首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The human immunoglobulin G (IgG) class is the most prevalent antibody in serum, with the IgG1 subclass being the most abundant. IgG1 is composed of two Fab regions connected to a Fc region through a 15-residue hinge peptide. Two glycan chains are conserved in the Fc region in IgG; however, their importance for the structure of intact IgG1 has remained unclear. Here, we subjected glycosylated and deglycosylated monoclonal human IgG1 (designated as A33) to a comparative multidisciplinary structural study of both forms. After deglycosylation using peptide:N-glycosidase F, analytical ultracentrifugation showed that IgG1 remained monomeric and the sedimentation coefficients s020,w of IgG1 decreased from 6.45 S by 0.16–0.27 S. This change was attributed to the reduction in mass after glycan removal. X-ray and neutron scattering revealed changes in the Guinier structural parameters after deglycosylation. Although the radius of gyration (RG) was unchanged, the cross-sectional radius of gyration (RXS-1) increased by 0.1 nm, and the commonly occurring distance peak M2 of the distance distribution curve P(r) increased by 0.4 nm. These changes revealed that the Fab-Fc separation in IgG1 was perturbed after deglycosylation. To explain these changes, atomistic scattering modeling based on Monte Carlo simulations resulted in 123,284 and 119,191 trial structures for glycosylated and deglycosylated IgG1 respectively. From these, 100 x-ray and neutron best-fit models were determined. For these, principal component analyses identified five groups of structural conformations that were different for glycosylated and deglycosylated IgG1. The Fc region in glycosylated IgG1 showed a restricted range of conformations relative to the Fab regions, whereas the Fc region in deglycosylated IgG1 showed a broader conformational spectrum. These more variable Fc conformations account for the loss of binding to the Fcγ receptor in deglycosylated IgG1.  相似文献   

2.
Human IgG4 antibody shows therapeutically useful properties compared with the IgG1, IgG2, and IgG3 subclasses. Thus IgG4 does not activate complement and shows conformational variability. These properties are attributable to its hinge region, which is the shortest of the four IgG subclasses. Using high throughput scattering methods, we studied the solution structure of wild-type IgG4(Ser222) and a hinge mutant IgG4(Pro222) in different buffers and temperatures where the proline substitution suppresses the formation of half-antibody. Analytical ultracentrifugation showed that both IgG4 forms were principally monomeric with sedimentation coefficients s20,w0 of 6.6–6.8 S. A monomer-dimer equilibrium was observed in heavy water buffer at low temperature. Scattering showed that the x-ray radius of gyration Rg was unchanged with concentration in 50–250 mm NaCl buffers, whereas the neutron Rg values showed a concentration-dependent increase as the temperature decreased in heavy water buffers. The distance distribution curves (P(r)) revealed two peaks, M1 and M2, that shifted below 2 mg/ml to indicate concentration-dependent IgG4 structures in addition to IgG4 dimer formation at high concentration in heavy water. Constrained x-ray and neutron scattering modeling revealed asymmetric solution structures for IgG4(Ser222) with extended hinge structures. The IgG4(Pro222) structure was similar. Both IgG4 structures showed that their Fab regions were positioned close enough to the Fc region to restrict C1q binding. Our new molecular models for IgG4 explain its inability to activate complement and clarify aspects of its stability and function for therapeutic applications.  相似文献   

3.
The human IgG1 antibody subclass shows distinct properties compared with the IgG2, IgG3, and IgG4 subclasses and is the most exploited subclass in therapeutic antibodies. It is the most abundant subclass, has a half-life as long as that of IgG2 and IgG4, binds the FcγR receptor, and activates complement. There is limited structural information on full-length human IgG1 because of the challenges of crystallization. To rectify this, we have studied the solution structures of two human IgG1 6a and 19a monoclonal antibodies in different buffers at different temperatures. Analytical ultracentrifugation showed that both antibodies were predominantly monomeric, with sedimentation coefficients s20,w0 of 6.3–6.4 S. Only a minor dimer peak was observed, and the amount was not dependent on buffer conditions. Solution scattering showed that the x-ray radius of gyration Rg increased with salt concentration, whereas the neutron Rg values remained unchanged with temperature. The x-ray and neutron distance distribution curves P(r) revealed two peaks, M1 and M2, whose positions were unchanged in different buffers to indicate conformational stability. Constrained atomistic scattering modeling revealed predominantly asymmetric solution structures for both antibodies with extended hinge structures. Both structures were similar to the only known crystal structure of full-length human IgG1. The Fab conformations in both structures were suitably positioned to permit the Fc region to bind readily to its FcγR and C1q ligands without steric clashes, unlike human IgG4. Our molecular models for human IgG1 explain its immune activities, and we discuss its stability and function for therapeutic applications.  相似文献   

