首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two experiments were undertaken to adapt the in vitro gas production technique in syringes, used for ruminants, to fibre fermentation studies in the large intestine of pigs.In a first experiment, two inocula (faeces and large intestine content) were compared at four dilution levels in a buffer solution (0.025, 0.05, 0.1 and 0.2 g ml−1) with two substrates: wheat bran and sugar–beet pulp. The accumulated gas produced over 72 h was modelled and the kinetics parameters compared. The time to half asymptote was lower for the intestinal inoculum (5.5 versus 8.0 h, P<0.02), but the 2 inocula yielded similar fractional rates of degradation (0.16 h−1) and gave equal final gas production (252 ml g−1 substrate). No interaction (P>0.05) was observed between inocula and substrates. The dilution of the samples in the buffer solution increased (P<0.001) the lag time (from 0.9 to 2.1 h for dilution rates ranging from 0.2 to 0.025 g ml−1, respectively) and decreased (P<0.001) the rates of substrate degradation (from 0.18 to 0.13 h−1).A second experiment aimed to study the effect of an in vitro pepsin–pancreatin hydrolysis of the sample prior to the gas test. Six substrates were tested: maize, wheat bran, sugar–beet pulp, lupins, peas and soybean meal. The enzymatic hydrolysis affected (P<0.001) the kinetics parameters and the ranking order of the fermented substrates. The lag times also increased for all ingredients. The rate of degradation decreased when peas, lupins, maize and wheat bran were hydrolysed (P<0.001) but it increased with soybean meal (P=0.014) and sugar–beet pulp (P<0.001). Final gas production increased with peas and soybean meal (P<0.001), remained unchanged for lupins and decreased for the other substrates (P<0.001).In conclusion, the method using faeces as a source of microbial inoculum is reliable to characterise the fermentation kinetics of ingredients in the large intestine of pigs. However, it is important to hydrolyse the substrates with pepsin and pancreatin before the gas tests.  相似文献   

2.
Cheese whey powder (CWP) solution with different CWP or sugar concentrations was fermented to ethanol in a continuous fermenter using pure culture of Kluyveromyces marxianus (DSMZ 7239). Sugar concentration of the feed CWP solution varied between 55 and 200 g l−1 while the hydraulic residence time (HRT) was kept constant at 54 h. Ethanol formation, sugar utilization and biomass formation were investigated as functions of the feed sugar concentration. Percent sugar utilization and biomass concentrations decreased and the effluent sugar concentration increased with increasing feed sugar concentrations especially for the feed sugar contents above 100 g l−1. Ethanol concentration and productivity (DP) increased with increasing feed sugar up to 100 g l−1 and then decreased with further increases in the feed sugar content. The highest ethanol concentration (3.7%, v v−1) and productivity (0.54 gE l−1 h−1) were obtained with the feed sugar content of 100 g l−1 or 125 g l−1. The ethanol yield coefficient (YP/S) was also maximum (0.49 gE gS−1) when the feed sugar was between 100 and 125 g l−1. The growth yield coefficient (YX/S) decreased steadily from 0.123 to 0.063 gX gS−1 when the feed sugar increased from 55 to 200 g l−1 due to adverse effects of high sugar contents on yeast growth. The optimal feed sugar concentration maximizing the ethanol productivity and sugar utilization was between 100 and 125 g l−1 under the specified experimental conditions.  相似文献   

3.
Carbon limited continuous cultures of Lactobacillus rhamnosus ATCC 7469 were grown at dilution rates between 0.1 h−1 and 0.6 h−1. At 0.45 h−1, oxygen uptake decreases producing a deficiency in the production of cell energy, lowering the concentration of biomass and finally accumulating glucose in the broth. Under the lack of energy pressure, L. rhamnosus ATCC 7469 triggers the production of lactic acid from pyruvate freeing NAD+ and stimulates glycolysis to continue, producing extra ATP from substrate-level phosphorylation. The 12-fold growing concentration of lactic acid and the 2-fold increase of succinic acid are in parallel with the steep 4-fold decrease of acetic acid production and small concentration changes of formic and propionic acids.The way the cells balance the available energy between the growing dilution rate and detoxification produces a stress within the culture, detected and described by flow cytometry. As the dilution rate increased, the proportion of L. rhamnosus ATCC 7469 cells with depolarized membrane steadily increased (1% at D = 0.20 h−1, 8% at D = 0.30 h−1, 14% at D = 0.45 h−1 and 26% for D = 0.62 h−1, respectively). Only a low level of 3.7% of the population did not recover from the demanding growth rates in the acidic environment.  相似文献   

