首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 308 毫秒
1.
Liver ischemia and reperfusion (I/R) injury is characterized by oxidative stress that is accompanied by alterations of the endogenous defensive system. Emerging evidence suggests a protective role for autophagy induced by multiple stressors including reactive oxygen species. Meanwhile, heme oxygenase-1 (HO-1) has long been implicated in cytoprotection against oxidative stress in vitro and in vivo. Therefore, we investigated the impact of autophagy in the pathogenesis of liver I/R and its molecular mechanisms, particularly its linkage to HO-1. By using transmission electron microscopic analysis and biochemical autophagic flux assays with microtubule-associated protein 1 light chain 3-II, and beclin-1, representative autophagy markers, and p62, a selective substrate for autophagy, we found that reperfusion reduced autophagy both in the rat liver and in primary cultured hepatocytes. When autophagy was further inhibited with chloroquine or wortmannin, I/R-induced hepatocellular injury was aggravated. While livers that underwent I/R showed increased levels of mammalian target of rapamaycin and calpain 1 and 2, inhibition of calpain 1 and 2 induced an autophagic response in hepatocytes subjected to hypoxia/reoxygenation. HO-1 increased autophagy, and HO-1 reduced I/R-induced calcium overload in hepatocytes and prevented calpain 2 activation both in vivo and in vitro. Taken together, these findings suggest that the impaired autophagy during liver I/R, which is mediated by calcium overload and calpain activation, contributes to hepatocellular damage and the HO-1 system protects the liver from I/R injury through enhancing autophagy.  相似文献   

2.
Ischemia-reperfusion (I/R) injury is a leading cause of acute kidney injury (AKI), which is a common clinical complication but lacks effective therapies. This study investigated the role of autophagy in renal I/R injury and explored potential mechanisms in an established rat renal I/R injury model. Forty male Wistar rats were randomly divided into four groups: Sham, I/R, I/R pretreated with 3-methyladenine (3-MA, autophagy inhibitor), or I/R pretreated with rapamycin (autophagy activator). All rats were subjected to clamping of the left renal pedicle for 45 min after right nephrectomy, followed by 24 h of reperfusion. The Sham group underwent the surgical procedure without ischemia. 3-MA and rapamycin were injected 15 min before ischemia. Renal function was indicated by blood urea nitrogen and serum creatinine. Tissue samples from the kidneys were scored histopathologically. Autophagy was indicated by light chain 3 (LC3), Beclin-1, and p62 levels and the number of autophagic vacuoles. Apoptosis was evaluated by the terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) method and expression of caspase-3. Autophagy was activated after renal I/R injury. Inhibition of autophagy by 3-MA before I/R aggravated renal injury, with worsened renal function, higher renal tissue injury scores, and more tubular apoptosis. In contrast, rapamycin pretreatment ameliorated renal injury, with improved renal function, lower renal tissue injury scores, and inhibited apoptosis based on fewer TUNEL-positive cells and lower caspase-3 expression. Our results demonstrate that autophagy could be activated during I/R injury and play a protective role in renal I/R injury. The mechanisms were involved in the regulation of several autophagy and apoptosis-related genes. Furthermore, autophagy activator may be a promising therapy for I/R injury and AKI in the future.  相似文献   

