首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Structure and chromosomal localization of the human thrombospondin gene   总被引:5,自引:0,他引:5  
Thrombospondin (THBS1) is a large modular glycoprotein component of the extracellular matrix and contains a variety of distinct domains, including three repeating subunits (types I, II, and III) that share homology to an assortment of other proteins. Determination of THBS1 gene structure has revealed that the type I repeat modules are encoded by symmetrical exons and that the heparin-binding domain is encoded by a single exon. To further elucidate the higher level organization of THBS1, the gene was localized to the q11-qter region of chromosome 15.  相似文献   

3.
4.
5.
6.
Dong J  Kukula AK  Toyoshima M  Nakajima M 《Gene》2000,253(2):171-178
Heparanase (HPSE), which we have recently isolated, is an endo-beta-D-glucuronidase capable of cleaving heparan sulfate and has been implicated in inflammation and tumor angiogenesis and metastasis. In this report, the genomic organization and chromosome localization of the human heparanase gene is described. Polymerase chain reaction, subcloning and DNA sequencing analysis of a bacterial artificial chromosome (BAC) clone revealed that the 3.7 kb human heparanase cDNA is spread over about 50 kb and contains 14 exons and 13 introns. The heparanase gene is expressed as two mRNA species containing the same open reading frame, HPSE 1a (5 kb) (GenBank Data Library under accession number: AF155510); and HPSE 1b (1.7 kb) (GenBank Data Library under accession number: AF144325), generated by alternative splicing. The HPSE 1a-form contains all 14 exons, whereas in the HPSE 1b-form the first and fourteenth exons (5'- and 3'-untranslated region) have been spliced out. All splice sites conform to the GT-AG rule, except for the splice donor site of intron 13 (which is GA instead of GT), and the splice acceptor of intron 13 (which is GG instead of AG). Fluorescence in situ hybridization and radiation hybrid mapping suggest that the heparanase gene is located on human chromosome 4q22. This report regarding the structure of the human heparanase gene will aid in understanding the genetic contribution of this gene to normal physiology as well as to disease states. A possible involvement of heparanase in neuronal degeneration is discussed.  相似文献   

7.
Cellular cholesterol metabolism is regulated primarily through sterol-mediated feedback suppression of the activity of the low-density lipoprotein receptor and several enzymes of the cholesterol biosynthetic pathway. We previously described the cloning of a rabbit cDNA for the oxysterol-binding protein (OSBP), a cytosolic protein of 809 amino acids that may participate in these regulatory events. We now use the rabbit OSBP cDNA to clone the human OSBP cDNA and 5' genomic region. Comparison of the human and rabbit OSBP sequences revealed a remarkably high degree of conservation. The cDNA sequence in the coding region showed 94% identity between the two species, and the predicted amino acid sequence showed 98% identity. The human cDNA was used to determine the chromosomal localization of the OSBP gene by Southern blot hybridization to panels of somatic cell hybrid clones containing subsets of human or mouse chromosomes and by RFLP analysis of recombinant inbred mouse strains. The OSBP locus mapped to the long arm of human chromosome 11 and the proximal end of mouse chromosome 19. Along with previously mapped genes including Ly-1 and CD20, OSBP defines a new conserved syntenic group on the long arm of chromosome 11 in the human and the proximal end of chromosome 19 in the mouse.  相似文献   

8.
9.
We previously isolated a cDNA clone for human cytochrome c1. The insert DNA of approximately 950 bp from this clone was used as a probe to identify the cytochrome c1 gene. High molecular weight DNAs extracted from a panel of 14 independent human-mouse somatic cell hybrids were digested with BamHI and analyzed by Southern blot hybridization. The results indicated that the gene for human cytochrome c1 is located on chromosome 8.  相似文献   

