma cells. Whereas cathepsin D is secreted in the extracellular milieu, cathepsin B activity is confined to cytosol and cellular membranes. Our studies suggest that CCL20 processing in the extracellular environment of melanoma cells is exclusively mediated by cathepsin D. Thus, we propose a model where cathepsin D inactivates CCL20 and possibly prevents the establishment of an effective antitumoral immune response in melanomas.  相似文献   

13.
Eotaxin-3/CCL26 is a functional ligand for CCR3 and abundantly produced by IL-4-/IL-13-stimulated vascular endothelial cells. CCL26 also functions as a natural antagonist for CCR1, CCR2, and CCR5. In this study, we report that CCL26 is yet a functional ligand for CX3CR1, the receptor for fractalkine/CX3CL1, which is expressed by CD16(+) NK cells, cytotoxic effector CD8(+) T cells, and CD14(low)CD16(high) monocytes. Albeit at relatively high concentrations, CCL26 induced calcium flux and chemotaxis in mouse L1.2 cells expressing human CX3CR1 but not mouse CX3CR1 and competed with CX3CL1 for binding to CX3CR1. In chemotaxis assays using human PBMCs, CCL26 attracted not only eosinophils but also CD16(+) NK cells, CD45RA(+)CD27(-)CD8(+) T cells, and CD14(low)CD16(high) monocytes. Intraperitoneal injection of CCL26 into mice rapidly recruited mouse eosinophils and intravenously transferred human CD16(+) NK cells into the peritoneal cavity. IL-4-stimulated HUVECs produced CCL26 and efficiently induced adhesion of cells expressing CX3CR1. Real-time PCR showed that skin lesions of psoriasis consistently contained CX3CL1 mRNA but not CCL26 mRNA, whereas those of atopic dermatitis contained CCL26 mRNA in all samples but CX3CL1 mRNA in only about half of the samples. Nevertheless, the skin lesions from both diseases consistently contained CX3CR1 mRNA at high levels. Thus, CCL26 may be partly responsible for the recruitment of cells expressing CX3CR1 in atopic dermatitis particularly when the expression of CX3CL1 is low. Collectively, CCL26 is another agonist for CX3CR1 and may play a dual role in allergic diseases by attracting eosinophils via CCR3 and killer lymphocytes and resident monocytes via CX3CR1.  相似文献   

14.
This report discloses the development of a series of tricyclic histamine H(4) receptor antagonists. Starting with a low nanomolar benzofuranopyrimidine HTS hit devoid of pharmaceutically acceptable properties, we navigated issues with metabolism and solubility to furnish a potent, stable and water soluble tricyclic histamine H(4) receptor antagonist with desirable physiochemical parameters which demonstrated efficacy a mouse ova model.  相似文献   

15.
Critical to the function of Ag-presenting dendritic cells (DCs) is their capacity to migrate to lymphoid organs and to sites of inflammation. A final stage of development, termed maturation, yields DCs that are strong stimulators of T cell-mediated immunity and is associated with a remodeling of the cell surface that includes a change in the levels of expression of many molecules, including chemokine receptors. We show in this study that CCR3, a chemokine receptor initially discovered on eosinophils, is also expressed by human DCs that differentiate from blood monocytes, DCs that emigrate from skin (epidermal and dermal DCs), and DCs derived from CD34+ hemopoietic precursors in bone marrow, umbilical cord blood, and cytokine-elicited peripheral blood leukapheresis. Unlike other chemokine receptors, such as CCR5 and CCR7, the expression of CCR3 is not dependent on the state of maturation. All DC subsets contain a large intracellular pool of CCR3. The surface expression of CCR3 is not modulated following uptake of particulate substances such as zymosan or latex beads. CCR3 mediates in vitro chemotactic responses to the known ligands, eotaxin and eotaxin-2, because the DC response to these chemokines is inhibited by CCR3-specific mAbs. We postulate that expression of CCR3 may underlie situations where both DCs and eosinophils accumulate in vivo, such as the lesions of patients with Langerhans cell granulomatosis.  相似文献   

16.
One of the characteristic features of allergic asthma is recruitment of large numbers of inflammatory cells including eosinophils and Th2 lymphocytes to the lung. This influx of inflammatory cells is thought to be a controlled and coordinated process mediated by chemokines and their receptors. It is thought that distinct, differential expression of chemokine receptors allows selective migration of T cell subtypes in response to the chemokines that bind these receptors. Th2 cells preferentially express CCR8 and migrate selectively to its ligand, CC chemokine ligand (CCL)1. We studied the role of the CCR8 ligand, CCL1, in the specific recruitment of Th2 cells and eosinophils to the lung in a murine model of allergic airway disease. We have demonstrated for the first time that CCL1 is up-regulated in the lung following allergen challenge. Moreover, a neutralizing Ab to CCL1 reduced eosinophil migration to the lung, but had no effect on recruitment of Th2 cells following allergen challenge. In addition, there was no change in airway hyperresponsiveness or levels of Th2 cytokines. In a Th2 cell transfer system of pulmonary inflammation, anti-CCL1 also failed to affect recruitment of Th2 cells to the lung following allergen challenge. Significantly, intratracheal instillation of rCCL1 increased recruitment of eosinophils but not Th2 cells to the lung in allergen-sensitized and -challenged mice. In summary, our results indicate that CCL1 is important for the pulmonary recruitment of eosinophils, rather than allergen-specific Th2 cells, following allergen challenge.  相似文献   

17.
Combining the first generation H(1) antihistamine chlorpheniramine (1) with H(3) ligands of the alkylamine type has led to the identification of compound 9d, a dual ligand of both the H(1) and H(3) receptors.  相似文献   

18.
SR-PSOX and CXC chemokine ligand (CXCL)16, which were originally identified as a scavenger receptor and a transmembrane-type chemokine, respectively, are indicated to be identical. In this study, we demonstrate that membrane-bound SR-PSOX/CXCL16 mediates adhesion and phagocytosis of both Gram-negative and Gram-positive bacteria. Importantly, our prepared anti-SR-PSOX mAb, which suppressed chemotactic activity of SR-PSOX, significantly inhibited bacterial phagocytosis by human APCs including dendritic cells. Various scavenger receptor ligands inhibited the bacterial phagocytosis of SR-PSOX. In addition, the recognition specificity for bacteria was determined by only the chemokine domain of SR-PSOX/CXCL16. Thus, SR-PSOX/CXCL16 may play an important role in facilitating uptake of various pathogens and chemotaxis of T and NKT cells by APCs through its chemokine domain.  相似文献   

19.
This letter describes the discovery and synthesis of a series of octahydropyrrolo[3,4-c]pyrrole based selective histamine hH4 receptor antagonists. The amidine compound 20 was found to be a potent and selective histamine H4 receptor antagonist with moderate clearance and a high volume of distribution.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号