首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Chronic myeloid leukemia (CML) occurs due to t(9,22) (q34;q11) and molecularly BCR/ABL gene fusion. About 15–18% Philadelphia positive CML patients have gene deletions around the translocation breakpoints on 9q34.1. The microRNAs (miRNAs), namely miR-219-2 and miR-199b, centromeric to the ABL1 gene are frequently lost in CML patients. We have designed a study to determine miR-219-2 and miR-199b expression levels which would help to understand the prognosis of imatinib therapy. A total of 150 CML patients were analyzed to identify 9q deletion. Fluorescent in-situ hybridization (FISH) was performed using BCR/ABL dual color, dual fusion probe to study the signal pattern and BAC probes for miR-199b and miR-219-2 (RP11-339B21 and RP11-395P17) to study the miRNA deletions. The expression level of miRNA was analyzed by real-time polymerase chain reaction (RT-PCR). FISH analysis revealed 9q34.1 deletion in 34 (23%) CML patients. The deletions were not detected using BAC probes for miRNAs in 9q deleted patients. The expression analysis showed down-regulation of miR-199b and miR-219-2 in the 9q deleted patients (34 CML) as compared to a pool of patients without deletion. However, miR-199b (9q34.11) was significantly (p = 0.001) down-regulated compared to miR-219-2. The follow-up study showed that the miR-199b was found to be strongly associated with imatinib resistance, as 44.11% patients showed resistance to imatinib therapy. Hence, the deletion in 9q34.1 region (ABL) plays an important role in disease pathogenesis. Eventually, miRNAs can provide new therapeutic strategies and can be used as a prognostic indicator.  相似文献   

3.

Background

The tyrosine kinase receptor insulin-like growth factor 1 receptor (IGF-IR) contributes to the initiation and progression of many types of malignancies. We previously showed that IGF-2, which binds IGF-IR, is an extrinsic factor that supports the ex vivo expansion of hematopoietic stem cells (HSCs). We also demonstrated that IGF-IR is not required for HSC activity in vivo.

Methods and results

Here we investigated the role of IGF-IR in chronic myeloid leukemia (CML) using the retroviral BCR/ABL transplantation mouse model. Existing antibodies against IGF-IR are not suitable for flow cytometry; therefore, we generated a fusion of the human IgG Fc fragment with mutant IGF-2 that can bind to IGF-IR. We used this fusion protein to evaluate mouse primary hematopoietic populations. Through transplantation assays with IGF-IR+ and IGF-IR cells, we demonstrated that IGF-IR is expressed on all mouse HSCs. The expression of IGF-IR is much higher on CML cells than on acute lymphoblastic leukemia (ALL) cells. The depletion of IGF-IR expression in BCR/ABL+ cells led to the development of ALL (mostly T cell ALL) but not CML. Lack of IGF-IR resulted in decreased self-renewal of the BCR/ABL+ CML cells in the serial replating assay.

Conclusion

IGF-IR regulates the cell fate determination of BCR/ABL+ leukemia cells and supports the self-renewal of CML cells.  相似文献   

4.

Introduction

Breast cancer is the most common female cancer and the second most common cause of female cancer-related deaths in the United States. World-wide, more than one million women will be diagnosed with breast cancer annually. In 2007, more than 175,000 women were diagnosed with breast cancer in the United States. However, deaths due to breast cancer have decreased in the recent years in part because of improved screening techniques, surgical interventions, understanding of the pathogenesis of the disease, and utilization of traditional chemotherapies in a more efficacious manner. One of the more exciting areas of improvement in the treatment of breast cancer is the entrance of novel therapies now available to oncologists. In the field of cancer therapeutics, the area of targeted and biologic therapies has been progressing at a rapid rate, particularly in the treatment of breast cancer. Since the advent of imatinib for the successful treatment of chronic myelogenous leukemia in the 2001, clinicians have been searching for comparable therapies that could be as efficacious and as tolerable. In order for targeted therapies to be effective, the agent must be able to inhibit critical regulatory pathways which promote tumor cell growth and proliferation. The targets must be identifiable, quantifiable and capable of being interrupted. In the field of breast cancer, two advances in targeted therapy have led to great strides in the understanding and treatment of breast cancer, namely hormonal therapy for estrogen positive receptor breast cancer and antibodies directed towards the inhibition of human epidermal growth factor receptor (HER)2. These advances have revolutionized the understanding and the treatment strategies for breast cancer. Building upon these successes, a host of novel agents are currently being investigated and used in clinical trials that will hopefully prove to be as fruitful. This review will focus on novel therapies in the field of breast cancer with a focus on metastatic breast cancer (MBC) and updates from the recent annual ASCO meeting and contains a summary of the results.  相似文献   