3.
The anti-malaria drug chloroquine is well known as autophagy inhibitor. Chloroquine has also been used as anti-inflammatory drugs to treat inflammatory diseases. We hypothesized that chloroquine could have a dual effect in liver ischemia/reperfusion (I/R) injury: chloroquine on the one hand could protect the liver against I/R injury via inhibition of inflammatory response, but on the other hand could aggravate liver I/R injury through inhibition of autophagy. Rats (n=6 per group) were pre-treated with chloroquine (60 mg/kg, i.p.) 1 h before warm ischemia, and they were continuously subjected to a daily chloroquine injection for up to 2 days. Rats were killed 0.5, 6, 24 and 48 h after reperfusion. At the early phase (i.e., 0–6 h after reperfusion), chloroquine treatment ameliorated liver I/R injury, as indicated by lower serum aminotransferase levels, lower hepatic inflammatory cytokines and fewer histopathologic changes. In contrast, chloroquine worsened liver injury at the late phase of reperfusion (i.e., 24–48 h after reperfusion). The mechanism of protective action of chloroquine appeared to involve its ability to modulate mitogen-activated protein kinase activation, reduce high-mobility group box 1 release and inflammatory cytokines production, whereas chloroquine worsened liver injury via inhibition of autophagy and induction of hepatic apoptosis at the late phase. In conclusion, chloroquine prevents ischemic liver damage at the early phase, but aggravates liver damage at the late phase in liver I/R injury. This dual role of chloroquine should be considered when using chloroquine as an inhibitor of inflammation or autophagy in I/R injury.  相似文献   

4.
This study was designed to determine the gastroprotective properties of quercetin in ischemia/reperfusion-induced gastric mucosal injury and the involvement of endogenous prostaglandins in this process. Oral pretreatment of rats with quercetin (100 mg x kg(-1)) 30 min before surgery significantly decreased the length of gastric mucosal lesions. However, lower doses of quercetin (25 and 50 mg x kg(-1)) only slightly decreased the gastric mucosal injury. Intraperitoneal application of indomethacin (5 mg x kg(-1)) had no effect in control (sham-operated) animals, but significantly worsened gastric injury in non-treated animals after ischemia/reperfusion. Furthermore, indomethacin only slightly reversed protective effect of quercetin. Non-treated animals showed a marked decrease in adherent mucus after ischemia/reperfusion. On the other hand, application of quercetin prevented this significant decrease even in animals pretreated with indomethacin. It can be concluded that antioxidant properties of quercetin and its mucus protective effect might be the main factors responsible for its protective effect against ischemia/reperfusion-induced gastric mucosal injury.  相似文献   

5.
Cerebral ischemia/reperfusion (I/R) typically occurs after mechanical thrombectomy to treat ischemic stroke, generation of reactive oxygen species (ROS) after reperfusion may result in neuronal insult, ultimately leading to disability and death. Regulated in development and DNA damage responses 1 (REDD1) is a conserved stress response protein under various pathogenic conditions. Recent research confirms the controversial role of REDD1 in injury processes. Nevertheless, the role of REDD1 in cerebral I/R remains poorly defined. In the current study, increased expression of REDD1 was observed in neurons exposed to simulated I/R via oxygen glucose deprivation/reoxygenation (OGD/R) treatment. Knockdown of REDD1 enhanced OGD/R-inhibited cell viability, but suppressed lactate dehydrogenase (LDH) release in neurons upon OGD/R. Simultaneously, suppression of REDD1 also antagonized OGD/R-evoked cell apoptosis, Bax expression, and caspase-3 activity. Intriguingly, REDD1 depression abrogated neuronal oxidative stress under OGD/R condition by suppressing ROS, MDA generation, and increasing antioxidant SOD levels. Further mechanism analysis corroborated the excessive activation of autophagy in neurons upon OGD/R with increased expression of autophagy-related LC3 and Beclin-1, but decreased autophagy substrate p62 expression. Notably, REDD1 inhibition reversed OGD/R-triggered excessive neuronal autophagy. More importantly, depression of REDD1 also elevated the expression of p-mTOR. Preconditioning with mTOR inhibitor rapamycin engendered not only a reduction in mTOR activation, but also a reactivation of autophagy in REDD1 knockdown-neurons upon OGD/R. In addition, blocking the mTOR pathway muted the protective roles of REDD1 inhibition against OGD/R-induced neuron injury and oxidative stress. Together these data suggested that REDD1 may regulate I/R-induced oxidative stress injury in neurons by mediating mTOR-autophagy signaling, supporting a promising therapeutic strategy against brain ischemic diseases.  相似文献   