4.
Human immunoglobulin A (IgA) is an abundant antibody that mediates immune protection at mucosal surfaces as well as in plasma. The IgA1 isotype contains two four-domain Fab fragments and a four-domain Fc fragment analogous to that in immunoglobulin G (IgG), linked by a glycosylated hinge region made up of 23 amino acid residues from each of the heavy chains. IgA1 also has two 18 residue tailpieces at the C terminus of each heavy chain in the Fc fragment. X-ray scattering using H2O buffers and neutron scattering using 100 % 2H2O buffers were performed on monomeric IgA1 and a recombinant IgA1 that lacks the tailpiece (PTerm455). The radii of gyration RG from Guinier analyses were similar at 6.11-6.20 nm for IgA1 and 5.84-6.16 nm for PTerm455, and their cross-sectional radii of gyration RXS were also similar. The similarity of the RG and RXS values suggests that the tailpiece of IgA1 is not extended outwards in solution. The IgA1 RG values are higher than those for IgG, and the distance distribution function P(r) showed two distinct peaks, whereas a single peak was observed for IgG. Both results show that the hinge of IgA1 results in an extended Fab and Fc arrangement that is different from that in IgG. Automated curve-fit searches constrained by homology models for the Fab and Fc fragments were used to model the experimental IgA1 scattering curves. A translational search to optimise the relative arrangement of the Fab and Fc fragments held in a fixed orientation resembling that in IgG was not successful in fitting the scattering data. A new molecular dynamics curve-fit search method generated IgA1 hinge structures to which the Fab and Fc fragments could be connected in any orientation. A search based on these identified a limited family of IgA1 structures that gave good curve fits to the experimental data. These contained extended hinges of length about 7 nm that positioned the Fab-to-Fab centre-to-centre separation 17 nm apart while keeping the corresponding Fab-to-Fc separation at 9 nm. The resulting extended T-shaped IgA1 structures are distinct from IgG structures previously determined by scattering and crystallography which have Fab-to-Fab and Fab-to-Fc centre-to-centre separations of 7-9 nm and 6-8 nm, respectively. It was concluded that the IgA1 hinge is structurally distinct from that in IgG, and this results in a markedly different antibody structure that may account for a unique immune role of monomeric IgA1 in plasma and mucosa.  相似文献   

5.
IgG antibodies (Abs) and fragments of IgG Abs are becoming major biotherapeutics to treat an assortment of human diseases. Commonly prepared fragments of IgGs include Fc, Fab, and F(ab')2 fragments, all of which can be made using the sulfhydryl protease papain, although prolonged digestion times and/or excessive amounts of papain typically result in further cleavage of the Fc domain into smaller fragments. During our attempts to use papain to isolate Fc fragments from different IgG monoclonal Abs, it was observed that prior removal of Fc glycans resulted in a faster rate of papain-mediated degradation of the Fc domain. Subsequent time-course experiments comparing glycosylated and deglycosylated versions of IgG antibodies showed that the majority of molecules in a deglycosylated IgG sample were converted into Fab, Fc, and smaller Fc fragments in less than one hour, whereas the original glycosylated IgG required more than two hours to convert into a comparable amount of Fab and Fc fragments. Furthermore, whereas papain digestion converted almost all of a deglycosylated Fc fragment into smaller fragments of approximately 10 and approximately 12 kDa within 4 h, more than 40% of a glycosylated Fc fragment remained intact even after 24 h of digestion. These results indicate that the presence of CH(2) domain glycans in either IgGs or purified Fc fragments increases resistance to papain digestion. Increased sensitivity of non-glycosylated Fc domains to papain is consistent with the Fc domains lacking a defined structure, as exemplified by their inability to bind Fcgamma receptors, since misfolded proteins are often degraded by proteases because of increased accessibility of their proteolytic cleavage sites. Based on these observations it is possible to use papain sensitivity as a means of assessing proper Fc structure of IgG molecules.  相似文献   

