首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In vivo and in situ digestive characteristics of sainfoin (Onobrychis viciifolia L., a tannin-rich forage) and lucerne (Medicago sativa L., a tannin-free forage) were compared to evaluate the effects of condensed tannins (CT) and growth stage (vegetative v. early flowering) in experiment 1. In experiment 2, the hays of the two forages, harvested at early flowering, were compared. Ingestibility, organic matter digestibility (OMD) and nitrogen (N) retention were measured in sheep fed sainfoin and lucerne fresh forages and hays. The loss of dry matter (DM) and N from polyester bags suspended in the rumen, abomasum and small intestine was also measured using rumen fistulated sheep and other intestine fistulated sheep. Nitrogen content was lower in sainfoin than in lucerne. Content of CT in sainfoin decreased with growth stage (3.5 to 2.5 g CT/kg DM) and was lower for sainfoin hay (0.6 g CT/kg DM). Ingestibility and OMD did not differ between fresh-fed forage species. Total N tract digestibility in vivo was much lower for sainfoin than for lucerne fresh forages (mean value 0.540 v. 0.721, P < 0.001) and for sainfoin hay than lucerne hay (0.464 v. 0.683, P < 0.001). In both species, N digestibility was not altered by growth stage. The rumen degradation of N was lower in sainfoin than in lucerne, resulting in a lower proportion of N intake excreted in urine. The intestinal digestibility of sainfoin was also lower than that of lucerne, resulting in a higher N excretion in faeces. Hence the efficiency of N utilisation by sheep (ENr) was similar (mean value 0.205 and 0.199 g N retained/g N intake for fresh sainfoin and lucerne, respectively). The coefficient of N retention by the animal was higher for sainfoin at the vegetative stage than for all the other forages. Nitrogen degradability in the rumen determined by the nylon bag technique (DegN) was lower for sainfoin than for lucerne when forages were studied both fresh (mean value 0.608 and 0.818, respectively) and as hays (0.631 and 0.767). The efficiency of forage N digestion (ENd) was higher for sainfoin at the vegetative stage. Compared with lucerne, sainfoin greatly increased the in situ estimate of forage N escaping the rumen but decreased its intestinal digestibility.  相似文献   

2.
In total, 20 multiparous Holstein-Friesian dairy cows received one of four diets in each of four periods of 28-day duration in a Latin square design to test the hypothesis that the inclusion of lucerne in the ration of high-yielding dairy cows would improve animal performance and milk fatty acid (FA) composition. All dietary treatments contained 0.55 : 0.45 forage to concentrates (dry matter (DM) basis), and within the forage component the proportion of lucerne (Medicago sativa), grass (Lolium perenne) and maize silage (Zea mays) was varied (DM basis): control (C)=0.4 : 0.6 grass : maize silage; L20=0.2 : 0.2 : 0.6 lucerne : grass : maize silage; L40=0.4 : 0.6 lucerne : maize silage; and L60=0.6 : 0.4 lucerne : maize silage. Diets were formulated to contain a similar CP and metabolisable protein content, with the reduction of soya bean meal and feed grade urea with increasing content of lucerne. Intake averaged 24.3 kg DM/day and was lowest in cows when fed L60 (P<0.01), but there was no effect of treatment on milk yield, milk fat or protein content, or live weight change, which averaged 40.9 kg/day, 41.0, 30.9 g/kg and 0.16 kg/day, respectively. Milk fat content of 18:2 c9 c12 and 18:3 c9 c12 c15 was increased (P<0.05) with increasing proportion of lucerne in the ration. Milk fat content of total polyunsaturated fatty acids was increased by 0.26 g/100 g in L60 compared with C. Plasma urea and β-hydroxybutyrate concentrations averaged 3.54 and 0.52 mmol/l, respectively, and were highest (P<0.001) in cows when fed L60 and lowest in C, but plasma glucose and total protein was not affected (P>0.05) by dietary treatment. Digestibility of DM, organic matter, CP and fibre decreased (P<0.01) with increasing content of lucerne in the diet, although fibre digestibility was similar in L40 and L60. It is concluded that first cut grass silage can be replaced with first cut lucerne silage without any detrimental effect on performance and an improvement in the milk FA profile, although intake and digestibility was lowest and plasma urea concentrations highest in cows when fed the highest level of inclusion of lucerne.  相似文献   