10.
Soung YH  Lee JW  Kim SY  Park WS  Nam SW  Lee JY  Yoo NJ  Lee SH 《Human genetics》2004,115(2):112-115
Failure of apoptosis is one of the hallmarks of cancer. As an execution-phase caspase, caspase-3 plays a crucial role during apoptosis. To explore the possibility that the genetic alterations of CASP3, which encodes caspase-3, might be involved in the development of human tumors, we analyzed the entire coding region and all splice sites of human CASP3 gene for the detection of somatic mutations in a series of 944 human tumors, including 165 stomach carcinomas, 95 colon carcinomas, 76 breast carcinomas, 80 hepatocellular carcinomas, 181 non-small cell lung cancers, 45 acute leukemias, 28 multiple myelomas, 12 medulloblastomas, 15 Wilms tumors, 12 renal cell carcinomas, 40 esophagus carcinomas, 33 urinary bladder carcinomas, 33 laryngeal carcinomas, and 129 non-Hodgkin lymphomas. Overall, we detected 14 somatic mutations of the CASP3 gene, including six missense and four silent mutations, two mutations in the introns, one mutation in the 5-untranslated region, and one mutation in the 3-untranslated region. The mutations were observed in four of 98 colon carcinomas (4.1%), four of 181 non-small cell lung cancers (2.2%), two of 129 non-Hodgkin lymphomas (1.6%), two of 165 stomach carcinomas (1.2%), one of 80 hepatocellular carcinomas (1.3%), and one of 28 multiple myelomas (3.6%). This is the first report on CASP3 gene mutations in human tumors; these data indicate that the CASP3 gene is occasionally mutated in human tumors.  相似文献   

11.
12.
13.
Zhai L  Mu J  Zong H  DePaoli-Roach AA  Roach PJ 《Gene》2000,242(1-2):229-235
Glycogenin-2 is one of two self-glucosylating proteins involved in the initiation phase of the synthesis of the storage polysaccharide glycogen. Cloning of the human glycogenin-2 gene, GYG2, has revealed the presence of 11 exons and a gene of more than 46 kb in size. The structure of the gene explains much of the observed diversity in glycogenin-2 cDNA sequences as being due to alternate exon usage. In some cases, there is variation in the splice junctions used. Over regions of protein sequence similarity, the GYG2 gene structure is similar to that of the other glycogenin gene, GYG. A genomic GYG2 clone was used to localize the gene to Xp22.3 by fluorescence in-situ hybridization. Localization close to the telomere of the short arm of the X chromosome is consistent with mapping information obtained from glycogenin-2 STS sequences. Glycogenin-2 maps between the microsatellite anchor markers AFM319te9 (DXS7100) and AFM205tf2 (DXS1060), and its 3' end is 34.5 kb from the 3' end of the arylsulphatase gene ARSD. GYG2 is outside the pseudoautosomal region PAR1 but still in a region of X-Y shared genes. As is true for several other genes in this location, an inactive remnant of GYG2, consisting of exons 1-3, may be present on the Y chromosome.  相似文献   

14.
The human clusterin (SP-40,40) gene, designated CLI (complement lysis inhibitor) by the Human Gene Nomenclature Committee, has previously been assigned to chromosome 8. In situ hybridization allowed us to map the locus at 8p12-->p21.  相似文献   

15.
A cluster of genes encoding the three cytoplasmic carbonic anhydrase isozymes CAI, CAII, and CAIII lie on the long arm of chromosome 8 (8q22) in humans. These genes have been mapped using pulsed-field gel electrophoresis. The genes lie in the order CA2, CA3, CA1. CA2 and CA3 are separated by 20 kb and are transcribed in the same direction, away from CA1. CA1 is separated from CA3 by over 80 kb and is transcribed in the direction opposite to CA2 and CA3. The arrangement of the genes is consistent with proposals that the duplication event which gave rise to CA1 predated the duplication which gave rise to CA2 and CA3. The order of these three genes differs from that suggested for the mouse based on recombination frequency.  相似文献   

16.
Summary Activity of the enzyme glutathione reductase (EC 1.6.4.2) in erythrocytes and fibroblasts of a patient with karyotype 46, XY, del(8) (pterp212:) was found to be in the normal range. With results from other laboratories, this allowed a more precise mapping of the gene for this enzyme in the region 8p2100–8p212.  相似文献   

17.
18.
19.
20.
A 2.0-kb thyroid peroxidase cDNA of human origin was used as probe for Southern blot hybridization of genomic DNA from human somatic cells and human-rodent somatic cell hybrids. The results showed that the gene coding for human thyroid peroxidase is located on chromosome. 2. Further analysis of hybrids derived from Burkitt lymphoma cells carrying a (2;8)(p12;q24) translocation revealed that the gene maps to the region 2pter----p12.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号