首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Methyl-coenzyme M reductase (MCR) catalyzes the formation of methane from methyl-coenzyme M and coenzyme B in methanogenic archaea. The enzyme contains tightly bound the nickel porphinoid F430. The nickel enzyme has been shown to be active only when its prosthetic group is in the Ni(I) reduced state. In this state MCR exhibits the nickel-based EPR signal red1. We report here for the MCR from Methanothermobacter marburgensis that the EPR spectrum of the active enzyme changed upon addition or removal of coenzyme M, methyl coenzyme M and/or coenzyme B. In the presence of methyl-coenzyme M the red1 signal showed a more resolved 14N-superhyperfine splitting than in the presence of coenzyme M indicating a possible axial ligation of the substrate to the Ni(I). In the presence of methyl-coenzyme M and coenzyme B the red1 signal was the same as in the presence of methyl-coenzyme M alone. However, in the presence of coenzyme M and coenzyme B a highly rhombic EPR signal, MCR-red2, was induced, which was found to be light sensitive and appeared to be formed at the expense of the MCR-red1 signal. Upon addition of methyl-coenzyme M, the red2 signal disappeared and the red1 signal increased again. The red2 signal of MCR with 61Ni-labeled cofactor was significantly broadened indicating that the signal is nickel or nickel-ligand based.  相似文献   

2.
Nerve fibers which respond to illumination of the sixth abdominal ganglion were isolated by fine dissection from connectives at different levels in the abdominal nerve cord of the crayfish. Only a single photosensitive neuron is found in each connective; its morphological position and pattern of peripheral connections are quite constant from preparation to preparation. These cells are "primary" photoreceptor elements by the following criteria: (1) production of a graded depolarization upon illumination and (2) resetting of the sensory rhythm by interpolated antidromic impulses. They are also secondary interneurons integrating mechanical stimuli which originate from appendages of the tail. Volleys in ipsilateral afferent nerves produce short-latency graded excitatory postsynaptic potentials which initiate discharge of one or two impulses; there is also a higher threshold inhibitory pathway of longer latency and duration. Contralateral afferents mediate only inhibition. Both inhibitory pathways are effective against both spontaneous and evoked discharges. In the dark, spontaneous impulses arise at frequencies between 5 and 15 per second with fairly constant intervals if afferent roots are cut. Since this discharge rhythm is reset by antidromic or orthodromic impulses, it is concluded that an endogenous pacemaker potential is involved. It is postulated that the increase in discharge frequency caused by illumination increases the probability that an inhibitory signal of peripheral origin will be detected.  相似文献   

3.
The F(420)H(2) dehydrogenase is part of the energy conserving electron transport system of the methanogenic archaeon Methanosarcina mazei G?1. Here it is shown that cofactor F(420)H(2)-dependent reduction of 2-hydroxyphenazine as catalyzed by the membrane-bound enzyme is coupled to proton translocation across the cytoplasmic membrane, exhibiting a stoichiometry of 0.9 H(+) translocated per two electrons transferred. The electrochemical proton gradient thereby generated was shown to drive ATP synthesis from ADP + P(i). The gene cluster encoding the F(420)H(2) dehydrogenase of M. mazei G?1 comprises 12 genes that are referred to as fpoA, B, C, D, H, I, J, K, L, M, N, and O. Analysis of the deduced amino acid sequences revealed that the enzyme is closely related to proton translocating NADH dehydrogenases of respiratory chains from bacteria (NDH-1) and eukarya (complex I). Like the NADH-dependent enzymes, the F(420)H(2) dehydrogenase is composed of three subcomplexes. The gene products FpoA, H, J, K, L, M, and N are highly hydrophobic and are homologous to subunits that form the membrane integral module of NDH-1. FpoB, C, D, and I have their counterparts in the amphipathic membrane-associated module of NDH-1. Homologues to the hydrophilic NADH-oxidizing input module are not present in M. mazei G?1. Instead, the gene product FpoF may be responsible for F(420)H(2) oxidation and may function as the electron input part. Thus, the F(420)H(2) dehydrogenase from M. mazei G?1 resembles eukaryotic and bacterial proton translocating NADH dehydrogenases in many ways. The enzyme from the methanogenic archaeon functions as a NDH-1/complex I homologue and is equipped with an alternative electron input unit for the oxidation of reduced cofactor F(420) and a modified output module adopted to the reduction of methanophenazine.  相似文献   