4.
The effect of heat treatment on rumen degradation of phytate in soybean meal and rapeseed meal was studied on three sheep fitted with rumen cannula. Soybean meal and rapeseed meal were roasted at 133°, 143° or 153°C for 3 h and the rumen degradation of phytate phosphorus in untreated and heat treated oilseed meals was examined using the nylon-bag technique. Effective degradability of phytate phosphorus in soybean and rapeseed meals, estimated at ruminal outflow rates of 0.02, 0.05 and 0.08 h−1, was significantly (p < 0.05) reduced by heat treatment. The reduction was more marked in rapeseed meal than in soybean meal. These results suggest that heat processing of oilseed meals suppresses phytate degradation in the rumen and leads to a low availability of dietary phytate phosphorus.  相似文献   

5.
《Process Biochemistry》2014,49(8):1245-1250
This work describes the development of a novel integrated system for lactic acid production by Actinobacillus succinogenes. Fermentation and separation were integrated with the use of a microfiltration (MF) membrane, and lactic acid was recovered by resin adsorption following MF. The fermentation broth containing residual sugar and nutrients was then recycled back into the fermenter after lactic acid adsorption. This novel approach overcame the problem of product inhibition and extended the cell growth period from 41 h to 120 h. Production of lactic acid was improved by 23% to 183.4 g L−1. The overall yield and productivity for glucose were 0.97 g g−1 and 1.53 g L−1 h−1, respectively. These experimental results indicate that the integrated system could benefit continuous production of lactic acid at high levels.  相似文献   

6.
A study was conducted on H2S removal in a biotrickling filter packed with open-pore polyurethane foam. Thiobacillus denitrificans was used as inoculum and a mixed culture population was developed during the process. The inhibitory effect of sulphate concentration (1.8–16.8 g L−1), pH (6.9–8.6), trickling liquid velocity (TLV, 9.1–22.8 m h−1), H2S inlet concentration (20–157 ppmv) and the empty bed residence time (EBRT, 9–57 s) on the H2S removal efficiency (RE) were thoroughly investigated. An increase in pH from 6.9 to 8.5 led to a corresponding increase in H2S removal. In addition, an inhibitory effect of sulphate concentration was observed from 16.8 g L−1 and the maximum elimination capacity was found to be 22 gS m−3 h−1 (RE 98%). The RE was constant (98.8 ± 0.30%) for EBRT  16 s, but a decrease in the EBRT from 16 to 9 s led to a corresponding decrease in RE from 98.2 to 89.6% for a TLV of 9.1 m h−1 and from 97.9 to 94.9% for a TLV of 22.8 m h−1 (inlet load of 11.0 ± 0.2 gS m−3 h−1). The sulphur oxidation capacity in the biotrickling filter was not diminished by the presence of other bacteria.  相似文献   

7.
For this study, 2,3-butanediol (BD) fermentation from pure and biomass-derived sugar were optimized in shake-flask and 5-L bioreactor levels using Klebsiella oxytoca ATCC 8724. The results showed that 70 g/L of single sugar (glucose or xylose) and 90 g/L of mixed-sugar (glucose:xylose = 2:1) were optimum concentrations for efficient 2,3-BD fermentation. At optimum sugar concentrations, 2,3-BD productivities were 1.03, 0.64 and 0.50 gL−1 h−1, and yields were 0.43, 0.36 and 0.35 g/g in glucose, xylose and mixed-sugar medium, respectively. The lack of simultaneous utilization of glucose and xylose led to the lowest productivity in the mixed-sugar medium. Detoxification of biomass hydrolyzates was necessary for efficient 2,3-BD fermentation when sugar concentrations in the medium was 90 g/L or higher, but not with sugar concentrations of 30 g/L or less. A fed-batch fermentation using glucose medium led to an increase 2,3-BD titer to 79.4 g/L and yields 0.47 g/g, while productivity decreased to 0.79 gL−1 h−1. However, the fed-batch process was inefficient using mixed-sugar and biomass hydrolyzates because of poor xylose utilization. These results indicated that appropriate biomass processing technologies must be developed to generate separate glucose and xylose streams to produce high 2,3-BD titer from biomass-derived sugar using a fed-batch process.  相似文献   

