首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Summary The gene (fus) coding for elongation factor G (EF-G) of the extremely thermophilic eubacteriumThermotoga maritima was identified and sequenced. The EF-G coding sequence (2046 bp) was found to lie in an operon-like structure between the ribosomal protein S7 gene (rpsG) and the elongation factor Tu (EF-Tu) gene (tuf). TherpsG, fus, andtuf genes follow each other immediately in that order, which corresponds to the order of the homologous genes in thestr operon ofEscherichia coli. The derived amino acid sequence of the EF-G protein (682 residues) was aligned with the homologous sequences of other eubacteria, eukaryotes (hamster), and archaebacteria (Methanococcus vannielii). Unrooted phylogenetic dendrogram, obtained both from the amino acid and the nucleotide sequence alignments, using a variety of methods, lend further support to the notion that the (present) root of the (eu)bacterial tree lies betweenThermotoga and the other bacterial lineages.  相似文献   

4.
《Genomics》2020,112(6):3915-3924
The role of microbiota in gut-brain communication has led to the development of probiotics promoting brain health. Here we report a genomic study of a Lactobacillus fermentum PS150 and its patented bioactive protein, elongation factor Tu (EF-Tu), which is associated with cognitive improvement in rats. The L. fermentum PS150 circular chromosome is 2,238,401 bp and it consists of 2281 genes. Chromosome comparisons with other L. fermentum strains highlighted a cluster of glycosyltransferases as potential candidate probiotic factors besides EF-Tu. Molecular evolutionary analyses on EF-Tu genes (tuf) in 235 bacteria species revealed one to three copies of the gene per genome. Seven tuf pseudogenes were found and three species only possessed pseudogenes, which is an unprecedented finding. Protein variability analysis of EF-Tu showed five highly variable residues (40 K, 41G, 42 L, 44 K, and 46E) on the protein surface, which warrant further investigation regarding their potential roles as binding sites.  相似文献   

5.
Summary A 5.3 kb DNA segment containing the str operon (ca. 4.5 kb) of the cyanobacterium Spirulina platensis has been sequenced. The str operon includes the structural genes rpsL (ribosomal protein S12), rpsG (ribosomal protein S7), fus (translation elngation factor EF-G) and tuf (translation elongation factor EF-Tu). From the nucleotide sequence of this operon, the primary structures of the four gene products have been derived and compared with the available corresponding structures from eubacteria, archaebacteria and chloroplasts. Extensive homologies were found in almost all cases and in the order S12>EF-Tu>EF-G>S7; the largest homologies were generally found between the cyanobacterial proteins and the corresponding chloroplast gene products. Overall codon usage in S. platensis was found to be rather unbiased.  相似文献   

6.

Background

Phytoplasmas are bacterial phytopathogens responsible for significant losses in agricultural production worldwide. Several molecular markers are available for identification of groups or strains of phytoplasmas. However, they often cannot be used for identification of phytoplasmas from different groups simultaneously or are too long for routine diagnostics. DNA barcoding recently emerged as a convenient tool for species identification. Here, the development of a universal DNA barcode based on the elongation factor Tu (tuf) gene for phytoplasma identification is reported.

Methodology/Principal Findings

We designed a new set of primers and amplified a 420–444 bp fragment of tuf from all 91 phytoplasmas strains tested (16S rRNA groups -I through -VII, -IX through -XII, -XV, and -XX). Comparison of NJ trees constructed from the tuf barcode and a 1.2 kbp fragment of the 16S ribosomal gene revealed that the tuf tree is highly congruent with the 16S rRNA tree and had higher inter- and intra- group sequence divergence. Mean K2P inter−/intra- group divergences of the tuf barcode did not overlap and had approximately one order of magnitude difference for most groups, suggesting the presence of a DNA barcoding gap. The use of the tuf barcode allowed separation of main ribosomal groups and most of their subgroups. Phytoplasma tuf barcodes were deposited in the NCBI GenBank and Q-bank databases.