6.
《Autophagy》2013,9(1):77-87
Recent reports indicate that autophagy serves as a stress response and may participate in pathophysiology of cerebral ischemia. Nicotinamide phosphoribosyltransferase (Nampt, also known as visfatin), the rate-limiting enzyme in mammalian NAD+ biosynthesis, protects against ischemic stroke through inhibiting neuronal apoptosis and necrosis. This study was taken to determine the involvement of autophagy in neuroprotection of Nampt in cerebral ischemia. Middle cerebral artery occlusion (MCAO) in rats and oxygen-glucose deprivation (OGD) in cultured cortical neurons were performed. Nampt was overexpressed or knocked-down using lentivirus-mediated gene transfer in vivo and in vitro. Immunochemistry (LC3-II), electron microscope and immunoblotting assays (LC3-II, beclin-1, mammalian target of rapamycin [mTOR], S6K1 and tuberous sclerosis complex-2 [TSC2]) were performed to assess autophagy. We found that overexpression of Nampt increased autophagy (LC3 puncta immunochemistry staining, LC3-II/beclin-1 expression and autophagosomes number) both in vivo and in vitro at 2 hours after MCAO. At the early stage of OGD, autophagy inducer rapamycin protected against neuronal injury induced by Nampt knockdown, whereas autophagy inhibitor 3-methyladenine abolished the neuroprotective effect of Nampt partly. Overexpression or knockdown of Nampt regulated the phosphorylation of mTOR and S6K1 signaling pathway upon OGD stress through enhancing phosphorylation of TSC2 at Ser1387 but not Thr1462 site. Furthermore, in cultured SIRT1-knockout neurons, the regulation of Nampt on autophagic proteins LC3-II and beclin-1 was abolished. Our results demonstrate that Nampt promotes neuronal survival through inducing autophagy via regulating TSC2-mTOR-S6K1 signaling pathway in a SIRT1-dependent manner during cerebral ischemia.  相似文献   

7.
In this study, we investigated the neuroprotective effect of Ro25-6981 against cerebral ischemia/reperfusion injury. Ro25-6981 alone or in combination with rapamycin was intracerebroventricularly administered to rats which suffered transient forebrain ischemia inducing by 4-vessel occlusion and reperfusion. Nissl staining was used to determine the survival of CA1 pyramidal cells of the hippocampus, while immunohistochemistry was performed to measure neuron-specific enolase (NSE) expression. The expression of autophagy-related proteins, such as microtubule-associated protein l light chain 3 (LC3), Beclin 1, and sequestosome 1 (p62), was assessed by immunoblotting. Nissl staining showed that neuronal damage was reduced in the hippocampal CA1 pyramidal layer in rats that received Ro25-6981. The protective effect of Ro25-6981 was dose-dependent, with a significant effect in the middle-dose range. The expression of NSE increased after Ro25-6981 treatment. Ro25-6981 significantly decreased LC3II (which is membrane bound) and Beclin 1, and increased p62. In addition, Ro25-6981 decreased rapamycin-induced neuronal damage and excessive activation of autophagy after I/R. Taken together, the results suggest that Ro25-6981 could suppress ischemic brain injury by regulating autophagy-related proteins during ischemia/reperfusion.  相似文献   

8.
The protective role of etanercept in myocardial ischemia/reperfusion is not well understood. The aim of this study was to investigate whether etanercept modulates neutrophil accumulation, TNF-α induction and oxidative stress in an ischemia/reperfusion injured rat heart model. Rats were randomly exposed to sham operation, myocardial ischemia/reperfusion (MI/R) alone, MI/R+ etanercept. The results demonstrated that compared to MI/R, etanercept reduced myocardial infarction area, myocardial myeloperoxidase (MPO) levels, serum creatinine kinase (CK) and lactate dehydrogenase (LDH) levels, and both serum and myocardial TNF-α production. Etanercept also markedly enhanced the activities of antioxidant enzymes superoxide dismutase (SOD) and glutathione peroxidase (GSH-PX), and reduced the level of malondialdehyde (MDA) in MI/R rats. In summary, our data suggested that etanercept has protective effects against MI/R injury in rats, which may be attributed to attenuating inflammation and oxidative stress.  相似文献   