8.
The aim of this study was to develop a bioprocess for l- and d-lactic acid production from raw sweet potato through simultaneous saccharification and fermentation by Lactobacillus paracasei and Lactobacillus coryniformis, respectively. The effects of enzyme and nitrogen source concentrations as well as of the ratio of raw material to medium were investigated. At dried material concentrations of 136.36–219.51 g L−1, yields of 90.13–91.17% (w/w) and productivities of 3.41–3.83 g L−1 h−1 were obtained with lactic acid concentrations as high as 198.32 g L−1 for l-lactic acid production. In addition, d-lactic acid was produced with yields of 90.11–84.92% (w/w) and productivities of 2.55–3.11 g L−1 h−1 with a maximum concentration of 186.40 g L−1 at the same concentrations of dried material. The simple and efficient process described in this study will benefit the tuber and root-based lactic acid industries without requiring alterations in plant equipment.  相似文献   

9.
Olive stones are an agro-industrial by-product abundant in the Mediterranean area that is regarded as a potential lignocellulosic feedstock for sugar production. Statistical modeling of dilute-sulphuric acid hydrolysis of olive stones has been performed using a response surface methodology, with treatment temperature and process time as factors, to optimize the hydrolysis conditions aiming to attain maximum d-xylose extraction from hemicelluloses. Thus, solid yield and composition of solid and liquid phases were assessed by empirical modeling. The highest yield of d-xylose was found at a temperature of 195 °C for 5 min. Under these conditions, 89.7% of the total d-xylose was recovered from raw material. The resulting solids from optimal conditions were assayed as substrate for enzymatic hydrolysis, while fermentability of hemicellulosic hydrolysates was tested using the d-xylose-fermenting yeast Pachysolen tannophilus. Both bioprocesses were considerably influenced by enzyme loading and inoculum size. In the enzymatic hydrolysis step, about 56% of cellulose was converted into d-glucose by using an enzyme/solid ratio of 40 FPU g−1, while in the fermentation carried out with a cell concentration of 2 g L−1 a yield of 0.44 g xylitol/g d-xylose and a global volumetric productivity of 0.11 g L−1 h−1 were achieved.  相似文献   

10.
The extensive prospects of violacein in the pharmaceutical industry have attracted increasing interest. However, the fermentation levels of violacein are currently inadequate to meet the demands of industrial production. This study was undertaken to develop an efficient process for the production of violacein by recombinant Citrobacter freundii. The effects of dissolved oxygen (DO) and pH on cell growth and violacein production in batch cultures were investigated first. When the DO and pH of the medium were controlled at around 25% and 7.0, respectively, the biomass and concentration of violacein were maximized. Based on the consumption of nutrients in the medium observed during batch culture, a fed-batch fermentation strategy with controlled DO and pH was implemented. By continuously feeding glycerol, NH4Cl, and l-tryptophan at a constant feeding rate of 16 mL h−1, the final concentration of violacein reached 4.13 g L−1, which was 4.09-fold higher than the corresponding batch culture, and the maximal dry cell weight (DCW) and average violacein productivity obtained for the fed-batch culture were 3.34 g DCW L−1 and 82.6 mg L−1 h−1, respectively. To date, this is the first report on the efficient production of violacein by genetically engineered strains in a fermentor.  相似文献   

11.
Heterogeneities occur in various bioreactor designs including cell retention devices. Whereas in external devices changing environmental conditions cannot be prevented, cells are retained in their optimal environment in internal devices. Conventional reverse-flow diafiltration utilizes an internal membrane device, but pulsed feeding causes spatial heterogeneities. In this study, the influence of conventional reverse-flow diafiltration on the yeast Hansenula polymorpha is investigated. Alternating 180 s of feeding with 360 s of non-feeding at a dilution rate of 0.2 h−1 results in an oscillating DOT signal with an amplitude of 60%. Thereby, induced short-term oxygen limitations result in the formation of ethanol and a reduced product concentration of 25%. This effect is enforced at increased dilution rate. To overcome this cyclic problem, sequential operation of three membranes is introduced. Thus, quasi-continuous feeding is achieved reducing the oscillation of the DOT signal to an amplitude of 20% and 40% for a dilution rate of 0.2 h−1 and 0.5 h−1, respectively. Fermentation conditions characterized by complete absence of oxygen limitation and without formation of overflow metabolites could be obtained for dilution rates from 0.1 h−1 to 0.5 h−1. Thus, sequential operation of three membranes minimizes oscillations in the DOT signal providing a nearly homogenous culture over time.  相似文献   