6.
We have employed the recently described crystallohydrodynamic approach to compare the time-averaged domain orientation of human chimeric IgG3wt (wild-type) and IgG4wt as well as two hinge mutants of IgG3 and an IgG4S331P (mutation from serine to proline at position 331, EU numbering) mutant of IgG4. The approach involves combination of the known shape of the Fab and Fc regions from crystallography with hydrodynamic data for the Fab and Fc fragments and hydrodynamic and small angle x-ray scattering data for the intact IgG structures. In this way, ad hoc assumptions over hydration can be avoided and model degeneracy (uniqueness problems) can be minimized. The best fit model for the solution structure of IgG3wt demonstrated that the Fab regions are directed away from the plane of the Fc region and with a long extended hinge region in between. The best fit model of the IgG3m15 mutant with a short hinge (and enhanced complement activation activity) showed a more open, but asymmetric structure. The IgG3HM5 mutant devoid of a hinge region (and also devoid of complement-activation activity) could not be distinguished at the low-resolution level from the structure of the enhanced complement-activating mutant IgG3m15. The lack of inter-heavy-chain disulphide bond rather than a significantly different domain orientation may be the reason for the lack of complement-activating activity of the IgG3HM5 mutant. With IgG4, there are significant and interesting conformational differences between the wild-type IgG4, which shows a symmetric structure, and the IgG4S331P mutant, which shows a highly asymmetric structure. This structural difference may explain the ability of the IgG4S331P mutant to activate complement in stark contrast to the wild-type IgG4 molecule which is devoid of this activity.  相似文献   

7.
A prototypic IgG antibody can be divided into two major structural units: the antigen-binding fragment (Fab) and the Fc fragment that mediates effector functions. The IgG Fc fragment is a homodimer of the two C-terminal domains (CH2 and CH3) of the heavy chains. Characteristic of the Fc part is the presence of a sugar moiety at the inner face of the CH2 domains. The structure of this complex branched oligosaccharide is generally resolved in crystal structures of Fc fragments due to numerous well-defined sugar-protein interactions and a small number of sugar-sugar interactions. This suggested that sugars play an important role in the structure of the Fc fragment. To address this question directly, we determined the crystal structure of the unglycosylated Fc fragment of the murine IgG1 MAK33. The structures of the CH3 domains of the unglycosylated Fc fragment superimpose perfectly with the structure of the isolated MAK33 CH3 domain. The unglycosylated CH2 domains, in contrast, approach each other much more closely compared to known structures of partly deglycosylated Fc fragments with rigid-body motions between 10 and 14 Å, leading to a strongly “closed” conformation of the unglycosylated Fc fragment. The glycosylation sites in the C′E loop and the BC and FG loops are well defined in the unglycosylated CH2 domain, however, with increased mobility and with a significant displacement of about 4.9 Å for the unglycosylated Asn residue compared to the glycosylated structure. Thus, glycosylation both stabilizes the C′E-loop conformation within the CH2 domain and also helps to ensure an “open” conformation, as seen upon Fc receptor binding. These structural data provide a rationale for the observation that deglycosylation of antibodies often compromises their ability to bind and activate Fcγ receptors.  相似文献   