4.
Type I homodimeric reaction centers, particularly the class present in heliobacteria, are not well understood. Even though the primary amino acid sequence of PshA in Heliobacillus mobilis has been shown to contain an F(X) binding site, a functional Fe-S cluster has not been detected by EPR spectroscopy. Recently, we reported that PshB, which contains F(A)- and F(B)-like Fe-S clusters, could be removed from the Heliobacterium modesticaldum reaction center (HbRC), resulting in 15 ms lifetime charge recombination between P798(+) and an unidentified electron acceptor [Heinnickel, M., Shen, G., Agalarov, R., and Golbeck, J. H. (2005) Biochemistry 44, 9950-9960]. We report here that when a HbRC core is incubated with sodium dithionite in the presence of light, the 15 ms charge recombination is replaced with a kinetic transient in the sub-microsecond time domain, consistent with the reduction of this electron acceptor. Concomitantly, a broad and intense EPR signal arises around g = 5 along with a minor set of resonances around g = 2 similar to the spectrum of the [4Fe-4S](+) cluster in the Fe protein of Azotobacter vinelandii nitrogenase, which exists in two conformations having S = (3)/(2) and S = (1)/(2) ground spin states. The M?ssbauer spectrum in the as-isolated HbRC core shows that all of the Fe is present in the form of a [4Fe-4S](2+) cluster. After reduction with sodium dithionite in the presence of light, approximately 65% of the Fe appears in the form of a [4Fe-4S](+) cluster; the remainder is in the [4Fe-4S](2+) state. Analysis of the non-heme iron content of HbRC cores indicates an antenna size of 21.6 +/- 1.1 BChl g molecules/P798. The evidence indicates that the HbRC contains a [4Fe-4S] cluster identified as F(X) that is coordinated between the PshA homodimer; in contrast to F(X) in other type I reaction centers, this [4Fe-4S] cluster exhibits an S = (3)/(2) ground spin state.  相似文献   

5.
Ronin Y  Korol A  Shtemberg M  Nevo E  Soller M 《Genetics》2003,164(4):1657-1666
Selective recombinant genotyping (SRG) is a three-stage procedure for high-resolution mapping of a QTL that has previously been mapped to a known confidence interval (target C.I.). In stage 1, a large mapping population is accessed and phenotyped, and a proportion, P, of the high and low tails is selected. In stage 2, the selected individuals are genotyped for a pair of markers flanking the target C.I., and a group of R individuals carrying recombinant chromosomes in the target interval are identified. In stage 3, the recombinant individuals are genotyped for a set of M markers spanning the target C.I. Extensive simulations showed that: (1) Standard error of QTL location (SEQTL) decreased when QTL effect (d) or population size (N) increased, but was constant for given "power factor" (PF = d(2)N); (2) increasing the proportion selected in the tails beyond 0.25 had only a negligible effect on SEQTL; and (3) marker spacing in the target interval had a remarkably powerful effect on SEQTL, yielding a reduction of up to 10-fold in going from highest (24 cM) to lowest (0.29 cM) spacing at given population size and QTL effect. At the densest marker spacing, SEQTL of 1.0-0.06 cM were obtained at PF = 500-16,000. Two new genotyping procedures, the half-section algorithm and the golden section/half-section algorithm, allow the equivalent of complete haplotyping of the target C.I. in the recombinant individuals to be achieved with many fewer data points than would be required by complete individual genotyping.  相似文献   