12.
Two experiments were undertaken to investigate the influence of (1) pig bodyweight and (2) dietary fibre content of the diet on the in vitro gas production of sugar beet pulp fibre using faecal inoculum.In the first experiment, inocula prepared from young pigs (Y; 16–50 kg), growing pigs (G; 62–93 kg) and sows (S; 216–240 kg) were compared. Sugar beet pulp, hydrolysed in vitro with pepsin and then pancreatin, was used as the fermentation substrate. The cumulated gas productions over 144 h were modelled and the kinetics parameters compared. Lag times (Y: 4.6 h; G: 6.4 h; S: 9.2 h) and half-times to asymptote (Y: 14.7 h; G: 15.9 h; S: 20.8 h) increased with pig bodyweight (P<0.001) and the fractional degradation rates of the substrate differed between the pig categories (Y: 0.110 h−1; G: 0.115 h−1; S: 0.100 h−1; P<0.001). The final gas production was not affected (P=0.10) by the inoculum source.In the second experiment hydrolysed sugar beet pulp was fermented with four inocula prepared from pigs fed diets differing in their total and soluble dietary fibre contents, i.e. low fibre diet rich in soluble fibre (LOW-S) or in insoluble fibre (LOW-I) or high fibre diet rich in soluble fibre (HIGH-S) or in insoluble fibre (HIGH-I). The total and the soluble dietary fibres influenced the kinetics of gas production. The presence of soluble fibres decreased the lag times, whatever the total dietary fibre content (2.7 h for LOW-S versus 3.5 h for LOW-I, 4.0 h for HIGH-S versus 4.4 h for HIGH-I; P<0.001). The half-times to asymptote were higher with the low fibre diets (P<0.001) and, for similar total dietary fibre contents, they were lower when the proportion of soluble fibres increased (LOW-S: 9.9 h; LOW-I: 11.4 h; HIGH-S: 8.9 h; HIGH-I: 10.1 h; P<0.001). The fractional degradation rates of the substrate were the highest with the fibre-rich diet containing a high proportion of soluble fibres (0.158 h−1; P<0.001).In conclusion, the bodyweight of the faeces donors and the dietary fibre composition of the pig diet influence the in vitro fermentation kinetics of hydrolysed sugar beet pulp, but not the final gas production.  相似文献   

13.
The psychrotolerant bacterium Shewanella sp. G5 was used to study differential protein expression on glucose and cellobiose as carbon sources in cold-adapted conditions. This strain was able to growth at 4 °C, but reached the maximal specific growth rate at 37 °C, exhibiting similar growing rates values with glucose (μ: 0.4 h−1) and cellobiose (μ: 0.48 h−1). However, it grew at 15 °C approximately in 30 h, with specific growing rates of 0.25 and 0.19 h−1 for cellobiose and glucose, respectively. Thus, this temperature was used to provide conditions related to the environment where the organism was originally isolated, the intestinal content of Munida subrrugosa in the Beagle Channel, Fire Land, Argentina. Cellobiose was reported as a carbon source more frequently available in marine environments close to shore, and its degradation requires the enzyme β-glucosidase. Therefore, this enzymatic activity was used as a marker of cellobiose catabolism. Zymogram analysis showed the presence of cold-adapted β-glucosidase activity bands in the cell wall as well as in the cytoplasm cell fractions. Two-dimensional gel electrophoresis of the whole protein pattern of Shewanella sp. G5 revealed 59 and 55 different spots induced by cellobiose and glucose, respectively. Identification of the quantitatively more relevant proteins suggested that different master regulation schemes are involved in response to glucose and cellobiose carbon sources. Both, physiological and proteomic analyses could show that Shewanella sp. G5 re-organizes its metabolism in response to low temperature (15 °C) with significant differences in the presence of these two carbon sources.  相似文献   

