首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It has been hypothesized on the basis of studies on BC3H-1 myocytes that diacylglycerol generation with activation of protein kinase C (PKC) is involved in the stimulation of glucose transport in muscle by insulin (Standaert, M. L., Farese, R. V., Cooper, R. D., and Pollet, R. J. (1988) J. Biol. Chem. 263, 8696-8705). In the present study, we used the rat epitrochlearis muscle to evaluate the possibility that PKC activity mediates the stimulation of glucose transport by insulin in mammalian skeletal muscle. Phospholipase C from Clostridium perfringens (PLC-Cp), which generates diacylglycerol from membrane phospholipids, and 4 beta-phorbol 12 beta-myristate 13 alpha-acetate (PMA) induced increases in glucose transport activity (assessed using 3-O-methylglucose transport) that were approximately 80 and approximately 20% as great, respectively, as that induced by a maximal insulin stimulus. PLC-Cp and PMA both caused a approximately 2-fold increase in membrane-associated PKC activity. In contrast, insulin did not affect PKC activity. These findings argue against a role of diacylglycerol-mediated PKC activation in the stimulation of skeletal muscle glucose transport by insulin. They also show that the BC3H-1 myocyte is not a good model for studying regulation of glucose transport in skeletal muscle. Neither the submaximal nor maximal effects of PLC-Cp and insulin on glucose transport were additive, suggesting that PLC-Cp interferes with insulin action. The maximal effects of PLC-Cp and hypoxia or muscle contractions were also not additive. However, the submaximal effects of hypoxia and PLC-Cp were completely additive. These findings raise the possibility that PLC-Cp stimulates glucose transport by the exercise/hypoxia-activated, not the insulin-activated, pathway in skeletal muscle. Exposure to PLC-Cp activated glycogen phosphorylase and potentiated twitch tension in response to electrical stimulation, providing evidence that PLC-Cp increases cytoplasmic Ca2+ concentration. Dantrolene, an inhibitor of Ca2+ release from the sarcoplasmic reticulum, completely blocked both the activation of phosphorylase and the stimulation of glucose transport by PLC-Cp. These findings provide evidence that an increase in cytoplasmic Ca2+ concentration is involved in the activation of glucose transport in skeletal muscle by PLC-Cp.  相似文献   

2.
Exercise-induced increase in muscle insulin sensitivity.   总被引:9,自引:0,他引:9  
Exercise/muscle contraction activates glucose transport. The increase in muscle glucose transport induced by exercise is independent of insulin. As the acute effect of exercise on glucose transport wears off, it is replaced by an increase in insulin sensitivity. An increase in insulin sensitivity results in a shift in the insulin dose-response curve to the left, with a decrease in the concentration of insulin needed to induce 50% of the maximal response. This phenomenon, which plays a major role in rapid muscle glycogen accumulation after exercise, is not mediated by amplification of the insulin signal. Development of the increase in insulin sensitivity after contractions does not require protein synthesis or activation of p38 MAPK. It does require the presence of a serum protein during the period of contractile activity. The effect of exercise on muscle insulin sensitivity is mimicked by hypoxia and by treatment of muscles with 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside to activate AMP-activated protein kinase. The postexercise increase in sensitivity of muscle glucose transport to activation is not specific for insulin but also involves an increased susceptibility to activation by a submaximal contraction/hypoxia stimulus. The increase in insulin sensitivity is mediated by translocation of more GLUT4 glucose transporters to the cell surface in response to a submaximal insulin stimulus. Although the postexercise increase in muscle insulin sensitivity has been characterized in considerable detail, the basic mechanisms underlying this phenomenon remain a mystery.  相似文献   