6.
B C Hill  K Cook  N C Robinson 《Biochemistry》1988,27(13):4741-4747
The response of cytochrome oxidase to the denaturant guanidine hydrochloride (Gdn.HCl) occurs in two stages. The first stage is a sharp transition centered at 1 M Gdn.HCl, whereas the second stage occurs from 3 to 7 M Gdn.HCl. In the first phase, changes occur in several spectroscopic properties: (1) the tryptophan fluorescence increases from 37% of that of N-acetyltryptophanamide to 85%; (2) the emission maximum shifts from 328 to 333 nm; (3) the circular dichroism (CD) signal at 222 nm diminishes by 30%; and (4) the Soret CD signal at 426 nm is completely abolished. These spectroscopic changes are accompanied by complete loss of the oxidase's steady-state electron-transfer activity. Of the 13 available sulfhydryl residues, 2 are reactive in the isolated enzyme, but this number increases to almost 10 in the first stage of denaturation. Subunits III, VIb, VIc, and VII dissociate from the protein complex at 0.5 M Gdn.HCl, but only subunit VII can be recovered after gel filtration chromatography [nomenclature according to Buse et al. (1985)]. In 2.5 M Gdn.HCl, the heme groups are found with a complex consisting predominantly of subunits I, II, and IV. In the second phase of denaturation, there is further disruption in the structure of the oxidase as indicated by continued decline in the ultraviolet CD signal and shift to longer wavelength of the tryptophan emission spectrum. However, the fluorescence quantum yield and number of reactive sulfhydryl groups decrease as the denaturant level is raised. Gel filtration chromatography reveals that protein and heme form a high molecular weight aggregate at 5 M Gdn.HCl.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The first discernible intermediate when fully reduced cytochrome c oxidase reacts with O2 is a dioxygen adduct (compound A) of the binuclear heme iron-copper center. The subsequent decay of compound A is associated with transfer of an electron from the low-spin heme a to this center. This reaction eventually produces the ferryl state (F) of this center, but whether an intermediate state may be observed between A and F has been the subject of some controversy. Here we show, using both optical and EPR spectroscopy, that such an intermediate (P(R)) indeed exists and that it exhibits spectroscopic properties quite distinct from F. The optical spectrum of P(R) is similar or identical to the spectrum of the P(M) intermediate that is formed after compound A when two-electron-reduced enzyme reacts with O2. An unusual EPR spectrum with features of a CuB(II) ion that interacts magnetically with a nearby paramagnet [cf. Hansson, O., Karlsson, B., Aasa, R., V?nng?rd, T., and Malmstr?m, B.G (1982) EMBO J. 1, 1295-1297; Blair, D. F., Witt, S. N., and Chan, S. I. (1985) J. Am. Chem. Soc. 107, 7389-7399] can be uniquely assigned to the P(R) intermediate, not being found in either the P(M) or F intermediate. The binuclear center in the P(R) state may be assigned as having an Fe(a3)(IV)=O CuB(II) structure, as in both the P(M) and F states. The spectroscopic differences between these three intermediates are evaluated. The P(R) state has a key role as an initiator of proton translocation by the enzyme, and the thermodynamic and electrostatic bases for this are discussed.  相似文献   

8.
Human-made information relay systems invariably incorporate central regulatory components, which are mirrored in biological systems by dense feedback and feedforward loops. This type of system control is exemplified by positive and negative feedback loops (for example, receptor endocytosis and dephosphorylation) that enable growth factors and receptor Tyr kinases of the epidermal growth factor receptor (EGFR)/ERBB family to regulate cellular function. Recent studies show that the collection of feedback regulatory loops can perform computational tasks - such as decoding ligand specificity, transforming graded input signals into a digital output and regulating response kinetics. Aberrant signal processing and feedback regulation can lead to defects associated with pathologies such as cancer.  相似文献   