14.
《Aquatic Botany》2005,81(2):157-173
The main photosynthesis and respiration parameters (dark respiration rate, light saturated production rate, saturation irradiance, photosynthetic efficiency) were measured on a total of 23 macrophytes of the Thau lagoon (2 Phanerogams, 5 Chlorophyceae, 10 Rhodophyceae and 6 Phaeophyceae). Those measurements were performed in vitro under controlled conditions, close to the natural ones, and at several seasons. Concomitantly, measurements of pigment concentrations, carbon, phosphorous and nitrogen contents in tissues were performed. Seasonal intra-specific variability of photosynthetic parameters was found very high, enlightening an important acclimatation capacity. The highest photosynthetic capacities were found for Chlorophyceae (e.g. Monostroma obscurum thalli at 17 °C, 982 μmol O2 g−1 dw h−1 and 9.1 μmol O2 g−1 dw h−1/μmol photons m−2 s−1, respectively for light saturated net production rate and photosynthetic efficiency) and Phanerogams (e.g. Nanozostera noltii leaves at 25 °C, 583 μmol O2 g−1 dw h−1 and 2.6 μmol O2 g−1 dw h−1/μmol photons m−2 s−1 respectively for light saturated net production rate and photosynthetic efficiency). As expected, species with a high surface/volume ratio were found to be more productive than coarsely branched thalli and thick blades shaped species. Contrary to Rd (ranging 6.7–794 μmol O2 g−1 dw h−1, respectively for Rytiphlaea tinctoria at 7 °C and for Dasya sessilis at 25 °C) for which a positive relationship with water temperature was found whatever the species studied, the evolution of P/I curves with temperature exhibited different responses amongst the species. The results allowed to show summer nitrogen limitation for some species (Gracilaria bursa-pastoris and Ulva spp.) and to propose temperature preferences based on the photosynthetic parameters for some others (N. noltii, Zostera marina, Chaetomorpha linum).  相似文献   

15.
A thermo-alkaline pectate lyase (BliPelA) gene from an alkaliphilic Bacillus licheniformis strain was cloned and overexpressed in Escherichia coli. Mature BliPelA exhibited maximum activity at pH 11 and 70 °C, and demonstrated cleavage capability on a broad range of substrates such as polygalacturonic acid, pectins, and methylated pectins. The highest specific activity, of 320 U mg−1, was towards polygalacturonic acid. Significant ramie (Boehmeria nivea) fiber weight loss (21.5%) was obtained following enzyme treatment and combined enzyme-chemical treatment (29.3%), indicating a high ramie degumming efficiency of BliPelA. The total activity of recombinant BliPelA reached 1450.1 U ml−1 with a productivity of 48.3 U ml−1 h−1 under high-cell-density cultivation with a glycerol exponential feeding strategy for 30 h in 1-l fed-batch fermenter, and 1380.1 U ml−1 with a productivity of 57.5 U ml−1 h−1 after 24 h under constant glucose feeding in a 20-l fermenter using E. coli as the host. The enzyme yields reached 4.5 and 4.3 g l−1 in 1-l and 20-l fed-batch fermenters, respectively, which are higher than those of most reported alkaline Pels. Based on these promising properties and high-level production, BliPelA shows great potential for application in ramie degumming in textile industry.  相似文献   

16.
d-Mannitol (hereafter denoted mannitol) is used in the medical and food industry and is currently produced commercially by chemical hydrogenation of fructose or by extraction from seaweed. Here, the marine cyanobacterium Synechococcus sp. PCC 7002 was genetically modified to photosynthetically produce mannitol from CO2 as the sole carbon source. Two codon-optimized genes, mannitol-1-phosphate dehydrogenase (mtlD) from Escherichia coli and mannitol-1-phosphatase (mlp) from the protozoan chicken parasite Eimeria tenella, in combination encoding a biosynthetic pathway from fructose-6-phosphate to mannitol, were expressed in the cyanobacterium resulting in accumulation of mannitol in the cells and in the culture medium. The mannitol biosynthetic genes were expressed from a single synthetic operon inserted into the cyanobacterial chromosome by homologous recombination. The mannitol biosynthesis operon was constructed using a novel uracil-specific excision reagent (USER)-based polycistronic expression system characterized by ligase-independent, directional cloning of the protein-encoding genes such that the insertion site was regenerated after each cloning step. Genetic inactivation of glycogen biosynthesis increased the yield of mannitol presumably by redirecting the metabolic flux to mannitol under conditions where glycogen normally accumulates. A total mannitol yield equivalent to 10% of cell dry weight was obtained in cell cultures synthesizing glycogen while the yield increased to 32% of cell dry weight in cell cultures deficient in glycogen synthesis; in both cases about 75% of the mannitol was released from the cells into the culture medium by an unknown mechanism. The highest productivity was obtained in a glycogen synthase deficient culture that after 12 days showed a mannitol concentration of 1.1 g mannitol L−1 and a production rate of 0.15 g mannitol L−1 day−1. This system may be useful for biosynthesis of valuable sugars and sugar derivatives from CO2 in cyanobacteria.  相似文献   