9.
10.
Wang P  Guan YF  Du H  Zhai QW  Su DF  Miao CY 《Autophagy》2012,8(1):77-87
Recent reports indicate that autophagy serves as a stress response and may participate in pathophysiology of cerebral ischemia. Nicotinamide phosphoribosyltransferase (Nampt, also known as visfatin), the rate-limiting enzyme in mammalian NAD (+) biosynthesis, protects against ischemic stroke through inhibiting neuronal apoptosis and necrosis. This study was taken to determine the involvement of autophagy in neuroprotection of Nampt in cerebral ischemia. Middle cerebral artery occlusion (MCAO) in rats and oxygen-glucose deprivation (OGD) in cultured cortical neurons were performed. Nampt was overexpressed or knocked-down using lentivirus-mediated gene transfer in vivo and in vitro. Immunochemistry (LC3-II), electron microscope and immunoblotting assays (LC3-II, beclin-1, mammalian target of rapamycin [mTOR], S6K1 and tuberous sclerosis complex-2 [TSC2]) were performed to assess autophagy. We found that overexpression of Nampt increased autophagy (LC3 puncta immunochemistry staining, LC3-II/beclin-1 expression and autophagosomes number) both in vivo and in vitro at 2 hours after MCAO. At the early stage of OGD, autophagy inducer rapamycin protected against neuronal injury induced by Nampt knockdown, whereas autophagy inhibitor 3-methyladenine abolished the neuroprotective effect of Nampt partly. Overexpression or knockdown of Nampt regulated the phosphorylation of mTOR and S6K1 signaling pathway upon OGD stress through enhancing phosphorylation of TSC2 at Ser1387 but not Thr1462 site. Furthermore, in cultured SIRT1-knockout neurons, the regulation of Nampt on autophagic proteins LC3-II and beclin-1 was abolished. Our results demonstrate that Nampt promotes neuronal survival through inducing autophagy via regulating TSC2-mTOR-S6K1 signaling pathway in a SIRT1-dependent manner during cerebral ischemia.  相似文献   

11.
Sutherlandia (Sutherlandia frutescens) and elderberry (Sambucus spp.) are used to promote health and for treatment of a number of ailments. Although studies with cultured cells have demonstrated antioxidative and anti-inflammatory properties of these botanicals, little is known about their ability to mitigate brain injury. In this study, C57BL/6 J male mice were fed AIN93G diets without or with Sutherlandia or American elderberry for 2 months prior to a 30-min global cerebral ischemia induced by occlusion of the bilateral common carotid arteries (BCCAs), followed by reperfusion for 3 days. Accelerating rotarod assessment at 24 h after BCCA occlusion showed amelioration of sensorimotor impairment in the mice fed the supplemented diets as compared with the ischemic mice fed the control diet. Quantitative digital pathology assessment of brain slides stained with cresyl violet at 3 days after ischemia/reperfusion (I/R) revealed significant reduction in neuronal cell death in both dietary groups. Immunohistochemical staining for ionized calcium-binding adapter molecule-1 demonstrated pronounced activation of microglia in the hippocampus and striatum in the ischemic brains 3 days after I/R, and microglial activation was significantly reduced in animals fed supplemented diets. Mitigation of microglial activation by the supplements was further supported by the decrease in expression of p47phox, a cytosolic subunit of NADPH oxidase, and phospho-ERK1/2, a mitogen-activated protein kinase known to mediate a number of cytoplasmic processes including oxidative stress and neuroinflammatory responses. These results demonstrate neuroprotective effect of Sutherlandia and American elderberry botanicals against oxidative and inflammatory responses to cerebral I/R.  相似文献   