9.
Methyl-coenzyme-M reductase (MCR) catalyzes the formation of methane from methyl-coenzyme M [2-(methylthio)ethanesulfonate] and 7-mercaptoheptanoylthreonine phosphate in methanogenic archaea. The enzyme contains the nickel porphinoid coenzyme F430 as a prosthetic group. In the active, reduced (red) state, the enzyme displays two characteristic EPR signals, MCR-red1 and MCR-red2, probably derived from Ni(I). In the presence of the substrate methyl-coenzyme M, the rhombic MCR-red2 signal is quantitatively converted to the axial MCR-red1 signal. We report here on the effects of inhibitory substrate analogues on the EPR spectrum of the enzyme. 3-Bromopropanesulfonate (BrPrSO3), which is the most potent inhibitor of MCR known to date (apparent Ki = 0.05 microM), converted the EPR signals MCR-red1 and MCR-red2 to a novel axial Ni(I) signal designated MCR-BrPrSO3. 3-Fluoropropanesulfonate (apparent Ki < 50 microM) and 3-iodopropanesulfonate (apparent Ki < 1 microM) induced a signal identical to that induced by BrPrSO3 without affecting the line shape, despite the fact that the fluorine, bromine and iodine isotopes employed have nuclear spins of I = 1/2, I = 3/2 and I = 5/2, respectively. This finding suggests that MCR-BrPrSO3 is not the result of a close halogen-Ni(I) interaction. 7-Bromoheptanoylthreonine phosphate (BrHpoThrP) (apparent Ki = 5 microM), which is an inhibitory substrate analogue of 7-mercaptoheptanoylthreonine phosphate, converted the signals MCR-red1 and MCR-red2 to a novel axial Ni(I) signal, MCR-BrHpoThrP, similar but not identical to MCR-BrPrSO3. The results indicate that inhibition of MCR by the halogenated substrate analogues investigated above is not via oxidation of Ni(I)F430. The different MCR EPR signals are assigned to different enzyme/substrate and enzyme/inhibitor complexes.  相似文献   

10.
Early diagnosis of agenesis of the mandibular second premolar (P2) enhances management of the dental arch in the growing child. The aim of this study was to explore the relationship in the development of the mandibular first molar (M1) and first premolar (P1) at early stages of P2 (second premolar). Specifically, we ask if the likelihood of P2 agenesis can be predicted from adjacent developing teeth. We selected archived dental panoramic radiographs with P2 at crown formation stages (N = 212) and calculated the likelihood of P2 at initial mineralisation stage ‘Ci’ given the tooth stage of adjacent teeth. Our results show that the probability of observing mandibular P2 at initial mineralisation stage ‘Ci’ decreased as both the adjacent P1 and M1 matured. The modal stage at P2 ‘Ci’ was P1 ‘Coc’ (cusp outline complete) and M1 ‘Crc’ (crown complete). Initial mineralisation of P2 was observed up to P1 ‘Crc’ and M1 stage ‘R½’ (root half). The chance of observing P2 at least ‘Coc’ (coalescence of cusps) was considerably greater prior to these threshold stages compared to later stages of P1 and M1. These findings suggest that P2 is highly unlikely to develop if P1 is beyond ‘Crc’ and M1 is beyond ‘R½’.  相似文献   

11.
T I Karu 《Radiobiologiia》1986,26(6):793-797
It was shown that in HeLa cells, at the stationary growth phase, the permeability of the outer membrane for thymidine increased 1 h after irradiation with two ultrashort impulses (Nd3+: YAG laser, lambda = 266, 532 or 1064 nm, the impulse duration of 3 X 10(-11) s, I = 2 or 20 MW/cm2). The effect was dependent on the time interval between the impulses and virtually independent of the radiation wave-length. The maximum increase in the membrane permeability (by approximately 3 times) was noted after irradiation at 4-6 s intervals between the impulses.  相似文献   

12.
The rubA gene was insertionally inactivated in Synechococcus sp. PCC 7002, and the properties of photosystem I complexes were characterized spectroscopically. X-band EPR spectroscopy at low temperature shows that the three terminal iron-sulfur clusters, F(X), F(A), and F(B), are missing in whole cells, thylakoids, and photosystem (PS) I complexes of the rubA mutant. The flash-induced decay kinetics of both P700(+) in the visible and A(1)- in the near-UV show that charge recombination occurs between P700(+) and A(1)- in both thylakoids and PS I complexes. The spin-polarized EPR signal at room temperature from PS I complexes also indicates that forward electron transfer does not occur beyond A(1). In agreement, the spin-polarized X-band EPR spectrum of P700(+) A(1)- at low temperature shows that an electron cycle between A(1)- and P700(+) occurs in a much larger fraction of PS I complexes than in the wild-type, wherein a relatively large fraction of the electrons promoted are irreversibly transferred to [F(A)/F(B)]. The electron spin polarization pattern shows that the orientation of phylloquinone in the PS I complexes is identical to that of the wild type, and out-of-phase, spin-echo modulation spectroscopy shows the same P700(+) to A(1)- center-to-center distance in photosystem I complexes of wild type and the rubA mutant. In contrast to the loss of F(X), F(B), and F(A), the Rieske iron-sulfur protein and the non-heme iron in photosystem II are intact. It is proposed that rubredoxin is specifically required for the assembly of the F(X) iron-sulfur cluster but that F(X) is not required for the biosynthesis of trimeric P700-A(1) cores. Since the PsaC protein requires the presence of F(X) for binding, the absence of F(A) and F(B) may be an indirect result of the absence of F(X).  相似文献   