3.
The biosynthesis and release of nitric oxide (NO) from skeletal muscle plays a crucial role in transport and utilization of glucose. There are, however, no reports concerning the effects of NO on the transport of glucose in skeletal muscles of chickens characterized by hyperglycemia and insulin resistance. The present study was undertaken to investigate whether a NO donor or a nitric oxide synthase (NOS) inhibitor influences basal or insulin-mediated glucose uptake in vivo in skeletal muscles of chickens. Single administration of NOC12, a NO donor at 1125 microg/kg body mass (BW) to 14 days old chicks caused an increase in plasma NO concentration, while it did not affect plasma glucose concentration. In contrast, a single injection of NOS inhibitor, NG-nitro-L-arginine methyl ester (L-NAME) at 300 mg/kg BW reduced plasma NO concentration, while it did not effect plasma glucose concentration. Chicks were also treated with or without NO modifier and/or insulin to estimate glucose transport activity, which was estimated by the 2-deoxy-D-glucose (2DG) uptake method. NOC12 treatment significantly increased basal glucose uptake, with no insulin stimulation, in extensor digitrorum longus (EDL) muscle (P<0.01), while it caused no significant changes in insulin-stimulated glucose uptake in the skeletal muscles assayed. Injection of L-NAME at 300 mg/kg BW resulted in a significant decrease in the basal glucose uptake in gastrocnemius muscles (P<0.01). No significant changes in the insulin-stimulated glucose uptake by L-NAME were observed in any skeletal muscles studied. The results suggest that NO plays a lesser role in the modulation of glucose transport in chicken skeletal muscle compared to mammals and may be involved in non-insulin mediated glucose transport.  相似文献   

4.
Insulin is thought to exert its effects on cellular function through the phosphorylation or dephosphorylation of specific regulatory substrates. We have analyzed the effects of okadaic acid, a potent inhibitor of type 1 and 2A protein phosphatases, on the ability of insulin to stimulate glucose transport in rat adipocytes. Insulin and okadaic acid caused a 20-25- and a 3-6-fold increase, respectively, in the rate of 2-deoxyglucose accumulation by adipose cells. When added to cells previously treated with okadaic acid, insulin failed to stimulate 2-deoxyglucose accumulation beyond the levels observed with okadaic acid alone. Treatment of cells with okadaic acid did not inhibit the effect of insulin to stimulate tyrosine autophosphorylation of its receptor. These results indicate that okadaic acid potently inhibits the effects of insulin to stimulate glucose uptake and/or utilization at a step after receptor activation. To clarify the mechanism of inhibition by okadaic acid, the intrinsic activity of the plasma membrane glucose transporters was analyzed by measuring the rate of uptake of 3-O-methylglucose by adipose cells, and the concentration of adipocyte/skeletal muscle isoform of the glucose transporter (GLUT-4) in plasma membranes isolated from these cells. Insulin caused a 15-20-fold stimulation of 3-O-methylglucose uptake and a 2-3-fold increase in the levels of GLUT-4 detected by immunoblotting of isolated plasma membranes; okadaic acid caused a 2-fold increase in 3-O-methylglucose uptake, and a 1.5-fold increase in plasma membrane GLUT-4. Pretreatment of cells with okadaic acid blocked the effect of insulin to stimulate 3-O-methylglucose uptake and to increase the plasma membrane concentration of GLUT-4 beyond the levels observed with okadaic acid alone. These results indicate that the effect of okadaic acid to inhibit the effect of insulin on glucose uptake is exerted at a step prior to the recruitment of glucose transporters to the cell surface, and suggest that a phosphatase activity may be critical for this process.  相似文献   

5.
Exercise induces an increase in glucose transport in muscle. As the acute increase in glucose transport reverses, it is replaced by an increase in insulin sensitivity. Interleukin-6 (IL-6) increases with exercise and has been reported to activate AMP-activated protein kinase (AMPK). Based on this information, we hypothesized that IL-6 would result in an increase in muscle insulin sensitivity. Rat epitrochlearis and soleus muscles were incubated with 120 ng/ml IL-6. Exposure to IL-6 induced a modest acute increase in glucose transport and was followed 3.5 h later by an increase in insulin sensitivity in epitrochlearis but not soleus muscles. IL-6 also brought about an increase in AMPK phosphorylation in epitrochlearis muscles. We conclude that exposure of fast-twitch muscle to 120 ng/ml IL-6 increases insulin sensitivity by activating AMPK. However, exposure of epitrochlearis muscles to 10 ng/ml IL-6, a concentration >100-fold higher than that attained in plasma during exercise, had no effect on glucose transport or insulin sensitivity. These findings provide evidence that the increases in glucose transport and insulin sensitivity induced by IL-6 are pharmacological rather than physiological effects. We interpret our results as evidence that the increase in IL-6 during exercise does not play a role in the exercise-induced increases in muscle glucose uptake and insulin sensitivity.  相似文献   