12.
The synergistic scavenger effects of selenium and melatonin collectively we called Se-Mel was studied on the prevention of neuronal injury induced by ischemia/reperfusion. Male Wistar rats were treated with sodium selenite (0.1 mg/kg, i.p.) and melatonin (10 mg/kg, i.p.) 30 min before the middle carotid artery occlusion (MCAO) and immediately after MCAO to male Wistar rats and was continued for 3 days once daily at the interval of 24 h. Behavioral activity (spontaneous motor activity and motor deficit) was improved in Se-Mel-treated rats as compared to MCAO group rats. The level of glutathione and the activity of antioxidant enzymes was depleted significantly while the content of thiobarbituric acid reactive substances, protein carbonyl, and nitric oxide radical (NO·) was increased significantly in MCAO group. Systemic administration of Se-Mel ameliorated oxidative stress and improves ischemia/reperfusion-induced focal cerebral ischemia. Se-Mel also inhibited inducible nitric oxide synthase expression in Se-Mel+MCAO group as compared to MCAO group rats. Thus, Se-Mel has shown an excellent neuroprotective effect against ischemia/reperfusion injury through an anti-ischemic pathway. In conclusion, we demonstrated that the pretreatment with Se-Mel at the onset of reperfusion, reduced post-ischemic damage, and improved neurological outcome following transient focal cerebral ischemia in male Wistar rat.  相似文献   

13.
Recently, it was reported that Ginkgo biloba extract (EGb 761), which is known to have antioxidant properties, also has antiarrhythmic effects on cardiac reperfusion-induced arrhythmias. In the present study, effects of EGb 761 on cardiac ischemia-reperfusion injury were investigated from the point of view of recovery of mechanical function as well as the endogenous antioxidant status of ascorbate. Isolated rat hearts were perfused using the Langendorff technique, and 40 min of global ischemia were followed by 20 min of reperfusion. EGb 761 improved cardiac mechanical recovery and suppressed the leakage of lactate dehydrogenase (LDH) during reperfusion. Furthermore, EGb 761 diminished the decrease of myocardial ascorbate content after 40 min of ischemia and 20 min of reperfusion. Interestingly, EGb 761 also suppressed the increase of dehydroascorbate. These results indicate that EGb 761 protects against cardiac ischemia-reperfusion injury and suggest that the protective effects of EGb 761 depend on its antioxidant properties.  相似文献   

14.
Renal ischemia/reperfusion (I/R) injury resulting in acute renal failure, is a major clinical problem due to its high mortality rate. Renal I/R increases the reactive oxygen species, secretion of inflammatory cytokines, chemokines and other factors. This suggests that initiating the apoptosis process in the presence of oxidative stress may play a role in life-threatening conditions, such as ischemia. Ischemia reperfusion-induced renal damage can result in renal failure and death. Although many treatment procedures have been carried out to reduce or destroy renal I/R damage in experimental models, so far, a routine method of treatment has not yet been found. For this reason, the current study was planned to investigate the possible protective effects of evodiamine on tissue damage caused by ischemia-reperfusion in kidney tissue in rats and an experimental renal I/R model was used for this purpose. Four groups were formed in the study: the control, sham control, ischemia reperfusion (I/R), and evodiamine (10 mg/kg) + I/R groups. The effects of evodiamine against kidney I/R injury were investigated. TAS (total oxidant status), TOS (total oxidant status), interleukin-1β (IL-1β), IL-6, IL-10 and tumor necrosis factor-α levels were determined by enzyme-linked immunosorbent assay. The oxidative stress index was calculated from TAS and TOS levels. In addition, the renal ischemia reperfusion injury was examined histopathologically. The IL-10 and TAS levels in the I/R group decreased when compared with the control and Sham groups, while these levels increased in the evodiamine group. Histopathologic examination revealed that caspase 3 and nuclear factor-κB levels decreased in the evodiamine group compared with the I/R group. The application of evodiamine significantly reduced ischemia reperfusion-induced kidney damage due to its antioxidant, anti-inflammatory and antiapoptotic properties.  相似文献   