5.
The c-abl proto-oncogene encodes a cytoplasmic tyrosine kinase which is homologous to the src gene product in its kinase domain and in the upstream kinase regulatory domains SH2 (src homology region 2) and SH3 (src homology region 3). The murine v-abl oncogene product has lost the SH3 domain as a consequence of N-terminal fusion of gag sequences. Deletion of the SH3 domain is sufficient to render the murine c-abl proto-oncogene product transforming when myristylated N-terminal membrane localization sequences are also present. In contrast, the human BCR/ABL oncogene of the Philadelphia chromosome translocation has an intact SH3 domain and its product is not myristylated at the N terminus. To analyze the contribution of BCR-encoded sequences to BCR/ABL-mediated transformation, the effects of a series of deletions and substitutions were assessed in fibroblast and hematopoietic-cell transformation assays. BCR first-exon sequences specifically potentiate transformation and tyrosine kinase activation when they are fused to the second exon of otherwise intact c-ABL. This suggests that BCR-encoded sequences specifically interfere with negative regulation of the ABL-encoded tyrosine kinase, which would represent a novel mechanism for the activation of nonreceptor tyrosine kinase-encoding proto-oncogenes.  相似文献   

6.
The hallmark of Philadelphia chromosome positive (Ph+) leukemia is the BCR/ABL kinase, which is successfully targeted by selective ATP competitors. However, inhibition of BCR/ABL alone is unable to eradicate Ph+ leukemia. The t(9;22) is a reciprocal translocation which encodes not only for the der22 (Philadelphia chromosome) related BCR/ABL, but also for der9 related ABL/BCR fusion proteins, which can be detected in 65% of patients with chronic myeloid leukemia (CML) and 100% of patients with Ph+ acute lymphatic leukemia (ALL). ABL/BCRs are oncogenes able to influence the lineage commitment of hematopoietic progenitors. Aim of this study was to further disclose the role of p96ABL/BCR for the pathogenesis of Ph+ ALL. The co-expression of p96ABL/BCR enhanced the kinase activity and as a consequence, the transformation potential of p185BCR/ABL. Targeting p96ABL/BCR by RNAi inhibited growth of Ph+ ALL cell lines and Ph+ ALL patient-derived long-term cultures (PD-LTCs). Our in vitro and in vivo stem cell studies further revealed a functional hierarchy of p96ABL/BCR and p185BCR/ABL in hematopoietic stem cells. Co-expression of p96ABL/BCR abolished the capacity of p185BCR/ABL to induce a CML-like disease and led to the induction of ALL. Taken together our here presented data reveal an important role of p96ABL/BCR for the pathogenesis of Ph+ ALL.  相似文献   

7.
8.
Mouse c-Abl type IV and human BCR/ABL proteins have been expressed in insect cells using the baculovirus system. The proteins were expressed as full-length polypeptides as judged by electrophoresis in denaturing gels. They were identified by immunoprecipitation and immunoblotting with antibodies against ABL peptides and, for BCR/ABL, against a BCR peptide. In these immunoprecipitates both proteins gave autophosphorylation principally on tyrosine. Both proteins were active tyrosine kinases, phosphorylating a variety of tyrosine-containing substrates. In fresh extracts both proteins contained phosphotyrosine as shown by Western blots with antiphosphotyrosine antibodies. Partial purification could be achieved readily using ion exchange columns, and the BCR/ABL protein, p210BCR/ABL, could be further purified to near-homogeneity using an antiphosphotyrosine column. Both enzymes required a divalent metal ion for activity. At low concentrations of ATP (2 μM) and with angiotensin II as substrate both enzymes were activated by Mn2+ or by Mg2+. No major differences in catalytic properties were found between the two isolated enzymes in solution. The oncogenic properties of p210BCR/ABL may be due to its different subcellular location, or to the presence of an intracellular inhibitor of c-Abl that does not inhibit BCR/ABL, or to altered substrate-specificity such that it can phosphorylate a unique substrate which is not recognised by c-Abl.  相似文献   