6.
The purpose of this study was to evaluate the report that bradykinin is the "muscle activity hypoglycemia factor" responsible for the activation of glucose transport that occurs in response to muscle contractile activity. Stimulation of rat epitrochlearis muscles to contract resulted in approximately a fourfold increase in the rate of intracellular accumulation of the nonmetabolizable glucose analog 3-O-methylglucose. Incubation of the muscles with high concentrations of aprotinin (Trasylol), a polypeptide inhibitor of kallikrein which blocks formation of kinins, did not inhibit the activation of sugar transport by contractile activity. Furthermore incubation of muscles with bradykinin did not have a stimulatory effect on the uptake of 3-methylglucose either at a physiological concentration or at high concentrations. These results provide no support for the claims that aprotinin prevents the activation of sugar transport in muscle by contractile activity or that bradykinin is the muscle activity hypoglycemia factor.  相似文献   

7.
Exercise increases permeability of muscle to glucose. Normally, the effects of exercise and a maximal insulin stimulus on glucose transport are additive. However, the combined effect on rat epitrochlearis muscle permeability to 3-O-methylglucose (3-MG) of a maximal insulin stimulus followed by in vitro contractile activity of 1.24 +/- 0.06 mumol.10 min-1.ml intracellular water-1 was no greater than that of either stimulus alone. We found that this absence of an additive effect was caused by prolonged exposure to an unphysiologically high insulin concentration (20,000 microU/ml for 60 min), which, in addition to stimulating glucose transport, appears to prevent further increases in permeability to glucose. When the treatments were reversed and muscles were first stimulated to contract and then incubated with 20,000 microU/ml insulin, 3-MG uptake (mumol.10 min-1.ml intracellular water-1) increased from a control value of 0.26 +/- 0.03 to 1.80 +/- 0.15, compared with 1.04 +/- 0.06 for contractile activity alone, 1.21 +/- 0.08 for insulin, and 1.88 +/- 0.11 for exercise (swimming) plus insulin. Swimming plus in vitro contractile activity did not have a greater effect than contractile activity alone. Our results provide evidence that 1) the effect of exercise on muscle permeability to glucose is mediated solely by a process associated with contractile activity, and 2) it is advisable to avoid the use of unphysiologically high insulin concentrations in studies designed to elucidate in vivo actions of insulin.  相似文献   

8.
Muscle contractions induce an increase in glucose transport. The acute effect of muscle contractions on glucose transport is independent of insulin and reverses rapidly after cessation of exercise. As the acute increase in glucose transport reverses, a marked increase in the sensitivity of muscle to insulin occurs. The mechanism for this phenomenon is unknown. We hypothesize that an increase in insulin sensitivity is a general phenomenon that occurs during reversal of an increase in cell surface GLUT4 induced by any stimulus, not just exercise. To test this hypothesis, epitrochlearis, rat soleus, and flexor digitorum brevis muscles were incubated for 30 min with a maximally effective insulin concentration (1.0 mU/ml). Muscles were allowed to recover for 3 h in the absence of insulin. Muscles were then exposed to 60 microU/ml insulin for 30 min followed by measurement of glucose transport. Preincubation with 1.0 mU/ml insulin resulted in an approximately 2-fold greater increase in glucose transport 3.5 h later in response to 60 microU/ml insulin than that which occurred in control muscles treated with 60 microU/ml insulin. Pretreatment of muscles with combined maximal insulin and exercise stimuli greatly amplified the increase in insulin sensitivity. The increases in glucose transport were paralleled by increases in cell surface GLUT4. We conclude that stimulation of glucose transport by any agent is followed by an increase in sensitivity of glucose transport to activation that is mediated by translocation of more GLUT4 to the cell surface.  相似文献   