8.
The structure of six human myeloma proteins: IgG1(Bal), IgG2(Klu), IgG3(Bak), IgG3(Het), IgG4(Kov) and IgG4(Pol), was studied in solution using small-angle X-ray scattering and hydrodynamic methods. For IgG1(Bal) and IgG3(Het) the experimental data, including radius of gyration (Rg degree), radii of gyration of the cross-section (Rq1, Rq2), intrinsic viscosity [eta], sedimentation coefficient (S degree 20,w) and molecular mass, were interpreted in terms of structural models based on the Fab and Fc conformations, observed in crystal, by varying the relative positions of the Fab and Fc parts, i.e. their relative angles and distances. The values Rg degree = (6.00 +/- 0.05) nm, S degree 20,w = (6.81 +/- 0.10) S and [eta] = 0.0062 +/- 0.0005 cm3/mg obtained for IgG1(Bal) are compatible with a planar model in which the angle between the Fab arms is about 120 degrees. For IgG3(Het) the following data were obtained: Rg degree = (4.90 +/- 0.05) nm, S degree 20,w = (6.32 +/- 0.01) S and [eta] = (0.0065 +/- 0.0005) cm3/mg. The apparent contradiction between the higher molecular mass and lower Rg degree and S degree 20,w values for IgG3(Het) in comparison to IgG1(Bal) can be resolved by proposing a 'non-planar' (tetrahedral) molecular shape, in which the long hinge peptide is in a folded conformation and the two Fab and Fc parts are in a closely packed arrangement. In this model the angle between the two Fab arms is about 90 degrees, in the average position. The X-ray scattering and hydrodynamic behaviour of the IgG2 and IgG4 types of antibodies appeared to be similar to IgG1(Bal). The parameters of the two IgG3 proteins are similar while they are different to the others.  相似文献   

9.
Recently determined crystal structures of the complex between immunoglobulin constant regions (Fc) and their Fc-respective receptors (FcR) have revealed the detailed molecular interactions of this receptor-ligand pair. Of particular interest is the contribution of a glycosylation at Asn(297) of the C(H)2 domain of IgG to receptor recognition. The carbohydrate moieties are found outside the receptor.Fc interface in all receptor.Fc complex structures. To understand the role of glycosylation in FcR recognition, the receptor affinities of a deglycosylated IgG1 and its Fc fragment were determined by solution binding studies using surface plasmon resonance. The removal of carbohydrates resulted in a non-detectable receptor binding to the Fc alone and a 15- to 20-fold reduction of the receptor binding to IgG1, suggesting that the carbohydrates are important in the function of the FcgammaRIII. Structurally, the carbohydrates attached to Asn(297) fill the cavity between the C(H)2 domains of Fc functioning equivalently as a hydrophobic core. This may stabilize a favorable lower hinge conformation for the receptor binding. The structure of the complex also revealed the dominance of the lower hinge region in receptor.Fc recognition. To evaluate the potential of designing small molecular ligands to inhibit the receptor function, four lower hinge peptides were investigated for their ability to bind to the receptor FcgammaRIII. These peptides bind specifically to FcgammaRIII with affinities 20- to 100-fold lower than IgG1 and are able to compete with Fc in receptor binding. The results of peptide binding illustrate new ways of designing therapeutic compounds to block Fc receptor activation.  相似文献   

10.
Human IgG4, normally the least abundant of the four subclasses of IgG in serum, displays a number of unique biological properties. It can undergo heavy-chain exchange, also known as Fab-arm exchange, leading to the formation of monovalent but bispecific antibodies, and it interacts poorly with FcγRII and FcγRIII, and complement. These properties render IgG4 relatively “non-inflammatory” and have made it a suitable format for therapeutic monoclonal antibody production. However, IgG4 is also known to undergo Fc-mediated aggregation and has been implicated in auto-immune disease pathology. We report here the high-resolution crystal structures, at 1.9 and 2.35 Å, respectively, of human recombinant and serum-derived IgG4-Fc. These structures reveal conformational variability at the CH3–CH3 interface that may promote Fab-arm exchange, and a unique conformation for the FG loop in the CH2 domain that would explain the poor FcγRII, FcγRIII and C1q binding properties of IgG4 compared with IgG1 and -3. In contrast to other IgG subclasses, this unique conformation folds the FG loop away from the CH2 domain, precluding any interaction with the lower hinge region, which may further facilitate Fab-arm exchange by destabilisation of the hinge. The crystals of IgG4-Fc also display Fc–Fc packing contacts with very extensive interaction surfaces, involving both a consensus binding site in IgG-Fc at the CH2–CH3 interface and known hydrophobic aggregation motifs. These Fc–Fc interactions are compatible with intact IgG4 molecules and may provide a model for the formation of aggregates of IgG4 that can cause disease pathology in the absence of antigen.  相似文献   