9.
Many leukemic oncogenes form as a consequence of gene fusions or mutation that result in the activation or overexpression of a tyrosine kinase. To identify commonalities and differences in the action of two such kinases, breakpoint cluster region (BCR)/ABL and TEL/PDGFRbeta, two-dimensional gel electrophoresis was employed to characterize their effects on the proteome. While both oncogenes affected expression of specific proteins, few common effects were observed. A number of proteins whose expression is altered by BCR/ABL, including gelsolin and stathmin, are related to cytoskeletal function whereas no such changes were seen in TEL/PDGFRbeta-transfected cells. Treatment of cells with the kinase inhibitor STI571 for 4-h reversed changes in expression of some of these cytoskeletal proteins. Correspondingly, BCR/ABL-transfected cells were less responsive to chemotactic and chemokinetic stimuli than non-transfected cells and TEL/PDGFRbeta-transfected Ba/F3 cells. Decreased motile response was reversed by a 16-h treatment with STI571. A phosphoprotein-specific gel stain was used to identify TEL/PDGFRbeta and BCR/ABL-mediated changes in the phosphoproteome. These included changes on Crkl, Ras-GAP-binding protein 1, and for BCR/ABL, cytoskeletal proteins such as tubulin, and Nedd5. Decreased phosphorylation of Rho-GTPase dissociation inhibitor (Rho GDI) was also observed in BCR/ABL-transfected cells. This results in the activation of the Rho pathway, and treatment of cells with Y27632, an inhibitor of Rho kinase, inhibited DNA synthesis in BCR/ABL-transfected Ba/F3 cells but not TEL/PDGFRbeta-expressing cells. Expression of a dominant-negative RhoA inhibited both DNA synthesis and transwell migration, demonstrating the significance of this pathway in BCR/ABL-mediated transformation.  相似文献   

10.
Influence of BCR/ABL fusion proteins on the course of Ph leukemias   总被引:1,自引:0,他引:1  
The hallmark of chronic myeloid leukemia (CML) and a subset of acute lymphoblastic leukemia (ALL) is the presence of the Philadelphia chromosome as a result of the t(9;22) translocation. This gene rearrangement results in the production of a novel oncoprotein, BCR/ABL, a constitutively active tyrosine kinase. There is compelling evidence that the malignant transformation by BCR/ABL is critically dependent on its Abl tyrosine kinase activity. Also the bcr part of the hybrid gene takes part in realization of the malignant phenotype. We supposed that additional mutations accumulate in this region of the BCR/ABL oncogene during the development of the malignant blast crisis in CML patients. In ALL patients having p210 fusion protein the mutations were supposed to be preexisting. Sequencing of PCR product of the BCR/ABL gene (Dbl, PH region) showed that along with single-nucleotide substitutions other mutations, mostly deletions, had occurred. In an ALL patient a deletion of the 5th exon was detected. The size of the deletions varied from 36 to 220 amino acids. For one case of blast crisis of CML changes in the character of actin organization were observed. Taking into account the functional role of these domains in the cell an etiological role of such mutations on the disease phenotype and leukemia progression is plausible.  相似文献   

11.
Tumors expressing the ABL oncoproteins (BCR/ABL, TEL/ABL, v-ABL) can avoidapoptosis triggered by DNA damaging agents. The tumor suppressor protein p53 is animportant activator of apoptosis in normal cells; conversely its functional loss may causedrug resistance. The ABL oncoprotein - p53 paradigm represents the relationship between anoncogenic tyrosine kinase and a tumor suppressor gene. Here we show that BCR/ABLoncoproteins employ p53 to induce resistance to DNA damage in myeloid leukemia cells.Cells transformed by the ABL oncoproteins displayed accumulation of p53 upon DNAdamage. In contrast, only a modest increase of p53 expression followed by activation ofcaspase-3 were detected in normal cells expressing endogenous c-ABL. Phosphatidylinositol-3 kinase-like protein kinases (ATR and also ATM) -dependent phosphorylation of p53-Ser15residue was associated with the accumulation of p53, and stimulation of p21Waf-1 andGADD45, resulting in G2/M delay in BCR/ABL cells after genotoxic treatment. Inhibition ofp53 by siRNA or by the temperature-sensitive mutation reduced G2/M accumulation anddrug resistance of BCR/ABL cells. In conclusion, accumulation of the p53 proteincontributed to prolonged G2/M checkpoint activation and drug resistance in myeloid cellsexpressing the BCR/ABL oncoproteins.  相似文献   