9.
After a single bout of exercise, insulin action is increased in the muscles that were active during exercise. The increased insulin action has been shown to involve glucose transport, glycogen synthesis, and glycogen synthase (GS) activation as well as amino acid transport. A major mechanism involved in increased insulin stimulation of glucose uptake after exercise seems to be the exercise-associated decrease in muscle glycogen content. Muscle glycogen content also plays a pivotal role for the activity of GS and for the ability of insulin to increase GS activity. Insulin signaling in human skeletal muscle is activated by physiological insulin concentrations, but the increase in insulin action after exercise does not seem to be related to increased insulin signaling [insulin receptor tyrosine kinase activity, insulin receptor substrate-1 (IRS-1) tyrosine phosphorylation (RS1), IRS-1-associated phosphatidylinositol 3-kinase activity, Akt phosphorylation (Ser(473)), glycogen synthase kinase 3 (GSK3) phosphorylation (Ser(21)), and GSK3alpha activity], as measured in muscle lysates. Furthermore, insulin signaling is also largely unaffected by exercise itself. This, however, does not preclude that exercise influences insulin signaling through changes in the spatial arrangement of the signaling compounds or by affecting unidentified signaling intermediates. Finally, 5'-AMP-activated protein kinase has recently entered the stage as a promising player in explaining at least a part of the mechanism by which exercise enhances insulin action.  相似文献   

10.
Glucocorticoids inhibit glucose utilization by fat cells. The possibility that this effect results from altered glucose transport was investigated using an oil-centrifugation technique which allows a rapid (within 45 s) estimation of glucose or 3-O-methylglucose uptake by isolated fat cells. At high concentration (greater than 25 muM), dexamethasone inhibited glucose uptake within 1 min of its addition to fat cells. Efflux of 3-O-methylglucose was also impaired by 0.1 mM dexamethasone. However, diminished glucose uptake was not a specific effect of glucocorticoids; high concentrations (0.1 mM) of 17beta-estradiol, progesterone, and deoxycorticosterone produced a similar response in adipocytes. At a more physiologic steroid concentration (0.1 muM), glucocorticoids inhibited glucose uptake in a time-dependent manner (maximum effect in 1 to 2 hours). This effect was specific for glucocorticoids since, under these conditions, glucose uptake was not changed by the non-glucocorticoid steroids. Lineweaver-Burk analysis showed that 0.1 muM dexamethasone treatment produced a decrease in Vmax for glucose uptake but did not change the Ku. Hexokinase activity and ATP levels were not altered by this treatment, suggesting that processes involved in glucose phosphorylation were not affected. Dexamethasone treatment also caused a reduction in uptake of 3-O-methylglucose when assayed using a low sugar concentration (0.1 mM). At a high concentration (10 mM), uptake of the methyl sugar was only slightly less than normal in treated cells. Stimulation by insulin markedly enhanced uptake of glucose and 3-O-methylglucose by both treated and untreated cells. At a low hexose concentration (0.1 mM) and in the presence of insulin, sugar uptake by dexamethasone-treated cells was slightly less than control cells. Stimulation by insulin did however completely overcome the alteration in hexose uptake when larger concentrations of sugars (greater than 5 mM) were used. There was no detectable change in total protein synthesis during incubation of fat cells with dexamethasone. However, actinomycin C blocked the inhibitory effect of dexamethasone on glucose uptake. Cycloheximide, which caused a small inhibition in glucose uptake, prevented the full expression of the inhibitory effect of dexamethasone on glucose transport. These results indicate that dexamethasone alters the facilitated transport of glucose and, secondly, suggest that synthesis of RNA and protein is needed for glucocorticoid action.  相似文献   