17.
Extracellular lipase of the yeast Candida rugosa was produced via high cell density fed-batch fermentations using palm oil as the sole source of carbon and energy. Feeding strategies consisted of a pH-stat operation, foaming-dependent control and specific growth rate control in different experiments. Compared to foaming-dependent feeding and the pH-stat operation, the specific growth rate control of feeding proved to be the most successful. At the specific growth rate control set at 0.05 h−1, the final lipase activity in the culture broth was the highest at ∼700 U L−1. This was 2.6-fold higher than the final enzyme activity obtained at a specific growth rate control set at 0.15 h−1. The peak enzyme concentration achieved using the best foaming-dependent control of feeding was around 28% of the peak activity attained using the specific growth rate control of feeding at 0.05 h−1. Similarly, the peak enzyme concentration attained using the pH-stat feeding operation was a mere 9% of the peak activity attained by specific growth rate control of feeding at a set-point of 0.05 h−1. Fed-batch fermentations were performed in a 2 L stirred-tank bioreactor (30 °C, pH 7) with the dissolved oxygen level controlled at 30% of air saturation.  相似文献   

18.
《Process Biochemistry》2007,42(1):112-117
A simple fed-batch process was developed using a modified variable specific growth rate feeding strategy for high cell density cultivation of Escherichia coli BL21 (DE3) expressing human interferon-gamma (hIFN-γ). The feeding rate was adjusted to achieve the maximum attainable specific growth rate during fed-batch cultivation. In this method, specific growth rate was changed from a maximum value of 0.55 h−1 at the beginning of feeding and then it was reduced to 0.4 h−1 at induction time.The final concentration of biomass and IFN-γ was reached to ∼115 g l−1 (DCW) and 42.5 g(hIFN-γ) l−1 after 16.5 h, also the final specific yield and overall productivity of recombinant hIFN-γ (rhIFN-γ) were obtained 0.37 g(hIFN-γ) g−1 DCW and 2.57 g(hIFN-γ) l−1 h−1, respectively. According to available data this is the highest specific yield and productivity that has been reported for recombinant proteins production yet.  相似文献   

19.
Fermentations were performed in an external recycle bioreactor using CO2 and d-glucose at feed concentrations of 20 and 40 g L−1. Severe biofilm formation prevented kinetic analysis of suspended cell (‘chemostat’) fermentation, while perlite packing enhanced the volumetric productivity by increasing the amount of immobilised cells. The highest productivity of 6.35 g L−1 h−1 was achieved at a dilution rate of 0.56 h−1. A constant succinic acid yield of 0.69 ± 0.02 g/(g of glucose consumed) was obtained and found to be independent of the dilution rate, transient state and extent of biofilm build-up – approximately 56% of the carbon that formed phosphoenolpyruvate ended up as succinate. Byproduct analysis indicated that pyruvate oxidation proceeded solely via the formate-lyase pathway. Cell growth and corresponding biofilm formation were rapid at dilution rates higher than 0.35 h−1 when the product concentrations were low (succinic acid < 10 g L−1), while minimal growth was observed at succinic acid concentrations above this threshold.  相似文献   

20.
A grazing trial utilizing 35 individually supplemented growing steers (211±42 kg initial body weight (BW)) was conducted to study the effect of supplemental escape protein on the performance of steers grazing on stargrass (Cynodon plectostachyus) during the dry season. N in supplements was 100%, 50%, or 0% natural protein (bloodmeal, coconut meal, and soybean meal), and 0%, 50% or 100% urea. All steers received 2 kg of supplement dry matter (DM) (2.2% N) daily during the 90 days of the experiment. Steers fed the urea supplement had the lowest ADG (0.97 kg day−1). There was a linear (P<0.05) response in ADG to the natural protein level (50 and 100%) in supplements containing bloodmeal (1.11 and 1.21 kg day−1) and coconut meal (1.05 and 1.21 kg day−1), but no response was observed with soybean meal (1.01 and 1.0 kg day−1). Forage intake was not affected by supplementation. As a result of the growth response observed for supplements containing bloodmeal and coconut meal above the urea-based and soybean meal supplements, it was concluded that growing ruminants grazing stargrass in the dry season were deficient in escape protein. ©1997 Elsevier Science B.V.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号