3.
Lignification of cell walls is the major factor controlling the digestibility of forage grasses. Thus far, from QTL analysis, about 15 locations involved in cell-wall lignification or digestibility have been identified in the maize genome, many of which colocalise with QTLs involved in corn borer susceptibility. Genetic diversity for enhancing cell-wall digestibility in maize must be identified in novel germplasm, but genetic engineering is also a relevant way both to design specific cell-wall characteristics for improved digestibility and to identify genes involved in these traits for further discovery of alleles of interest in grass germplasm.  相似文献   

4.
The aim of this study was to investigate whether the use of sainfoin-based condensed tannins (CT) enhances feed value when given with tannin-free legumes (lucerne) to sheep. The experiments were conducted with fresh sainfoin and lucerne harvested at two stages (vegetative stage as compared with early flowering) in the first growth cycle. Fresh sainfoin and lucerne forages were combined in ratios of 100 : 0, 75 : 25, 25 : 75 and 0 : 100 (denoted S100, S75, S25 and S0, respectively). Voluntary intake, organic matter digestibility (OMD) and nitrogen (N) retention were measured in sheep fed the different sainfoin and lucerne mixtures. Loss of dry matter (DM) and N from polyester bags suspended in the rumen, abomasum and small intestine (SI) was also measured using rumen-fistulated sheep and intestinally fistulated sheep. The CT content in sainfoin (S100) decreased with increasing percentage of lucerne in the mixture (mean value from 58 g/kg DM for S100 to 18 g/kg DM for S25) and with growth stage (S100: 64 to 52 g/kg DM). OMD did not differ between different sainfoin/lucerne mixture ratios. Sainfoin and lucerne had an associative effect (significant quadratic contrast) on voluntary intake, N intake, total-tract N digestibility, N in faeces and urine (g/g N intake) and N retained (g/g N intake). Compared with lucerne mixtures (S0 and S25), high-sainfoin-content mixtures (S100 and S75) increased the in situ estimates of forage N escaping from the rumen (from 0.162, 0.188 for S0 and S25 to 0.257, 0.287 for S75 and S100) but decreased forage N intestinal digestibility (from 0.496, 0.446 for S0 and S25 to 0.469, 0.335 for S75 and S100). The amount of forage N disappearing from the bags in the SI (per g forage N) was the highest for high-sainfoin mixtures (from 0.082, 0.108 for S100 and S75 to 0.056, 0.058 for S25 and S0, P < 0.001). Rumen juice total N (tN) and ammonia N (NH3-N) values were the lowest in the high-sainfoin diet (mean tN 0.166 mg/g in S100 as compared with 0.514 mg/g in S0; mean NH3-N 0.104 mg/g in S100 as compared with 0.333 mg/g in S0, P < 0.001).  相似文献   

5.
Genetic improvement of forage digestibility, especially utilizing marker assisted selection and recombinant DNA techniques, requires identification of specific biochemical traits and associated genes that impact digestibility. We undertook a study to identify cell wall (CW) traits of lucerne (Medicago sativa L.) stems that were consistently and strongly correlated with in vitro neutral detergent fibre (NDF) digestibility, a measurement that has been shown to correlate with animal performance. Spring and summer harvested lucerne stem material, for 2 years, from 24 individual plants in each of two germplasm sources were analyzed for 16 and 96 h in vitro NDF digestibility, and cell wall concentration and composition (monosaccharide constituents of cellulose, hemicellulose, and pectin; and Klason lignin (KL)) by the Uppsala dietary fibre method using near-infrared reflectance spectroscopy (NIRS). Pearson correlation coefficients were calculated for the relationships among these cell wall traits and with in vitro NDF digestibility. Concentrations of the pectin monosaccharide components were all negatively correlated (r=−0.73 to −0.94) with total cell wall concentration. In contrast, the three most abundant cell wall components glucose (Glc), xylose (Xyl) and Klason lignin were not correlated, or only weakly positively correlated (r<0.35), with cell wall concentration. Cell wall concentration was consistently negatively correlated (r=−0.60 to −0.94) with both 16 and 96 h in vitro NDF digestibility. In contrast, Klason lignin concentration was only marginally correlated (r<0.30) with 16 h in vitro NDF digestibility, but strongly negatively correlated (r=−0.71 to −0.74) with 96 h in vitro NDF digestibility. This is consistent with previous reports which show that lignin affects potential extent of digestion, but not rate. Cell wall glucose and xylose concentrations were inconsistently correlated with fibre digestibility. The monosaccharide components of pectin were consistently positively correlated (r=0.54–0.90) with in vitro NDF digestibility, except for 96 h in vitro NDF digestibility of spring harvested stems. Growth environment (year) and germplasm source had only minor impacts on the preceding correlation patterns, whereas spring versus summer harvests accounted for the inconsistencies observed among correlations for cell wall traits. The results of this study indicate that genetic improvement of fibre digestibility of lucerne stems should target genes that reduce total cell wall concentration, perhaps by reducing the rate of xylem tissue deposition during maturation, and reduce Klason lignin and increase pectin concentrations in the cell wall to improve potential extent and rate of fibre digestibility, respectively.  相似文献   