11.
The interactions between a beta-adrenoceptor agonist (isoprenaline) and insulin on rates of hexose transport, glucose phosphorylation, glycogen synthesis and glycogenolysis were investigated in the incubated stripped soleus-muscle preparation of the rat. In the presence of 1 microM-isoprenaline, insulin was less effective in stimulating glucose phosphorylation and glycogen synthesis. The stimulation of glycogenolysis by isoprenaline was only slightly decreased even at high (10000 microunits/ml) concentrations of insulin. Insulin-stimulated phosphorylation of 2-deoxyglucose was decreased by isoprenaline. It is suggested that this decrease in the rate of glucose phosphorylation is caused by the observed elevated concentration of glucose 6-phosphate, which inhibits hexokinase activity. This conclusion is supported by the fact that isoprenaline had no effect on the stimulation of 3-O-methylglucose transport by insulin.  相似文献   

12.
Exercise training induces an increase in GLUT-4 in muscle. We previously found that feeding rats a high-carbohydrate diet after exercise, with muscle glycogen supercompensation, results in a decrease in insulin responsiveness so severe that it masks the effect of a training-induced twofold increase in GLUT-4 on insulin-stimulated muscle glucose transport. One purpose of this study was to determine whether insulin signaling is impaired. Maximally insulin-stimulated phosphatidylinositol (PI) 3-kinase activity was not significantly reduced, whereas protein kinase B (PKB) phosphorylation was approximately 50% lower (P < 0.01) in muscles of chow-fed, than in those of fasted, exercise-trained rats. Our second purpose was to determine whether contraction-stimulated glucose transport is also impaired. The stimulation of glucose transport and the increase in cell surface GLUT-4 induced by contractions were both decreased by approximately 65% in glycogen-supercompensated muscles of trained rats. The contraction-stimulated increase in AMP kinase activity, which has been implicated in the activation of glucose transport by contractions, was approximately 80% lower in the muscles of the fed compared with the fasted rats 18 h after exercise. These results show that both the insulin- and contraction-stimulated pathways for muscle glucose transport activation are impaired in glycogen-supercompensated muscles and provide insight regarding possible mechanisms.  相似文献   

13.
The characteristics of the process by which contraction enhances glucose transport in the frog sartorius were studied. Electrical stimulation increased the permeability of muscles to 3-O-methylglucose (3-O-MeGlc), a nonmetabolizable glucose analogue, increasing efflux as well as uptake. Enhanced efflux was due to an increase in Vmax of the efflux process. A lactacidosis had no effect on basal 3-O-MeGlc efflux, and replacement of media Na+ with Li+ did not affect stimulation-induced uptake. Also, basal and stimulated uptake was not affected by 1 microM 12-O-tetradecanoylphorbol-13-acetate (TPA), a protein kinase C activator. Lastly, N-carbobenzoxy-glycyl-L-phenylalaninamide, which inhibits insulin-enhanced, but not basal, glucose uptake in adipocytes, inhibited both basal and stimulated 3-O-MeGlc fluxes in the frog sartorius. From these findings, we conclude: (1) contraction and exercise enhance glucose transport in muscle by increasing the number of transporters in the plasma membrane, or their turnover, by an unknown process; and (2) basal glucose transport of muscle, unlike that of adipocytes, can not be distinguished from stimulated transport on the basis of its insensitivity to N-carbobenzoxyglycyl-L-phenylalaninamide.  相似文献   

14.
Transport of 3-O-methylglucose by rat thymocytes occurs by facilitated diffusion and follows a biphasic time course. The half-times of the two phases of uptake are 0.8 min and 20 to 30 min; the rapid phase contributes 10 to 20% of the total 3-O-methylglucose taken up at equilibrium. Cells incubated under anaerobic conditions for 1 hour undergo a 3- to 4-fold increase in the initial rate of 3-O-methylglucose uptake. The relative contribution of the rapid phase of uptake increases nearly 4-fold in anaerobically incubated cells, although the half-time of the rapid phase remains the same. Anaerobiosis also reduces the half-time of the slow phase of uptake by a factor of three. In the absence of exogenous glucose, anaerobiosis reduces cellular ATP by 97% after 1 hour at 37 degrees. However, full stimulation of transport activity does not occur in cells with such low levels of ATP. When anaerobically incubated cells are re-exposed to oxygen, ATP synthesis proceeds and transport activity increases by 100% within 5 to 10 min. Adding 1 mM 2,4-dinitrophenol at the time the anaerobic cells are reexposed to oxygen completely blocks the subsequent ATP synthesis and the associated increase in transport activity. Cells incubated aerobically in the presence of 1 mM 2,4-dinitrophenol show a 90% reduction in ATP levels and a 2-fold increase in the rate of 3-O-methylglucose uptake. An additional 70% increase in transport activity is observed when the cells are washed free of uncoupler and incubated an additional 10 min. The results suggest that transport activity is stimulated when cellular ATP levels decline but that the stimulation process requires some minimal level of ATP for full expression.  相似文献   