13.
Prepro-thyrotropin-releasing hormone (TRH) contains five TRH progenitor sequences and at least six other potential peptides (Lechan, R. M., Wu, P., Jackson, I. M. D., Wolf, H., Cooperman, S., Mandel, G., and Goodman, R. H. (1986a) Science 231, 159-161). Previous studies using radioimmunoassays developed against discrete regions of prepro-TRH have demonstrated that several of the potential peptides are present in rat brain and pancreas (Wu, P., Lechan, R. M., and Jackson, I. M. D. (1987) Endocrinology 121, 108-115; Wu, P. and Jackson, I. M. D. (1988a) Brain Res. 456, 22-28; Wu, P., and Jackson, I. M. D. (1988b) Regul. Pept. 22, 347-360). However, the low level of peptides present in intact tissues has made isolation of the peptides difficult. CA77 cells, a medullary thyroid carcinoma cell line, also express prepro-TRH and display processing similar to that found in tissues. However, peptide content in this tumor cell line is enhanced only 3-fold compared with normal tissues (Sevarino, K. A., Wu, P., Jackson, I. M. D., Roos, B. A., Mandel, G., and Goodman, R. H. (1988) J. Biol. Chem. 263, 620-623). To achieve higher levels of expression for facilitating peptide sequencing studies and to see if alternate processing of prepro-TRH could be detected in different cell types, we transfected into 3T3, GH4, AtT20, and RIN 5F cells a cDNA vector under control of the cytomegalovirus immediate-early promoter. 3T3 and GH4 cells failed to process prepro-TRH beyond cleavage of the signal sequence. Both AtT20 and RIN 5F cells efficiently cleaved the precursor at dibasic sites to generate mature TRH and the non-TRH peptides previously identified in vivo. Peptide content was up to 30 times greater than in hypothalamic extracts and 10 times greater than in CA77 cells. Secretion experiments with transfected AtT20 cells demonstrated that both mature TRH and the non-TRH peptides were secreted via a regulated secretory pathway similar to that utilized by endogenously synthesized peptides. We isolated several of the non-TRH peptides synthesized by transfected AtT20 cells and characterized these peptides by sequential Edman degradation. These studies identified the signal sequence cleavage site and determined that the non-TRH peptides are generated by cleavage at the dibasic sites flanking the five TRH progenitor sequences. Further, we determined that processing occurs at the Arg51-Arg52 site located in the amino-terminal portion of the precursor, the only dibasic site not flanking a TRH progenitor sequence.  相似文献   

14.
In order to clarify the structure and development of rabbit pepsinogens, purification and molecular cloning of these proteins were performed at various developmental stages. Several pepsinogens were isolated, and they were classified as pepsinogens F and M, and into pepsinogen groups I, II, and III. The relative levels and specific activities of the various pepsinogens changed significantly during development. Pepsinogens F and M were present only at the early postnatal stage, and their level was higher than those of other pepsinogens at this stage. Pepsinogens in groups I, II, and III were the predominant zymogens at the late postnatal stage. cDNA clones encoding all of these pepsinogens were obtained, with the exception of pepsinogens I and M, and the nucleotide sequences were determined. Each cDNA contained a leader region (signal peptide), a pro-region (activation segment), and a pepsin region, of 15, 44, and 328 residues, respectively, with the exception of the cDNA for pepsinogen F in which the pro- and pepsin regions were composed of 43 and 330 residues, respectively. Pepsinogens in groups II and III exhibited a high degree of similarity with one another, whereas many substitutions were found in pepsinogen F. A unique substitution in the activation segment of pepsinogen F, namely, Gly----Asp at position 21, was found, which made the structural features of this segment more specific. A phylogenic tree was constructed from the differences in nucleotide sequences and showed clearly that each pepsinogen in groups II and III could be classified as pepsinogen A, a major pepsinogen in mammals. Pepsinogen F diverged significantly from these groups and may be a new type of pepsinogen. Northern analysis revealed that the expression of the gene for pepsinogen F was restricted to the early postnatal stage, and the expression of genes for pepsinogens in groups II and III was detected predominantly at later stages, a result that shows the switching of gene expression from fetal pepsinogen to adult pepsinogens during development.  相似文献   