6.
The objective was to assess the effects of inclusion rate and chop length of lucerne silage, when fed in a total mixed ration (TMR), on milk yield, dry matter (DM) intake (DMI) and digestion in dairy cows. Diets were formulated to contain a 50 : 50 ratio of forage : concentrate (DM basis) and to be isonitrogenous (170 g/kg CP). The forage portion of the offered diets was comprised of maize and lucerne silage in proportions (DM basis) of either 25 : 75 (high Lucerne (HL)) or 75 : 25 (low lucerne (LL)). Lucerne was harvested and conserved as silage at either a long (L) or short (S) chop length. These variables were combined in a 2×2 factorial arrangement to give four treatments (HLL, HLS, LLL, LLS) which were fed in a Latin square design study to Holstein dairy cows in two separate experiments. In total, 16 and 8 multiparous, mid-lactation cows were used in experiments 1 and 2, respectively. To ensure sufficient silage for both experiments, different cuts of lucerne silage (taken from the same sward) were used for each experiment: first cut for experiment 1 (which was of poorer quality) and second cut for experiment 2. Dry matter intake, milk yield and milk composition where measured in both experiments, and total tract digestibility and nitrogen (N) balance were assessed using four cows in experiment 2. In experiment 1, cows fed LL had increased DMI (+3.2 kg/day), compared with those fed HL. In contrast, there was no difference in DMI due to lucerne silage inclusion rate in experiment 2. A reduction in milk yield was observed with the HL treatment in both experiment 1 and 2 (−3.0 and −2.9 kg/day, respectively). The HL diet had reduced digestibility of DM and organic matter (OM) (−3% and −4%, respectively), and also reduced the efficiency of intake N conversion into milk N (−4%). The S chop length increased total tract digestibility of DM and OM (both +4%), regardless of inclusion rate. Inclusion of lucerne silage at 25% of forage DM increased milk yield relative to 75% inclusion, but a S chop length partially mitigated adverse effects of HL on DMI and milk yield in experiment 1 and on DM digestibility in experiment 2.  相似文献   

7.
Different methods for estimating starch in Chlorella vulgaris were compared with the view of establishing a procedure suitable for rapid and accurate determination of starch content in this microalgal species. A close agreement was observed between methods that use perchloric acid and enzymatic methods that use α-amylase and amyloglucosidase to hydrolyze the starch of microalgae grown under different nitrogen culture conditions. Starch values obtained by these methods were significantly higher than those estimated by using hydrochloric acid as solubilizing and hydrolyzing agent. The enzymatic method (EM1) proved to be the most rapid and precise method for microalgal starch quantification. Furthermore, the evaluation of resistant starch by enzymatic methods assayed in nitrogen-sufficient and nitrogen-starved cells showed that no formation of this type of starch occurred in microalgae, meaning that this should not interfere with starch content determinations.  相似文献   

8.
Abstract

Sampling of bluegreen lucerne aphid showed that the most efficient method differs according to the time of year and the height of the lucerne. In late June 1976, when the lucerne was short (mean height 3.6 cm), an area removal sample of 700 cm2 was more efficient to achieve a 10% degree of precision (half-width of a confidence limit) than area samples of 80 and 300 cm2, suction sampling of the same areas, and stem sampling. In early spring (lucerne height 11.7 cm) the 80 cm2 area removal sample was the most efficient. Just before the second hay cut (late January), the length of lucerne stems (62.5 cm) precluded use of any area removal technique; stem samples were most efficient. The cost in time was fuliy considered in sampling method comparisons. Possible differences with population density were not considered.  相似文献   