11.
Binding of the Fc domain of Immunoglobulin G (IgG) to Fcγ receptors on leukocytes can initiate a series of signaling events resulting in antibody-dependent cell-mediated cytotoxicity (ADCC) and other important immune responses. Fc domains lacking glycosylation at N297 have greatly diminished Fcγ receptor binding and lack the ability to initiate a robust ADCC response. Earlier structural studies of Fc domains with either full length or truncated N297 glycans led to the proposal that these glycans can stabilize an "open" Fc conformation recognized by Fcγ receptors. We determined the structure of an E. coli expressed, aglycosylated human Fc domain at 3.1 ? resolution and observed significant disorder in the C'E loop, a region critical for Fcγ receptor binding, as well as a decrease in distance between the C(H)2 domains relative to glycosylated Fc structures. However, comparison of the aglycosylated human Fc structure with enzymatically deglycosylated Fc structures revealed large differences in the relative orientations and distances between C(H)2 domains. To provide a better appreciation of the physiologically relevant conformation of the Fc domain in solution, we determined Radii of Gyration (R(g)) by small-angle X-ray scattering (SAXS) and found that the aglycosylated Fc displays a larger R(g) than glycosylated Fc, suggesting a more open C(H)2 orientation under these conditions. Moreover, the R(g) of aglycosylated Fc was reduced by mutations at the C(H)2-C(H)3 interface (E382V/M428I), which confer highly selective binding to FcγRI and novel biological activities.  相似文献   

12.
Complement receptor 2 (CR2; CD21) is a membrane-bound regulator of complement activation, being comprised of 15 or 16 short complement repeat (SCR) domains. A recombinant glycosylated human CR2 SCR 1-2 domain pair was engineered with the Fc fragment of a mouse IgG1 antibody to create a chimaera CR2-Ig containing the major ligand binding domains. Such a chimaera has therapeutic potential as a complement inhibitor or immune modulator. X-ray and neutron scattering and analytical ultracentrifugation identified its domain structure in solution, and provided a comparison with controversial folded-back crystal structures for deglycosylated CR2 SCR 1-2. The radius of gyration R(G) of CR2-Ig was determined to be 5.39(+/-0.14) nm and 5.29(+/-0.01) nm by X-ray and neutron scattering, respectively. The maximum dimension of CR2-Ig was determined to be 17 nm. The molecular mass of CR2-Ig ranged between 101,000 Da and 107,000 Da as determined by neutron scattering and sedimentation equilibrium, in good agreement with the sequence-derived value of 106,600 Da. Sedimentation velocity gave a sedimentation coefficient of 4.49(+/-0.11) S. Stereochemically complete models for CR2-Ig were constructed from crystal structures for the CR2 SCR 1-2 and mouse IgG1 Fc fragments. The two SCR domains and the Fc fragment were joined by randomised conformational peptides. The analysis of 35,000 possible CR2-Ig models showed that only those models in which the two SCR domains were arranged in an open V-shape in random orientations about the Fc fragment accounted for the scattering and sedimentation data. It was not possible to define one single conformational family of Fab-like fragment relative to the Fc fragment. This flexibility is attributed to the relatively long linker sequence and the absence of the antibody light chain from CR2-Ig. The modelling also confirmed that the structure of CR2 SCR 1-2 is more extended in solution than in its crystal structure.  相似文献   