Conclusions/Significance

This study demonstrates that DNA barcoding principles can be applied for identification of phytoplasmas. Our findings suggest that the tuf barcode performs as well or better than a 1.2 kbp fragment of the 16S rRNA gene and thus provides an easy procedure for phytoplasma identification. The obtained sequences were used to create a publicly available reference database that can be used by plant health services and researchers for online phytoplasma identification.  相似文献   

7.
A method of λ-mediated gene replacement was used to disrupt tufA or tufB on the chromosome of the E. coli K-12 strain MG1655. Both tuf genes, which are almost identical but map in different chromosomal contexts, encode the essential peptide chain elongation factor EF-Tu, one of the most abundant cytoplasmic proteins. Southern analysis confirmed replacement of the chromosomal tufA or tufB gene by a chloramphenicol resistance marker, demonstrating that both tuf genes are individually dispensable for growth. Under conditions of rapid growth, deletion of tufB had no significant effect on growth rate, but deletion of tufA resulted in a 35% increase in generation time. In minimal medium we observed no negative effects of tufA deletion on growth rate. Strains with a single tuf gene are useful for the expression of mutant forms of EF-Tu as the sole species in cells; this was demonstrated by introducing the hybrid tufAhis gene, encoding EF-TuA extended with a C-terminal (His)6 tag, into the chromosome of a strain lacking tufB.  相似文献   

8.
9.
10.
Summary A 6.5 kb region from the genome of the cyanobacterium, Anacystis nidulans 6301 was cloned using the tobacco chloroplast gene for ribosomal protein S12 as a probe. Sequence analysis revealed the presence of genes for ribosomal proteins S12 and S6 and elongation factors EF-G and EF-Tu in this DNA region. The arrangement is rps12 (124 codons)-167 bp spacer-rps7 (156 codons)-77 bp spacer-fus (694 codons)-26 bp spacer-tufA (409 codons), which is similar to that of the Escherichia coli str operon. The deduced amino acid sequences of the A. nidulans S12 and EF-Tu show high homology (72%–82%) with the E. coli and chloroplast counterparts while those of the A. nidulans S7 and EF-G give low homology (51%–59%). Striking structural homology was found between the potential S7 binding region of 16S rRNA and the beginning of S7 mRNA, suggesting that feedback regulation of rps7 expression operates in A. nidulans.  相似文献   

11.
The cluster of genes encoding the botulinum progenitor toxin and the upstream region including p21 and p47 were divided into three different gene arrangements (class I–III). To determine the gene similarity of the type E neurotoxin (BoNT/E) complex to other types, the gene organization in the upstream region of the nontoxic-nonhemagglutinin gene (ntnh) was investigated in chromosomal DNA from Clostridium botulinum type E strain Iwanai and C. butyricum strain BL6340. The gene cluster of type E progenitor toxin (Iwanai and BL6340) was similar to those of type F and type A (from infant botulism in Japan), but not to those of types A, B, and C. Though genes for the hemagglutinin component and P21 were not discovered, genes encoding P47, NTNH, and BoNT were found in type E strain Iwanai and C. butyricum strain BL6340. However, the genes of ORF-X1 (435 bp) and ORF-X2 (partially sequenced) were present just upstream of that of P47. The orientation of these genes was in inverted direction to that of p47. The gene cluster of type E progenitor toxin (Iwanai and BL6340) is, therefore, a specific arrangement (class IV) among the genes encoding components of the BoNT complex.  相似文献   

12.
Genetic engineering of lactic acid bacteria (LAB) requires a reliable gene expression system. Especially, a stable promoter is an important genetic element to induce gene expression in such a system. We report on a novel tuf promoter (Ptuf) of Lactococcus lactis subsp. lactis IL1403 that was screened and selected through analysis of previously published microarray data. Ptuf activity was examined and compared with three other known lactococcal promoters (PdnaJ, PpfkA, and Pusp45) using different bacteria as expression hosts. Each promoter was, respectively, fused to the promoterless and modified bmpB gene as a reporter, and we estimated promoter activity through BmpB expression. All promoters were active in IL1403, and Ptuf activity was strongest among them. The activity of each promoter differed by host bacteria (Lactobacillus plantarum Lb25, Lactobacillus reuteri ATCC23272, and Escherichia coli Top10F’). Ptuf had the highest activity in IL1403 when growth reached late log phase. The activity of each promoter correlated with the expression of each cognate gene in the microarray data (R 2 = 0.7186, P = 0.06968). This study revealed that novel food-grade promoters such as IL1403 Ptuf can be selected from microarray data for food-grade microorganisms and Ptuf can be used to develop a reliable gene expression system in L. lactis.  相似文献   

13.