15.
The glucose analogues, 3-O-methyl-D-glucose and 2-deoxy-D-glucose, have been used to characterize glucose transport and its regulation by serum and growth factors in monolayer cultures of granulosa cells obtained from bovine ovaries. Uptake of 3-O-methylglucose was shown to be independent of the Na+-gradient, independent of energy, did not show accelerated exchange, and was stereospecific. Serum withdrawal resulted in a biphasic decrease in initial rates of glucose uptake with half-times for the two phases of 50 minutes and 3 hours. Insulin could prevent the decrease in uptake rates with a half-maximum concentration of 10.0 1/8 3 nM. Insulin was shown to stimulate DNA synthesis with a concentration of half-maximum response of 28 nM. Insulin or serum stimulation of 3-O-methylglucose uptakes in serum-starved cells resulted in a two threefold increase in initial rates, with a time for half-maximum stimulation of 3 minutes. The insulin-stimulated increase was insensitive to cycloheximide and cyanide during the first 30 minutes, and this early, rapid stimulation was also produced by brain FGF (fibroblast growth factor), pituitary FGF, epidermal growth factor, calf serum, and some but not all samples of follicular fluid. Insulin also stimulated 2-deoxyglucose and a-aminoisobutyric acid uptake during the first 5 minutes of addition and these early stimulations were shown to be posttranslational changes.  相似文献   

16.
The mechanism of the insulin-like effects of ionic zinc   总被引:6,自引:0,他引:6  
The insulin-like effects of ionic zinc (Zn2+) were studied in isolated rat adipocytes. Concentrations of Zn2+ between 250 and 1000 microM stimulated 3-O-methylglucose transport and glucose metabolism to CO2, glyceride-fatty acid, and glyceride-glycerol. Selective stimulation of the pentose phosphate cycle was observed since a Zn2+-induced increase in glucose carbon 1 oxidation persisted even when glucose transport was blocked with 50 microM cytochalasin B or when transport was no longer rate-limiting for metabolism at high concentrations of glucose. Enhanced pentose phosphate cycle activity may have been due to a selective inhibition of glutathione reductase by the ion, which was also accompanied by a fall in cellular glutathione content. Zn2+ also inhibited lipolysis stimulated by the beta-adrenergic agent ritodrine in the absence of glucose. The effects of Zn2+ on glucose oxidation and stimulated rates of lipolysis were inhibited by extracellular catalase, indicating that they were largely a result of H2O2 generation. The H2O2 production appeared for the most part to be caused by zinc-catalyzed autoxidation of sulfhydryl groups present on external cell membranes, although involvement of sulfhydryl groups on bovine serum albumin in the buffer could also have contributed. The insulin-like effects of Zn2+ in adipocytes are therefore caused not only by direct effects of the ion on intracellular metabolism but also by indirect effects related to H2O2 generation.  相似文献   