12.
13.
Interferon regulatory factor 4 (IRF-4) is essential for B and T cell development and immune response regulation, and has both nuclear and cytoplasmic functions. IRF-4 was originally identified as a proto-oncogene resulting from a t(6;14) chromosomal translocation in multiple myeloma and its expression was shown to be essential for multiple myeloma cell survival. However, we have previously shown that IRF-4 functions as a tumor suppressor in the myeloid lineage and in early stages of B cell development. In this study, we found that IRF-4 suppresses BCR/ABL transformation of myeloid cells. To gain insight into the molecular pathways that mediate IRF-4 tumor suppressor function, we performed a structure-function analysis of IRF-4 as a suppressor of BCR/ABL transformation. We found that the DNA binding domain deletion mutant of IRF-4, which is localized only in the cytoplasm, is still able to inhibit BCR/ABL transformation of myeloid cells. IRF-4 also functions as a tumor suppressor in bone marrow cells deficient in MyD88, an IRF-4-interacting protein found in the cytoplasm. However, IRF-4 tumor suppressor activity is lost in IRF association domain (IAD) deletion mutants. These results demonstrate that IRF-4 suppresses BCR/ABL transformation by a novel cytoplasmic function involving its IAD domain.  相似文献   

14.
Chronic basophilic leukemia is a rare form in chronic myeloid leukemia patients. Only limited number of reports are available. Herein, we describe a patient who presented with fatigue, weight loss, leucocytosis, prominent basophilia, and mild eosinophilia. On biopsy, bone marrow was hypercellular with marked basophils. The immunophenotype showed abnormal expression of CD7, which is suggestive of basophilic maturation. Chromosomal analysis from GTG-banded metaphases revealed Ph positivity, and fluorescence in situ hybridization (FISH) with BCR/ABL dual color, dual fusion probe showed single fusion on the der(22) chromosome and ABL/BCR fusion was deleted on the der(9) chromosome. The deletion (ABL/BCR) on der(9) may be associated with basophilia which may be also indicative of the transformation of CML to acute myeloid leukemia.  相似文献   

15.
The Philadelphia (Ph) chromosome, a hallmark chromosomal anomaly observed in 95 percent of chronic myeloid leukemia (CML) cases, is known to involve the Abelson (ABL) proto-oncogene on chromosome 9 and the breakpoint cluster region (BCR) gene on chromosome 22, producing BCR/ABL mRNA encoding an abnormal tyrosine kinase protein. In the process of generating BCR-ABL fusion, the deletion of residual BCR or ABL occurs in 15-30 percent of CML patients. In addition, some rearrangements are complex, and do not yield the ABL/BCR fusion due to the involvement of a third chromosome in the rearrangement. The possible role of these deletions and complex rearrangements in disease outcome is an ongoing topic of research. We report our results of cytogenetic analysis with GTG banding and fluorescence in situ hybridization using dual color dual fusion probe (D-FISH) from Vysis Inc, USA in 169 (109 male and 60 female) CML patients registered at The Gujarat Cancer and Research Institute (GC and RI) from April 2004 to December 2005. GTG banding was carried out in 123 cases having analyzable metaphases. Of these 123 cases, D-FISH revealed atypical signal patterns in 57 patients (46%), and 12 cases revealed additional complex translocations indicative of disease progression. Out of 57 cases with atypical FISH patterns, 22 included metaphase FISH results, and the rest had only interphase FISH performed. In addition to the hallmark Philadelphia chromosome, other chromosomal aberrations in CML revealed heterogeneity of molecular events. Pooling of more data may lead to identification of new CML sub-groups and hence help in the analysis of clinical trials. Patients enrolled in our prospective study of prognostic significance will be followed up for disease free and overall survival in correlation with ABL-BCR deletion status.  相似文献   