13.
H Kessler  S Mronga  G Müller  L Moroder  R Huber 《Biopolymers》1991,31(10):1189-1204
The hinge region links the antigen binding Fab part to the constant Fc domain in immunoglobulins. For the hinge peptide derivative [AcThr(OtBu)-Cys-Pro-Pro-Cys-Pro-Ala-ProNH2]2 the assignment of the 1H and 13C resonances was achieved by two-dimensional nmr techniques: total correlation spectroscopy (TOCSY), nuclear Overhauser enhancement spectroscopy (NOESY), rotating frame nuclear Overhauser enhancement spectroscopy (ROESY), heteronuclear multiple quantum coherence (HMQC) transfer, and a HSQC (modified Overbodenhausen experiment) with high resolution in F1, which was several times folded in F1 but still phase correctable. Conformational relevant parameters (78 nuclear Overhauser effect distance restraints, 3JHH for prochiral assignments, temperature gradients) were determined by nmr and served as input data for molecular dynamics (MD) structure refinement. A simulated model compound corresponding to the [Cys-Pro-Pro-Cys]2 core elongated by the peptide chains in the Fab and Fc direction served as a starting structure for the final MD run. The conformation calculated in in vacuo does not agree with the C2 symmetry required from nmr data, but the structure obtained by a water simulation fulfills the requirement. Here the core of the hinge peptide derivative adopts a polyproline II double helix as in the x-ray structure of IgG1. Hence, segments responsible for the internal flexibility are located outside the core as confirmed by the flexibility of the solvent exposed C termini.  相似文献   

14.
The crystal structures of the intact immunoglobulin G1, (λ) Kol and its Fab2 fragment were crystallographically refined at 3.0 Å and 1.9 Å resolution, respectively. The methods used were real space refinement (RLSP) energy and residual refinement (EREF), phase combination, constrained rigid body refinement (CORELS) and difference and Fourier map inspection. The final R-values are 0.24 and 0.26. These analyses allowed the construction of atomic models of parts not seen in detail in the previous analyses at 5 Å and 3 Å resolution, respectively (Colman et al., 1976; Matsushima et al., 1978): i.e. the hinge segment, the hypervariable segments and their intimate interaction with the hinge segment of a crystallographically related molecule.The hinge segment forms a short poly-l-proline double helix from Cys527 to Cys530 (Eu numbering 226 to 230). The preceding segment forms an open turn of helix. This segment and the segment following the poly-l-proline part, which was found to be flexible in Fc fragment crystals (Deisenhofer et al., 1976) probably allow arm and stem movement of the antibody molecule. The combining site of Kol is compared with the combining site of Fab New (Saul et al., 1978). The narrow cleft formed by the hypervariable loops in Kol is filled with aromatic amino acid side-chains. In the crystal, the hypervariable loops contact the hinge and adjacent segments of a related molecule accompanied by a substantial loss in accessible surface area. This contact is preserved in Kol Fab crystals and presumably occurs in the Kol cryoprecipitate. A comparison of the quaternary structures of intact Kol and Fab New showed, in addition to the large change in elbow angle (Colman et al., 1976), changes in lateral domain association. These are discussed in the context of a possible signal transmission from the combining site to the distal end. An attempt was made to model build the IgG3 hinge segment, which is quadruplicated with respect to IgG1 (Michaelsen et al., 1977), on the basis of the Kol hinge structure. A polyproline double helix appeared to be the most plausible model. The Fc part was found to be disordered in intact Kol crystals (Colman et al., 1976). Refinement has reduced the electron density further in the crystal space, where the Fc parts must be located. Disorder, if static, must be fourfold or more in the crystalline state.Intensity measurements on Kol F(ab′)2 and their comparison with intact Kol crystals provide evidence that the disorder is predominantly of a static nature.  相似文献   