9.
An HPLC assay was developed using three methods of plasma sample preparation in order to quantitate curcumin, the main constituent in the herbal dietary supplement turmeric. Each method involves simple and rapid processing of samples (either an ethyl acetate or chloroform extraction) with resulting different quantitation limits for curcumin. The assay was developed in an effort to quantify extremely low curcumin plasma concentrations observed in preliminary in vivo studies. The most sensitive assay can reliably detect concentrations down to 2.5 ng/ml. Plasma quantitation was precise and accurate based on both intra- and inter-day validations as indicated by low values for coefficients of variation and bias, respectively (< or =15%). The analytical validation was reproducible between different analysts. The resulting analytical method couples desired sensitivity with the ease of an isocratic system.  相似文献   

10.
A survey was conducted on the feed value for ruminants of a variety of crop residues and forages, with particular emphasis on crop residues and forages not currently grown extensively in Western Canada. Crop residues with feed values significantly higher than wheat (Triticum aestivum L.) or barley (Hordeum vulgare L.) straw were investigated, and the response to ammonia treatment was evaluated, to determine which materials could be appreciably improved in feed value by this technique. Some of the crop residues evaluated by digestibility in vitro and crude-protein content had a significantly higher feed value, without chemical processing, than the cereal straws often given to cattle in Western Canada. Ammonia treatment improved both the organic matter digestibility in vitro and crude-protein content of some residues significantly, while other materials showed only an improvement in crude protein. The organic matter digestibility in vitro of sunflower (Helianthus annus L.) crop residue and Jerusalem-artichoke (Helianthus tuberosis L.) forage and residue was initially higher than that of alfalfa (Medicago sativa L.) or sweet clover [Melilotus officinalus (L.) Lam] and did not increase appreciably with ammonia treatment. Faba-bean (Vicia faba L.) residue was only slightly inferior to these materials and showed a moderate improvement after treatment with ammonia. Untreated bullrush-millet [Pennisetum americanum (L.) Schum] whole-crop forage was equivalent to alfalfa and sweet clover in digestibility in vitro and responded quite well to ammonia treatment. Kochia (Kochia scoparia Shrad) forage had a relatively high digestibility in vitro and crude-protein content when harvested at the flowering stage. Mature kochia had a digestibility in vitro equivalent to barley straw and did not respond well to ammonia treatment.  相似文献   

11.
An Italian "Dalita" ryegrass (Lolium italicum) and a European lucerne (Medicago sativa) were harvested at 5 different growth stages to determine the anatomical factors limiting their digestibility and in particular the effects of lignification of the tissues. In vitro digestibility, cell wall contents of the whole plant and stem of lucerne and of the whole plant, stem and leaf blade of ryegrass were determined. The rate and the extent of degradation in the rumen of the different tissues were observed by scanning electron microscopy. This degradation occurred very rapidly with the lucerne stems; the xylem of lucerne was the only undegradable tissue whatever the stage. The collenchyma was degraded in the rumen although with acid phloroglucinol it stained positive for the presence of phenolic compounds. Ryegrass stems were digested more slowly than lucerne stems, and the sclerenchyma and xylem of ryegrass were indigestible whatever the stage. The parenchyma located close to the sclerenchyma became indigestible as the cell walls lignified progressively from the third stage. These results contribute to the understanding of the decrease in digestibility over the first growth stage and the variation in rate of digestion of lucerne and ryegrass in the rumen.  相似文献   