15.
A Monte Carlo analysis has been made of the phenomenon of facilitation, whereby a conditioning impulse leaves nerve terminals in a state of heightened release of quanta by a subsequent test impulse, this state persisting for periods of hundreds of milliseconds. It is shown that a quantitative account of facilitation at the amphibian neuromuscular junction can be given if the exocytosis is triggered by the combined action of a low-affinity calcium-binding molecule at the site of exocytosis and a high-affinity calcium-binding molecule some distance away. The kinetic properties and spatial distribution of these molecules at the amphibian neuromuscular junction are arrived at by considering the appropriate values that the relevant parameters must take to successfully account for the experimentally observed amplitude and time course of decline of F1 and F2 facilitation after a conditioning impulse, as well as the growth of facilitation during short trains of impulses. This model of facilitation correctly predicts the effects on facilitation of exogenous buffers such as BAPTA during short trains of impulses. In addition, it accounts for the relative invariance of the kinetics of quantal release due to test-conditioning sequences of impulses as well as due to change in the extent of calcium influx during an impulse.  相似文献   

16.
Mutations in the connexin26 (GJB2) gene account for about half of inherited non-syndromic deafness cases in Western countries. The connexin26 protein is a subunit of gap junctions that form a network of intercellular communication among supporting cells and fibrocytes in the mammalian inner ear. Here we describe functional implications of mutations in the coding region of connexin26 genes (M1V, M34T, L90P, R127H, F161S, P173R, and R184P), identified in patients and stably transfected in human HeLa cells. While all mutated connexin26 cDNAs were transcribed, only M34T, L90P, R127H, F161S, and R184P were translated in HeLa cells. Analysis of indirect immunofluorescence showed membranous localization, strong for M34T, L90P, R127H, and very weak for F161S, but no signal corresponding to M1V, P173R and R184P. Tracer coupling experiments revealed diffusion of microinjected neurobiotin into neighbouring cells in the case of M34T and R127H, whereas M1V, L90P, F161S, P173R and R184P mutants did not show intercellular coupling. The results of oligomerisation studies suggested a partly disturbed assembly of hemichannels in M34T and L90P mutants but complete absence of hemichannel formation in the R184P mutant. The R127H mutation did not affect channel formation and is likely to represent a polymorphism. Our results show that mutations in the connexin26 gene can affect gap junctional intercellular communication at the level of protein translation, trafficking or assembly of hemichannels.  相似文献   

17.
The effects of DCMU (3-(3',4'-dichlorophenyl)-1,1-dimethylurea) on the fluorescence induction transient (OJIP) in higher plants were re-investigated. We found that the initial (F(0)) and maximum (F(M)) fluorescence levels of DCMU-treated leaves do not change relative to controls when the treatment is done in complete darkness and DCMU is allowed to diffuse slowly into the leaves either by submersion or by application via the stem. Simultaneous 820 nm transmission measurements (a measure of electron flow through Photosystem I) showed that in the DCMU-treated samples, the plastoquinone pool remained oxidized during the light pulses whereas in uninhibited leaves, the F(M) level coincided with a fully reduced electron transport chain. The identical F(M) values with and without DCMU indicate that in intact leaves, the F(M) value is independent of the redox state of the plastoquinone pool. We also show that (i) the generally observed F(0) increase is probably due to the presence of (even very weak) light during the DCMU treatment, (ii) vacuum infiltration of leaf discs leads to a drastic decrease of the fluorescence yield, and in DCMU-treated samples, the F(M) decreases to the I-level of their control (leaves vacuum infiltrated with 1% ethanol), (iii) and in thylakoid membranes, the addition of DCMU lowers the F(M) relative to that of a control sample.  相似文献   