15.
Immunoglobulin A (IgA), the most abundant human immunoglobulin, mediates immune protection at mucosal surfaces as well as in plasma. It exists as two subclasses IgA1 and IgA2, and IgA2 is found in at least two allotypic forms, IgA2m(1) or IgA2m(2). Compared to IgA1, IgA2 has a much shorter hinge region, which joins the two Fab and one Fc fragments. In order to assess its solution structure, monomeric recombinant IgA2m(1) was studied by X-ray and neutron scattering. Its Guinier X-ray radius of gyration R(G) is 5.18 nm and its neutron R(G) is 5.03 nm, both of which are significantly smaller than those for monomeric IgA1 at 6.1-6.2 nm. The distance distribution function P(r)for IgA2m(1) showed a broad peak with a subpeak and gave a maximum dimension of 17 nm, in contrast to the P(r) curve for IgA1, which showed two distinct peaks and a maximum dimension of 21 nm. The sedimentation coefficients of IgA1 and IgA2m(1) were 6.2S and 6.4S, respectively. These data show that the solution structure of IgA2m(1) is significantly more compact than IgA1. The complete monomeric IgA2m(1) structure was modelled using molecular dynamics to generate random IgA2 hinge structures, to which homology models for the Fab and Fc fragments were connected to generate 10,000 full models. A total of 104 compact best-fit IgA2m(1) models gave good curve fits. These best-fit models were modified by linking the two Fab light chains with a disulphide bridge that is found in IgA2m(1), and subjecting these to energy refinement to optimise this linkage. The averaged solution structure of the arrangement of the Fab and Fc fragments in IgA2m(1) was found to be predominantly T-shaped and flexible, but also included Y-shaped structures. The IgA2 models show full steric access to the two FcalphaRI-binding sites at the Calpha2-Calpha3 interdomain region in the Fc fragment. Since previous scattering modelling had shown that IgA1 also possessed a flexible T-shaped solution structure, such a T-shape may be common to both IgA1 and IgA2. The final models suggest that the combination of the more compact IgA2m(1) and the more extended IgA1 structures will enable human IgA to access a broader range of antigens than either acting alone. The hinges of both IgA subclasses appear to show reduced flexibility when compared to their equivalents in IgG, and this may be important for maintaining an extended IgA structure.  相似文献   

16.
Human immunoglobulin D (IgD) occurs most abundantly as a membrane-bound antibody on the surface of mature B cells (mIgD). IgD possesses the longest hinge sequence of all the human antibody isotypes, with 64 residues connecting the Fab and Fc fragments. A novel rapid purification scheme of secreted IgD from the serum of an IgD myeloma patient using thiophilic (T-gel) and lectin affinity chromatography gave a stable, homogeneous IgD preparation. Synchrotron X-ray scattering and analytical ultracentrifugation of IgD identified the solution arrangement of its Fab and Fc fragments, and thereby its hinge structure. The Guinier X-ray radius of gyration R(G) of 6.9(+/-0.1)nm showed that IgD is more extended in solution than the immunoglobulin subclass IgA1 (R(G) of 6.1-6.2nm). Its distance distribution function P(r) showed a single peak at 4.7nm and a maximum dimension of 23nm. Velocity experiments gave a sedimentation coefficient of 6.3S, which is similar to that for IgA1 at 6.2S. The complete IgD structure was modelled using molecular dynamics to generate IgD hinge structures, to which homology models for the Fab and Fc fragments were connected. Good scattering curve fits were obtained with 18 semi-extended best fit IgD models that were filtered from 8500 trial models. These best-fit models showed that the IgD hinge does not correspond to an extended polypeptide structure. The averaged solution structure arrangement of the Fab and Fc fragments in IgD is principally T-shaped and flexible, with contribution from Y-shaped and inverted Y-shaped structures. Although the linear sequence of the IgD hinge is much longer, comparison with previous scattering modelling of IgA1 and IgA2(m)1 suggests that the hinge of IgA1 and IgD are more similar than might have been expected, Both possess flexible T-shaped solution structures, probably reflecting the presence of restraining O-linked sugars.  相似文献   

17.
Human IgG is a bivalent molecule that has two identical Fab domains connected by a dimeric Fc domain. For therapeutic purposes, however, the bivalency of IgG and Fc fusion proteins could cause undesired properties. We therefore engineered the conversion of the natural dimeric Fc domain to a highly soluble monomer by introducing two Asn-linked glycans onto the hydrophobic CH3-CH3 dimer interface. The monomeric Fc (monoFc) maintained the binding affinity for neonatal Fc receptor (FcRn) in a pH-dependent manner. We solved the crystal structure of monoFc, which explains how the carbohydrates can stabilize the protein surface and provides the rationale for molecular recognition between monoFc and FcRn. The monoFc prolonged the in vivo half-life of an antibody Fab domain, and a tandem repeat of the monoFc further prolonged the half-life. This monoFc modality can be used to improve the pharmacokinetics of monomeric therapeutic proteins with an option to modulate the degree of half-life extension.  相似文献   