15.
可溶性晚期糖基化终末产物受体(soluble receptor for advanced glycation end products,sRAGE)作为内源性保护物质,能够拮抗心肌缺血/再灌注(ischemia/reperfusion,I/R)损伤发生,重要机制是减轻心肌细胞凋亡。而近年来随着细胞死亡研究的深入,细胞自噬被认为是一种新的细胞程序性死亡。sRAGE是否可以抑制缺血/再灌引起的心肌细胞自噬尚未见报道。本文研究证明,sRAGE可抑制缺血/再灌注引起的心肌细胞自噬。以心肌细胞缺氧/复氧模拟心肌细胞缺血/再灌注模型,蛋白质印迹检测自噬门户蛋白beclin-1的表达,激光共聚焦显微镜检测自噬小体及自噬溶酶体的形成。心肌再灌注期间,心肌细胞自噬小体增加,而自噬溶酶体下降。细胞内自噬小体堆积,说明心肌细胞缺血/再灌注使自噬小体与溶酶体结合受损,清除发生障碍。与缺血/再灌注(I/R)组比较,缺血/再灌+sRAGE(I/R+sRAGE)组的自噬流减弱。此外,自噬门户蛋白beclin-1也表达下降。以上结果从细胞形态学和蛋白水平两方面说明,sRAGE抑制了I/R引起的心肌细胞自噬。换言之,sRAGE可以直接作用于心肌细胞拮抗缺血/再灌注损伤,其保护性作用可能与抑制心肌细胞自噬有关。  相似文献   

16.
Prolonged ischemia amplified iscehemia/reperfusion (IR) induced renal apoptosis and autophagy. We hypothesize that ischemic conditioning (IC) by a briefly intermittent reperfusion during a prolonged ischemic phase may ameliorate IR induced renal dysfunction. We evaluated the antioxidant/oxidant mechanism, autophagy and apoptosis in the uninephrectomized Wistar rats subjected to sham control, 4 stages of 15-min IC (I15 × 4), 2 stages of 30-min IC (I30 × 2), and total 60-min ischema (I60) in the kidney followed by 4 or 24 hours of reperfusion. By use of ATP assay, monitoring O2 -. amounts, autophagy and apoptosis analysis of rat kidneys, I60 followed by 4 hours of reperfusion decreased renal ATP and enhanced reactive oxygen species (ROS) level and proapoptotic and autophagic mechanisms, including enhanced Bax/Bcl-2 ratio, cytochrome C release, active caspase 3, poly-(ADP-ribose)-polymerase (PARP) degradation fragments, microtubule-associated protein light chain 3 (LC3) and Beclin-1 expression and subsequently tubular apoptosis and autophagy associated with elevated blood urea nitrogen and creatinine level. I30 × 2, not I15 × 4 decreased ROS production and cytochrome C release, increased Manganese superoxide dismutase (MnSOD), Copper-Zn superoxide dismutase (CuZnSOD) and catalase expression and provided a more efficient protection than I60 against IR induced tubular apoptosis and autophagy and blood urea nitrogen and creatinine level. We conclude that 60-min renal ischemia enhanced renal tubular oxidative stress, proapoptosis and autophagy in the rat kidneys. Two stages of 30-min ischemia with 3-min reperfusion significantly preserved renal ATP content, increased antioxidant defense mechanisms and decreased ischemia/reperfusion enhanced renal tubular oxidative stress, cytosolic cytochrome C release, proapoptosis and autophagy in rat kidneys.  相似文献   