12.
Livestock performance can be improved by increasing the digestibility of feeds, one of the key elements of nutritional quality. Digestibility of feeds can be improved by breeding forage crops with modified cell-wall structure, increasing the potential availability of energy from the cell wall to rumen microbes and livestock. The objectives of this research were to identify interrelationships among lignin and phenolic components of the fibre fraction of three perennial grasses and to determine their influence on in vitro fibre digestibility. Differences in etherified and esterified ferulate and esterified p-coumarate among clones of three perennial grasses were generally repeatable across harvests. The concentration of neutral detergent fibre (NDF) and Klason lignin within the NDF fraction were the factors most limiting to 24-h in vitro digestibility, with NDF being the most important. Klason lignin and etherified ferulate were the factors most limiting to 96-h in vitro digestibility for all three species. Due to its positive correlation with NDF, selection for low etherified ferulate should be avoided in smooth bromegrass (Bromus inermis Leyss) and cockfsoot (Dactylis glomerata L.). It should be possible to select and breed for low concentrations of lignin to improve digestibility without decreasing NDF in these two species. However, in reed canarygrass (Phalaris arundinacea L.), both lignin and etherified ferulate were positively correlated with NDF, indicating that selection for increased digestibility should be based directly on some measure of in vitro digestibility to avoid the fitness problems associated with reduced NDF.  相似文献   

13.
Abstract: Condensed tannins (CT) can reduce digestibility of forages for white-tailed deer (Odocoileus virginianus), potentially confounding estimates of diet quality and nutritional carrying capacity. We collected 143 spring and 142 summer samples of 8 important deer forage species from 22 properties in Mississippi, USA, and tested for CT content using a modified butanol-HCl assay. Three species (partridge pea [Chamaecrista fasciculata], southern dewberry [Rubus trivialis], and roundleaf greenbrier [Smilax rotundifolia]) contained CT, ranging from 0.11% to 6.46% dry weight. Summer CT concentration was greater than in spring for 2 species. We ranked soil samples from least to most fertile using 8 chemical characteristics and found a positive correlation between fertility and CT concentration for 1 species and no correlation for 2 species. We tested effects of CT concentration on in vitro dry matter disappearance (IVDMD) and in vitro protein digestibility using samples of partridge pea and roundleaf greenbrier and rumen fluid from 3 free-ranging deer. Average IVDMD was reduced 1.9% for each 1% increase in CT concentration. In vitro protein digestibility was reduced 2.5% for each 1% increase in CT concentration. Assuming that our methods reflect the effects of CT on in vivo digestibility, maximum loss of available crude protein (CP) in our samples was 3.0 g/100 g dry-weight forage, and only 13 of the 112 CT-containing forage samples (12%) would have decreased available CP by >1 g/100 g dry-weight forage. Deer consuming equal portions of sampled forages would lose <1% of dietary CP to CT. Comparisons of foraging area quality using crude protein estimates should be unaffected by CT under reasonable restrictions of similar habitat types, soil fertility, and time. Given the ability of deer to forage selectively and the abundance of alternative forages in Mississippi, the potential for CT to substantially affect spring or summer diet quality of deer appears minimal.  相似文献   

14.

Background and Aims

Species and hybrids of the genus Miscanthus contain attributes that make them front-runners among current selections of dedicated bioenergy crops. A key trait for plant biomass conversion to biofuels and biomaterials is cell-wall quality; however, knowledge of cell-wall composition and biology in Miscanthus species is limited. This study presents data on cell-wall compositional changes as a function of development and tissue type across selected genotypes, and considers implications for the development of miscanthus as a sustainable and renewable bioenergy feedstock.

Methods

Cell-wall biomass was analysed for 25 genotypes, considering different developmental stages and stem vs. leaf compositional variability, by Fourier transform mid-infrared spectroscopy and lignin determination. In addition, a Clostridium phytofermentans bioassay was used to assess cell-wall digestibility and conversion to ethanol.

Key Results

Important cell-wall compositional differences between miscanthus stem and leaf samples were found to be predominantly associated with structural carbohydrates. Lignin content increased as plants matured and was higher in stem tissues. Although stem lignin concentration correlated inversely with ethanol production, no such correlation was observed for leaves. Leaf tissue contributed significantly to total above-ground biomass at all stages, although the extent of this contribution was genotype-dependent.