16.
The BCR/ABL oncogene causes chronic myelogenous leukemia, a myeloproliferative disorder characterized by clonal expansion of hematopoietic progenitor cells and myeloid cells. It is shown here that transformation of the hematopoietic cell lines Ba/F3, 32Dcl3, and MO7e with BCR/ABL results in an increase in reactive oxygen species (ROS) compared with quiescent, untransformed cells. The increase in ROS was directly due to BCR/ABL because it was blocked by the ABL-specific tyrosine kinase inhibitor STI571. Oxidative stress through ROS is believed to have many biochemical effects, including the potential ability to inhibit protein-tyrosine phosphatases (PTPases). To understand the significance of increased production of ROS, a model system was established in which hydrogen peroxide (H(2)O(2)) was added to untransformed cells to mimic the increase in ROS induced constitutively by BCR/ABL. H(2)O(2) substantially reduced total cellular PTPase activity to a degree approximately equivalent to that of pervanadate, a well known PTPase inhibitor. Further, stimulation of untransformed cells with H(2)O(2) or pervanadate increased tyrosine phosphorylation of each of the most prominent known substrates of BCR/ABL, including c-ABL, c-CBL, SHC, and SHP-2. Treatment of the BCR/ABL-expressing cell line MO7/p210 with the reducing agents pyrrolidine dithiocarbamate or N-acetylcysteine reduced the accumulation of ROS and also decreased tyrosine phosphorylation of cellular proteins. Further, treatment of MO7e cells with H(2)O(2) or pervanadate increased the tyrosine kinase activity of c-ABL. Drugs that alter ROS metabolism or reactivate PTPases may antagonize BCR/ABL transformation.  相似文献   

17.
18.
The Philadelphia translocation t(9;22) resulting in the bcr/abl fusion gene is the pathogenic principle of almost 95% of human chronic myelogenous leukemia (CML). Imatinib mesylate (STI571) is a specific inhibitor of the BCR/ABL fusion tyrosine kinase that exhibits potent antileukemic effects in CML. BCR/ABL-positive K562 and -negative CCRF-CEM human leukemia cells were investigated. MTT survival assay and clonogenic test of the cell proliferation ability were used to estimate resistance against idarubicin. DNA damage after cell treatment with the drug at the concentrations from 0.001 to 3 microM with or without STI571 pre-treatment were examined by the alkaline comet assay. We found that the level of DNA damages was lower in K562 cells after STI571 pre-treatment. It is suggested that BCR/ABL activity may promote genomic instability, moreover K562 cells were found to be resistant to the drug treatment. Further, we provided evidence of apoptosis inhibition in BCR/ABL-positive cells using caspase-3 activity colorimetric assay and DAPI nuclear staining for chromatin condensation. We suggest that these processes associated with cell cycle arrest in G2/M checkpoint detected in K562 BCR/ABL-positive compared to CCRF-CEM cells without BCR/ABL expression might promote clone selection resistance to drug treatment.  相似文献   

19.
The BCR/ABL gene, formed by the Philadelphia chromosome translocation (Ph1) of human chronic myelogenous leukemia, encodes an altered ABL gene product, P210. P210 is strongly implicated in the malignant process of chronic myelogenous leukemia, but it precise role is unknown. Infection of long-term bone marrow cultures enriched for B-lymphoid cell types with a Moloney murine leukemia virus retroviral vector containing the BCR/ABL cDNA resulted in clonal outgrowths of immature B-lymphoid cells which expressed abundant P210 kinase activity. Surprisingly, infection of long-term myeloid lineage-enriched cultures also resulted in clonal outgrowths of immature B-lymphoid cells. The P210-expressing lymphoid cell lines resulting from either type of culture were resistant to the lethal effects of corticosteroids. These findings indicate that high levels of P210 expressed from a Moloney murine leukemia virus long terminal repeat preferentially stimulate the growth of immature B-lineage cells, and this effect is apparent even in myeloid lineage-enriched cultures, in which few if any lymphoid cells can be detected prior to infection.  相似文献   

20.
The resistance to the tyrosine kinase inhibitor imatinib in BCR/ABL-positive leukemias is mostly associated with mutations in the kinase domain of BCR/ABL, which include the most prevalent mutations E255K and T315I. Intriguingly, these mutations have also been identified in some patients before imatinib treatment. Here we examined the effects of these mutations on the kinase activity of a BCR/ABL kinase domain construct that also contained the SH3 and SH2 domains. When expressed in COS7 cells, the BCR/ABL construct with either E255K or T315I exhibited not only the resistance to imatinib but also the increase in activity to induce autophosphorylation as well as tyrosine phosphorylation of various cellular proteins, which included STAT5. The mutant kinases also showed increased activities in in vitro kinase assays. These results raise a possibility that the major imatinib resistance mutations E255K and T315I may confer the growth advantage on leukemic cells to expand in the absence of selective pressure from imatinib treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号