Background

The co-chaperone Hop [heat shock protein (HSP) organizing protein] has been shown to act as an adaptor for protein folding and maturation, in concert with Hsp70 and Hsp90. The hop gene is of eukaryotic origin. Likewise, the chloroplast elongation factor G (cEF-G) catalyzes the translocation step in chloroplast protein synthesis. The chl-fus gene, which encodes the cEF-G protein, is of plastid origin. Both proteins, Hop and cEF-G, derived from domain duplications. It was demonstrated that the nuclear chl-fus gene locates in opposite orientation to a hop gene in Glycine max. We explored 53 available plant genomes from Chlorophyta to higher plants, to determine whether the chl-fus gene was transferred directly downstream of the primordial hop in the proto-eukaryote host cell. Since both genes came from exon/module duplication events, we wanted to explore the involvement of introns in the early origin and the ensuing evolutionary changes in gene structure.

Results

We reconstructed the evolutionary history of the two convergent plant genes, on the basis of their gene structure, microsynteny and microcolinearity, from 53 plant nuclear genomes. Despite a high degree (72 %) of microcolinearity among vascular plants, our results demonstrate that their adjacency was a product of chromosomal rearrangements. Based on predicted exon − intron structures, we inferred the molecular events giving rise to the current form of genes. Therefore, we propose a simple model of exon/module shuffling by intronic recombinations in which phase-0 introns were essential for domain duplication, and a phase-1 intron for transit peptide recruiting. Finally, we demonstrate a natural susceptibility of the intergenic region to recombine or delete, seriously threatening the integrity of the chl-fus gene for the future.

Conclusions

Our results are consistent with the interpretation that the chl-fus gene was transferred from the chloroplast to a chromosome different from that of hop, in the primitive photosynthetic eukaryote, and much later before the appearance of angiosperms, it was recombined downstream of hop. Exon/module shuffling mediated by symmetric intron phases (i.e., phase-0 introns) was essential for gene evolution. The intergenic region is prone to recombine, risking the integrity of both genes.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1780-1) contains supplementary material, which is available to authorized users.  相似文献   

14.
The gene fus (for EF-G) of the hyperthermophilic bacterium Aquifex pyrophilus was cloned and sequenced. Unlike the other bacteria, which display the streptomycin-operon arrangement of EF genes (5-rps12-rps7 fus-tuf-3), the Aquifex fus gene (700 codons) is not preceded by the two small ribosomal subunit genes although it is still followed by a tuf gene (for EF-Tu). The opposite strand upstream from the EF-G coding locus revealed an open reading frame (ORF) encoding a polypeptide having 52.5% identity with an E. coli protein (the pdxJ gene product) involved in pyridoxine condensation. The Aquifex EF-G was aligned with available homologs representative of Deinococci, high G + C Gram positives, Proteobacteria, cyanobacteria, and several Archaea. Outgroup-rooted phylogenies were constructed from both the amino acid and the DNA sequences using first and second codon positions in the alignments except sites containing synonymous changes. Both datasets and alternative tree-making methods gave a consistent topology, with Aquifex and Thermotoga maritima (a hyperthermophile) as the first and the second deepest offshoots, respectively. However, the robustness of the inferred phylogenies is not impressive. The branching of Aquifex more deeply than Thennotoga and the branching of Thermotoga more deeply than the other taxa examined are given at bootstrap values between 65 and 70% in the fus-based phylogenies, while the EF-G(2)-based phylogenies do not provide a statistically significant level of support ( 50% bootstrap confirmation) for the emergence of Thermotoga between Aquifex and the successive offshoot (Thermus genus). At present, therefore, the placement of Aquifex at the root of the bacterial tree, albeit reproducible, can be asserted only with reservation, while the emergence of Thermotoga between the Aquificales and the Deinococci remains (statistically) indeterminate. Correspondence to: P. Cammarano di Roma  相似文献   

15.
16.
17.
Hu J  Zhang J  Shan H  Chen Z 《Annals of botany》2012,110(1):57-69

Background and Aims

The perianths of the Lardizabalaceae are diverse. The second-whorl floral organs of Sinofranchetia chinensis (Lardizabalaceae) are nectar leaves. The aim of this study was to explore the nature of this type of floral organ, and to determine its relationship to nectar leaves in other Ranunculales species, and to other floral organs in Sinofranchetia chinensis.