Conclusions

It is hypothesized that divergent carbohydrate compositions and modifications in stem and leaf tissues are major determinants for observed differences in cell-wall quality. The findings indicate that improvement of lignocellulosic feedstocks should encompass tissue-dependent variation as it affects amenability to biological conversion. For gene–trait associations relating to cell-wall quality, the data support the separate examination of leaf and stem composition, as tissue-specific traits may be masked by considering only total above-ground biomass samples, and sample variability could be mostly due to varying tissue contributions to total biomass.  相似文献   

15.
Samples of 1 kg of wheat straw, oat straw and paspalum hay were separated manually into botanical fractions, and the three largest fractions of each forage were analysed chemically for cell-wall constituents, silica and nitrogen. Proportions of digested dry matter, cellulose and hemicellulose, and potential digestibility for each of these major botanical fractions were determined when chaffed samples were placed in nylon bags and incubated for 12, 24, 48, 72 and 96 h in the rumen of sheep fed on lucerno. Cross-sections of botanical fractions were stained with safranin and fast green, and proportions of lignified tissue determined by light-microscopy and planimetry.Large differences in dry-matter digestibility between wheat straw and oat straw were attributed to the different proportions of botanical fractions. Within forages, stem was the largest fraction, the most lignified and had the lowest potential digestibility. Proportions of digested dry matter from botanical fractions at 12 h were poorly correlated with lignin content of dry matter (r = 0.25) but at 72 h were negatively correlated with lignin content of dry matter (r = ?0.84, P<0.01) and with proportions of lignified tissue (r = ?0.67, P<0.05) in the respective botanical fractions. Proportions of cellulose and hemicellulose digested at 72 h were strongly correlated with lignin content of cell walls (r = ?0.90, P<0.01; r = ?0.85, P<0.01, respectively). Proportions of lignified tissues were less closely correlated with all measurements of digestibility than were proportions of lignin in cell walls determined chemically. Development of a technique for measuring intensity of lignification might enhance the value of light-microscopy measurements.  相似文献   

16.
The accuracy and precision of the National Research Council (NRC), Gesellschaft für Ernährungsphysiologie (GfE) and Institut National de la Recherche Agronomique (INRA) systems for predicting the digestible energy (DE) value of hays were determined from the results of 15 digestibility trials with natural grassland hays and 9 digestibility trials with lucerne hays that all met strict experimental and a tight corpus of methods. The hays were harvested in the temperate zone. They covered broad ranges of chemical composition and DE value. The INRA system was more accurate than the other two systems, with the bias between the predicted and measured DE values of natural grassland and lucerne hays averaging −0.11 and −0.04 MJ/kg DM with the INRA system, 0.34 and −0.70 MJ/kg DM with the NRC system and −0.50 and −1.69 MJ/kg DM with the GfE system (P < 0.05). However, the precision of the three systems was similar; the standard error of prediction corrected by bias was not significantly different (P > 0.05). The GfE system underestimated the DE value of hays, especially of lucerne hays. The differences between the predicted and measured DE values resulted mainly from the errors in the prediction of organic matter digestibility and energy digestibility for both natural grassland and lucerne hays. Discrimination according to botanical family (grassland v. lucerne) can help improve the prediction of the DE value of hays. The choice of appropriate predictive variables is discussed in the light of differences in chemical composition and digestibility of the various cell wall components of grassland and lucerne hays. Neutral detergent fiber (NDF) may thus be preferable to ADF in the prediction equation of the DE value of lucerne hays, whereas ADF and NDF may both be relevant for natural grassland hays.  相似文献   

17.
The direct quantitative measurement of total bile acids in serum has been achieved using an enzymatic fluorescent method with a dual-beam spectrophotofluorimeter. By use of a 3alpha-hydroxysteroid dehydrogenase, oxidation of bile acids with NAD is completed in 200 seconds with the observed NADH fluorescence being proportional to the concentration of serum bile acids. This method is rapid (8 minutes per individual sample), has an intrinsic sensitivity of +/- micronM of total bile acids, requires no sample preparation and less than 0.8 ml of serum. Paired data analysis using enzymatic fluorescence and gas-liquid chromatographic methods gives a correlation coefficient (r) of 0.99 for 34 samples ranging from 2 to 530 micronM.  相似文献   