18.
Catalase-peroxidases (KatGs) are heme peroxidases with a catalatic activity comparable to monofunctional catalases. They contain an unusual covalent distal side adduct with the side chains of Trp(122), Tyr(249), and Met(275) (Synechocysis KatG numbering). The known crystal structures suggest that Tyr(249) and Met(275) could be within hydrogen-bonding distance to Arg(439). To investigate the role of this peculiar adduct, the variants Y249F, M275I, R439A, and R439N were investigated by electronic absorption, steady-state and transient-state kinetic techniques and EPR spectroscopy combined with deuterium labeling. Exchange of these conserved residues exhibited dramatic consequences on the bifunctional activity of this peroxidase. The turnover numbers of catalase activity of M275I, Y249F, R439A, and R439N are 0.6, 0.17, 4.9, and 3.14% of wild-type activity, respectively. By contrast, the peroxidase activity was unaffected or even enhanced, in particular for the M275I variant. As shown by mass spectrometry and EPR spectra, the KatG typical adduct is intact in both Arg(439) variants, as is the case of the wild-type enzyme, whereas in the M275I variant the covalent link exists only between Tyr(249) and Trp(122). In the Y249F variant, the link is absent. EPR studies showed that the radical species formed upon reaction of the Y249F and R439A/N variants with peroxoacetic acid are the oxoferryl-porphyrin radical, the tryptophanyl and the tyrosyl radicals, as in the wild-type enzyme. The dramatic loss in catalase activity of the Y249F variant allowed the comparison of the radical species formed with hydrogen peroxide and peroxoacetic acid. The EPR data strongly suggest that the sequence of intermediates formed in the absence of a one electron donor substrate, is por(.-)(+) --> Trp(.-) (or Trp(.-)(+)) --> Tyr(.-). The M275I variant did not form the Trp(.-) species because of the dramatic changes on the heme distal side, most probably induced by the repositioning of the remaining Trp(122)-Tyr(249) adduct. The results are discussed with respect to the bifunctional activity of catalase-peroxidases.  相似文献   

19.
TL-3 is a protease inhibitor developed using the feline immunodeficiency virus protease as a model. It has been shown to efficiently inhibit replication of human, simian, and feline immunodeficiency viruses and therefore has broad-based activity. We now demonstrate that TL-3 efficiently inhibits the replication of 6 of 12 isolates with confirmed resistance mutations to known protease inhibitors. To dissect the spectrum of molecular changes in protease and viral properties associated with resistance to TL-3, a panel of chronological in vitro escape variants was generated. We have virologically and biochemically characterized mutants with one (V82A), three (M46I/F53L/V82A), or six (L24I/M46I/F53L/L63P/V77I/V82A) changes in the protease and structurally modeled the protease mutant containing six changes. Virus containing six changes was found to be 17-fold more resistant to TL-3 in cell culture than was wild-type virus but maintained similar in vitro replication kinetics compared to the wild-type virus. Analyses of enzyme activity of protease variants with one, three, and six changes indicated that these enzymes, compared to wild-type protease, retained 40, 47, and 61% activity, respectively. These results suggest that deficient protease enzymatic activity is sufficient for function, and the observed protease restoration might imply a selective advantage, at least in vitro, for increased protease activity.  相似文献   

20.
Two neuronal models are analyzed in which subthreshold inputs are integrated either without loss (perfect integrator) or with a decay which follows an exponential time course (leaky integrator). Linear frequency response functions for these models are compared using sinusoids, Poisson-distributed impulses, or gaussian white noise as inputs. The responses of both models show the nonlinear behavior characteristic of a rectifier for sinusoidal inputs of sufficient amplitude. The leaky integrator shows another nonlinearity in which responses become phase locked to cyclic stimuli. Addition of white noise reduces the distortions due to phase locking. Both models also show selective attenuation of high-frequency components with white noise inputs. Input, output, and cross-spectra are computed using inputs having a broad frequency spectrum. Measures of the coherence and information transmission between the input and output of the models are also derived. Steady inputs, which produce a constant “carrier” rate, and intrinsic sources, which produce variability in the discharge of neurons, may either increase or decrease coherence; however, information transmission using inputs with a broad spectrum is generally increased by steady inputs and reduced by intrinsic variability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号