Methods

Approaches of evolutionary developmental biology were used, including 3′ RACE (rapid amplification of cDNA ends) for isolating floral MADS-box genes, phylogenetic analysis for reconstructing gene evolutionary history, in situ hybridization and tissue-specific RT-PCR for identifying gene expression patterns and SEM (scanning electron microscopy) for observing the epidermal cell morphology of floral organs.

Key Results

Fourteen new floral MADS-box genes were isolated from Sinofranchetia chinensis and from two other species of Lardizabalaceae, Holboellia grandiflora and Decaisnea insignis. The phylogenetic analysis of AP3-like genes in Ranunculales showed that three AP3 paralogues from Sinofranchetia chinensis belong to the AP3-I, -II and -III lineages. In situ hybridization results showed that SIchAP3-3 is significantly expressed only in nectar leaves at the late stages of floral development, and SIchAG, a C-class MADS-box gene, is expressed not only in stamens and carpels, but also in nectar leaves. SEM observation revealed that the adaxial surface of nectar leaves is covered with conical epidermal cells, a hallmark of petaloidy.

Conclusions

The gene expression data imply that the nectar leaves in S. chinensis might share a similar genetic regulatory code with other nectar leaves in Ranunculales species. Based on gene expression and morphological evidence, it is considered that the nectar leaves in S. chinensis could be referred to as petals. Furthermore, the study supports the hypothesis that the nectar leaves in some Ranunculales species might be derived from stamens.  相似文献   

18.
Various environmental signals integrate into a network of floral regulatory genes leading to the final decision on when to flower. Although a wealth of qualitative knowledge is available on how flowering time genes regulate each other, only a few studies incorporated this knowledge into predictive models. Such models are invaluable as they enable to investigate how various types of inputs are combined to give a quantitative readout. To investigate the effect of gene expression disturbances on flowering time, we developed a dynamic model for the regulation of flowering time in Arabidopsis thaliana. Model parameters were estimated based on expression time-courses for relevant genes, and a consistent set of flowering times for plants of various genetic backgrounds. Validation was performed by predicting changes in expression level in mutant backgrounds and comparing these predictions with independent expression data, and by comparison of predicted and experimental flowering times for several double mutants. Remarkably, the model predicts that a disturbance in a particular gene has not necessarily the largest impact on directly connected genes. For example, the model predicts that SUPPRESSOR OF OVEREXPRESSION OF CONSTANS (SOC1) mutation has a larger impact on APETALA1 (AP1), which is not directly regulated by SOC1, compared to its effect on LEAFY (LFY) which is under direct control of SOC1. This was confirmed by expression data. Another model prediction involves the importance of cooperativity in the regulation of APETALA1 (AP1) by LFY, a prediction supported by experimental evidence. Concluding, our model for flowering time gene regulation enables to address how different quantitative inputs are combined into one quantitative output, flowering time.  相似文献   

19.
20.

Background

The polytene nuclei of the dipteran Chironomus tentans (Ch. tentans) with their Balbiani ring (BR) genes constitute an exceptional model system for studies of the expression of endogenous eukaryotic genes. Here, we report the first draft genome of Ch. tentans and characterize its gene expression machineries and genomic architecture of the BR genes.

Results

The genome of Ch. tentans is approximately 200 Mb in size, and has a low GC content (31%) and a low repeat fraction (15%) compared to other Dipteran species. Phylogenetic inference revealed that Ch. tentans is a sister clade to mosquitoes, with a split 150–250 million years ago. To characterize the Ch. tentans gene expression machineries, we identified potential orthologus sequences to more than 600 Drosophila melanogaster (D. melanogaster) proteins involved in the expression of protein-coding genes. We report novel data on the organization of the BR gene loci, including a novel putative BR gene, and we present a model for the organization of chromatin bundles in the BR2 puff based on genic and intergenic in situ hybridizations.

Conclusions

We show that the molecular machineries operating in gene expression are largely conserved between Ch. tentans and D. melanogaster, and we provide enhanced insight into the organization and expression of the BR genes. Our data strengthen the generality of the BR genes as a unique model system and provide essential background for in-depth studies of the biogenesis of messenger ribonucleoprotein complexes.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-819) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号