17.
Young JC  Young RE 《Life sciences》2002,71(15):1731-1737
Glucose transport in muscle is a function of the muscle metabolic state, as evidenced by the increase in glucose transport which occurs with conditions of altered aerobic metabolism such as hypoxia or contractile activity. The energy state of the muscle can be determined by the muscle phosphocreatine concentration. Dietary supplementation of creatine has been shown to increase both phosphocreatine (PCr) and creatine (TCr) levels in muscle, although not in the same proportion, so that the PCr/TCr ratio falls suggesting an altered energy state in the cell. The purpose of this study was to determine the effect of increased creatine content on glucose uptake in muscle. PCr and TCr were determined in plantaris muscles from rats following five weeks of dietary supplementation of creatine monohydrate (300 mg/kg/day). (3)H-2-deoxyglucose uptake was measured in epitrochlearis muscles incubated in the presence or absence of a maximally stimulating dose of insulin. Despite a significant increase in creatine content in muscle, neither basal nor insulin-stimulated glucose uptake was altered in creatine supplemented rats. Since PCr levels were not increased with creatine supplementation, these results suggest that the actual concentration of PCr is a more important determinant of glucose uptake than the PCr/TCr ratio.  相似文献   

18.
This study was done to evaluate the effect of insulin on sugar transport into skeletal muscle after exercise. The permeability of rat epitrochlearis muscle to 3-O-methylglucose (3-MG) was measured after exposure to a range of insulin concentrations 30, 60, and 180 min after a bout of exercise. Thirty and 60 min after exercise, the effects of exercise and insulin on 3-MG transport were additive over a wide range of insulin concentrations, with no increase in sensitivity or responsiveness to insulin. After 180 min, when approximately 66% of the exercise-induced increase in sugar transport had worn off, both the responsiveness and sensitivity of the glucose transport process to insulin were increased. These findings appear compatible with the hypothesis that the actions of exercise and insulin result in activation and/or translocation into the plasma membrane of two separate pools of glucose transporters in mammalian skeletal muscle.  相似文献   

19.
AMP-activated protein kinase and the regulation of glucose transport   总被引:1,自引:0,他引:1  
The AMP-activated protein kinase (AMPK) is an energy-sensing enzyme that is activated by acute increases in the cellular [AMP]/[ATP] ratio. In skeletal and/or cardiac muscle, AMPK activity is increased by stimuli such as exercise, hypoxia, ischemia, and osmotic stress. There are many lines of evidence that increasing AMPK activity in skeletal muscle results in increased rates of glucose transport. Although similar to the effects of insulin to increase glucose transport in muscle, it is clear that the underlying mechanisms for AMPK-mediated glucose transport involve proximal signals that are distinct from that of insulin. Here, we discuss the evidence for AMPK regulation of glucose transport in skeletal and cardiac muscle and describe research investigating putative signaling mechanisms mediating this effect. We also discuss evidence that AMPK may play a role in enhancing muscle and whole body insulin sensitivity for glucose transport under conditions such as exercise, as well as the use of the AMPK activator AICAR to reverse insulin-resistant conditions. The identification of AMPK as a novel glucose transport mediator in skeletal muscle is providing important insights for the treatment and prevention of type 2 diabetes.  相似文献   

20.
The uptake of 3-O-methylglucose by rat thymocytes follows a biphasic time course. 2,4-Dinitrophenol (10-3 M), carbonyl cyanide m-chlorophenylhydrazone (10-5 M) and oligomycin (5 microgram/ml) each reduce ATP levels in rat thymocytes by 85% and bring about 3- to 4-fold stimulation of the slow phase of 3-O-methylglucose uptake. No consistent effect is observed on either the half-time of the rapid phase of uptake or the relative proportions of the two phases of uptake in the presence of these agents. Ca2+ ions do not appear to play a necessary role in the stimulation of transport activity since cells depleted of exchangeable Ca2+ by treatment with the Ca2+-Mg2+ ionophore, A23187, plus [ethylenebis(oxyethylenenitrilo)]tetraacetic acid respond to uncouplers in exactly the same manner as untreated cells. The effect of dinitrophenol on the slow phase of 3-O-methylglucose uptake is reversible after 10 min of incubation. After 60 min however, cells washed free of dinitrophenol and incubated at 37 degrees exhibited an additional acceleration in transport activity. This stimulation of transport is characterized by an increase in the proportion of the rapid phase of uptake with little or no change in its half-time. The results suggest that rat thymocytes regulate their 3-O-methylglucose transport activity in two distinct fashions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号