18.
The aim of this meta-analysis was to compare feed intake, milk production, milk composition and organic matter (OM) digestibility in dairy cows fed different grass and legume species. Data from the literature was collected and different data sets were made to compare families (grasses v. legumes, Data set 1), different legume species and grass family (Data set 2), and different grass and legume species (Data set 3+4). The first three data sets included diets where single species or family were fed as the sole forage, whereas the approach in the last data set differed by taking the proportion of single species in the forage part into account allowing diets consisting of both grasses and legumes to be included. The grass species included were perennial ryegrass, annual ryegrass, orchardgrass, timothy, meadow fescue, tall fescue and festulolium, and the legume species included were white clover, red clover, lucerne and birdsfoot trefoil. Overall, dry matter intake (DMI) and milk production were 1.3 and 1.6 kg/day higher, respectively, whereas milk protein and milk fat concentration were 0.5 and 1.4 g/kg lower, respectively, for legume-based diets compared with grass-based diets. When comparing individual legume species with grasses, only red clover resulted in a lower milk protein concentration than grasses. Cows fed white clover and birdsfoot trefoil yielded more milk than cows fed red clover and lucerne, probably caused by a higher OM digestibility of white clover and activity of condensed tannins in birdsfoot trefoil. None of the included grass species differed in DMI, milk production, milk composition or OM digestibility, indicating that different grass species have the same value for milk production, if OM digestibility is comparable. However, the comparison of different grass species relied on few observations, indicating that knowledge regarding feed intake and milk production potential of different grass species is scarce in the literature. In conclusion, different species within family similar in OM digestibility resulted in comparable DMI and milk production, but legumes increased both DMI and milk yield compared with grasses.  相似文献   

19.
Six lactating cows, 6 dry cows and 6 wether sheep were fed ad libitum on diets of maize silage, maize silage plus lucerne, or maize silage plus lucerne plus wheat. Faeces and urine collections allowed for the determination of digestibility of dry matter, organic matter and nitrogen, and balances of nitrogen and water.

Voluntary feed intakes were highest and digestibility values were lowest in lactating cows. The addition of lucerne reduced organic matter digestibility in dry cows, but not in lactating cows or sheep. The addition of wheat decreased intake in dry cows and sheep, but not in lactating cows. Production of milk, protein, solids-not-fat and total solids increased with dietary quality, but there was a depression in milk fat content as a result of wheat supplementation.

The ranking of the 3 diets on the basis of feed intake differed with each class of livestock, but lactating cows and sheep gave the same ranking on the basis of organic matter digestibility.  相似文献   


20.
Globally, there is an increased demand for sustainable protein sources for animal feed. Grass and forage legumes have the yield potential to become such alternatives, but the protein needs to be separated from the fibres. Red clover, white clover, lucerne and perennial ryegrass were fractionated into a green juice and a fibrous pulp in a screw-press and protein was subsequently precipitated. The nitrogen (N) and amino acid composition of the produced fractions was analysed and the digestibility of dry matter (DM) and N was evaluated using a rat digestibility trial. The aim was to determine the effect of fractionation on composition and digestibility in order to evaluate the four plants as potential protein sources for monogastrics. Protein concentrates with CP concentrations of 240 to 388 g/kg DM and fibrous pulps with CP concentrations of 111 to 216 g/kg DM were produced. The sum of all analysed amino acids was highest in the protein concentrates corresponding to a low concentration of non-protein nitrogen ranging from 4.9% to 10.4%. Only small variations were seen in the amino acid compositions of the different plants and fractions. The concentration of the essential lysine and methionine in the protein concentrate ranged from 6.27 to 6.67 g/16 g N and 1.54 to 2.09 g/16 g N for lysine and methionine, respectively. For all plants species, total tract digestibility of DM and standardised N digestibility was significantly higher in the protein concentrates (60.8% to 76.5% and 75.4% to 85.0% for DM and N, respectively) compared to pulp (21.2% to 43.4% and 52.1% to 72.5% for DM and N, respectively). Digestibility of lucerne protein concentrate (76.5% and 85.0% for DM and N, respectively) was higher than of the unprocessed plant (39.6% and 74.9% for DM and N, respectively), whereas for red and white clover no difference was found. The amino acids methionine and cysteine were limiting for pigs and broilers in all fractions regardless of plant origin, and low scores were also found for lysine. The study demonstrated great potential of using green plants as a protein source for monogastrics because of high protein content, balanced amino acid composition and high digestibility of DM and N. The effects of processing and protein precipitation were pronounced in lucerne where significantly improved digestibility was observed in the protein concentrate. The results from the study provide valuable and enhanced knowledge to the production of alternative and sustainable protein sources for monogastric feed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号