18.
Human IgG2 consists of disulfide‐mediated structural isoforms, classified by the number of Fab arms disulfide‐linked to the heavy chain hinge. In the IgG2‐B isoform, both Fab arms are linked to the hinge region, and in IgG2‐A, neither Fab arm are linked to the hinge. IgG2‐A/B is a hybrid between these two forms, with only one Fab arm disulfide‐linked to the hinge. Within each of these isoform types are subtypes, with subtle disulfide‐linkage differences. Here we explored the structural basis for the A1 and A2 isoform subtypes. Whereas A1 isoform converts into the A/B and B isoforms under mild redox conditions, A2 does not. Characterization of the disulfide connectivities of A2 isoform revealed a similar structure to A1 isoform, with parallel inter heavy chain disulfide linkages in the hinge region. However, the hinge disulfides in A2 isoform were resistant to reduction under conditions where A1 isoform hinge disulfides became reduced and they required thermal treatment (>55°C) to obtain thiol‐dependent disulfide reduction. Structural analysis of the hinge region indicated that the protected disulfides were restricted to cysteines 219 and 220 of the upper hinge. Disruption of the upper hinge through insertion mutagenesis eliminated A2 isoform behavior. 1H NMR studies showed that the A1 isoform Fc glycan was more dynamic than that on A2 isoform and showed some other conformational differences. Results point to an IgG2‐A2 upper hinge region that is more akin to the interior of a globular protein than the flexible hinge region expected on an IgG.  相似文献   

19.
Hinge cleavage of a recombinant human IgG1 antibody, generated during production in a Chinese hamster ovary cell culture, was observed in the purified material. The cleavage products could be reproduced by incubation of the antibody with H2O2 and featured complementary ladders of the C- and N-terminal residues (Asp226–Lys227–Thr228–His229–Thr230) in the heavy chain of the Fab domain and the upper hinge of one of the Fc domains, respectively. Two adducts of +45 and +71 Da were also observed at the N-terminal residues of some Fc fragments and were identified as isocyanate and α-ketoacyl derivatives generated by radical cleavage at the α-carbon position through the diamide and α-amidation pathways. We determined that the hinge cleavage was initiated by radical-induced breakage of the disulfide bond between the two hinge cysteines at position 231 (Cys231-Pro-Pro-Cys-Pro), followed by the formation of a thiyl radical (Cys231-S) on one cysteine and sulfenic acid (Cys231-SOH) on the other. The location of the initial radical attack and the critical role of Cys231 were demonstrated by the observation that 5,5-dimethyl-1-pyrroline N-oxide only reacted with the Cys231 radical and completely blocked hinge cleavage, suggesting the necessity of an electron/radical transfer from the Cys231 radical to the hinge residues where cleavage was observed. As a precursor of hydroxyl radicals, H2O2 is widely produced in healthy cells and tissues and therefore could be the source for the radical-induced fragmentation of human IgG1 antibodies in vivo.  相似文献   

20.
The crystal structure of IgG1 b12 represents the first visualization of an intact human IgG with a full-length hinge that has all domains ordered and visible. In comparison to intact murine antibodies and hinge-deletant human antibodies, b12 reveals extreme asymmetry, indicative of the extraordinary interdomain flexibility within an antibody. In addition, the structure provides an illustration of the human IgG1 hinge in its entirety and of asymmetry in the composition of the carbohydrate attached to each C(H)2 domain of the Fc. The two separate hinges assume different conformations in order to accommodate the vastly different placements of the two Fab domains relative to the Fc domain. Interestingly, only one of two possible intra-hinge disulfides is formed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号