17.
18.
Poloxamer 188 (P188), a multiblock copolymer surfactant, has been shown to protect against ischemic tissue injury of cardiac muscle, testes and skeletal muscle, but the mechanisms have not been fully understood. In this study, we explored whether P188 had a protective effect against cerebral ischemia/reperfusion injury and its underlying mechanisms. The in vivo results showed that P188 significantly reduced the infarct volume, ameliorated the brain edema and neurological symptoms 24 h after ischemia/reperfusion. In the long-term outcome study, P188 markedly alleviated brain atrophy and motor impairments and increased survival rate in 3 weeks of post stroke period. Additionally, P188 protected cultured hippucampal HT22 cells against oxygen–glucose deprivation and reoxygenation (OGD/R) injury. The ability in membrane sealing was assessed with two fluorescent membrane-impermeant dyes. The results showed that P188 treatment significantly reduced the PI-positive cells following ischemia/reperfusion injury and repaired the HT22 cell membrane rupture induced by Triton X-100. In addition, P188 inhibited ischemia/reperfusion-induced activation of matrix metalloproteinase (MMP)-9 and leakage of Evans blue. Therefore, the present study concludes that P188 can protect against cerebral ischemia/reperfusion injury, and the protection involves multi-mechanisms in addition to the membrane resealing.  相似文献   

19.
Myocardial ischemia/reperfusion injury (MI/RI) is the main cause of deaths in the worldwide, leading to severe cardiac dysfunction. Resveratrol (RSV) is a polyphenol plant‐derived compound. Our study aimed to elucidate the underlying molecular mechanism of preconditioning RSV in protecting against MI/RI. Mice were ligated and re‐perfused by the left anterior descending branch with or without RSV (30 mg/kg·ip) for 7 days. Firstly, we found that RSV pretreatment significantly alleviated myocardial infarct size, improved cardiac function and decreased oxidative stress. Furthermore, RSV activated p‐AMPK and SIRT1, ameliorated inflammation including the level of TNF‐α and IL‐1β, and promoting autophagy level. Moreover, neonatal rat ventricular myocytes (NRVMs) and H9c2 cells with knockdown the expression of AMPK, SIRT1 or FOXO1 were used to uncover the underlying molecular mechanism for the cardio‐protection of RSV. In NRVMs, RSV increased cellular viability, decreased LDH release and reduced oxidative stress. Importantly, Compound C(CpC) and EX527 reversed the effect of RSV against MI/RI in vivo and in vitro and counteracted the autophagy level induced by RSV. Together, our study indicated that RSV could alleviate oxidative stress in cardiomyocytes through activating AMPK/SIRT1‐FOXO1 signallingpathway and enhanced autophagy level, thus presenting high potential protection on MI/RI.  相似文献   

20.
Oxidative damage due to ischemia/reperfusion has been implicated as one of the leading causes for delayed neuronal cell death in a number of neurodegenerative diseases, including stroke. The purpose of this research was to investigate whether oral administration of a fermented grain food mixture (AOB(R)) might offer protective effects against ischemia/reperfusion-induced neuronal damage in Mongolian gerbils, a model known for delayed neuronal death in the hippocampal CA1 region. Histological analysis revealed that AOB administration ad libitum for 3 weeks (preoperative administration) and 1 week (postoperative administration) dose-dependently suppressed the induction of transient ischemia/reperfusion-induced neuronal cell death. TUNEL assay also revealed that AOB suppressed it by inhibiting the induction of apoptosis. A significant increase of superoxide dismutase-like (SOD-like) activity was observed in the hippocampal CA1 region of the AOB-treated gerbil. Furthermore, immunoblot analysis showed that AOB administration down-regulated the expression of heat shock proteins HSP27 and HSP70 in the same region. These results indicated that oral administration of AOB protected against ischemia/reperfusion-induced brain injury by minimizing oxidative damage via its SOD-like activity and inhibiting apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号