首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 125 毫秒
1.
Yan YJ  Li Y  Lou B  Wu MP 《Life sciences》2006,79(2):210-215
High density lipoprotein (HDL) binds lipopolysaccharide (LPS) and neutralizes its toxicity. The aim of our study was to investigate the effects of Apolipoprotein (ApoA-I), the major apolipoprotein of HDL, on LPS-induced acute lung injury (ALI) and endotoxemia. BALB/c mice were challenged with LPS, followed by ApoA-I or saline administration for 24h. The mice were then sacrificed and histopathological analysis of the lung was performed. We found that ApoA-I could attenuate LPS-induced acute lung injury and inflammation. To investigate the mechanisms, we measured tumor necrosis factor alpha (TNF-alpha), interleukin-1beta (IL-1beta) and interleukin-6 (IL-6) levels in the serum and bronchoalveolar lavage (BAL) fluid and found that ApoA-I could significantly inhibit LPS-induced increases in the IL-1beta and TNF-alpha levels in serum (P<0.05, respectively), as well as in the IL-1beta, TNF-alpha, and IL-6 levels in BAL fluid (P<0.01 and P<0.05, P<0.05, respectively). Moreover, we evaluated the effect of ApoA-I on the mortality of L-929 cells which were attacked by LPS-activated peritoneal macrophages. We found that ApoA-I could significantly inhibit the LPS-induced cell death in a dose-dependent fashion. Furthermore, we investigated in vivo the effects of ApoA-I on the mortality rate and survival time after LPS administration and found that ApoA-I significantly decreased the mortality (P<0.05) and increased the survival time (P<0.05). In summary, the results suggest that ApoA-I could effectively protect against LPS-induced endotoxemia and acute lung damage. The mechanism might be related to inhibition of inflammatory cytokine release from macrophages.  相似文献   

2.
Jiao YL  Wu MP 《Cytokine》2008,43(1):83-87
Lipoteichoic acid (LTA), as a primary immunostimulus, triggers the systematic inflammatory responses. Our hypothesis is that ApoA-I can neutralize LTA toxicity, like its effect on LPS. BALB/c mice were challenged with LTA, followed by human ApoA-I administration. We found that ApoA-I could attenuate LTA-induced acute lung injury and inflammation and significantly inhibit LTA-induced IL-1beta and TNF-alpha accumulation in the serum (P<0.01 and P<0.05, respectively), as well as in bronchoalveolar lavage (BAL) fluid (P<0.01 and P<0.05, respectively). Moreover, ApoA-I could significantly reduce the L-929 cell mortality caused by LTA-activated macrophages in a dose-dependent fashion. Furthermore, ApoA-I treatment could diminish LTA-mediated NFkappaB nuclear translocation in macrophages. An in vitro binding assay indicated that ApoA-I can bind LTA. These results clearly indicated that ApoA-I can effectively protect against LTA-induced sepsis and acute lung damage. The mechanism might be related to the binding and neutralization of LTA.  相似文献   

3.
Liao XL  Lou B  Ma J  Wu MP 《Life sciences》2005,77(3):325-335
High density lipoprotein (HDL) has anti-inflammatory function. To investigate the effects of apolipoprotein A-I (ApoA-I), the major apolipoprotein of HDL, on activated neutrophils, we stimulated neutrophils in vitro with fMLP and PMA, as a receptor-binding and a nonreceptor-binding stimuli, respectively, and incubated ApoA-I with those neutrophils. Three conditions were utilized: 1) resting neutrophils + ApoA-I (0, 2.5,5, 10 microg/mL respectively), 2) fMLP(10(-7) mol/L)-activated neutrophils + ApoA-I (0, 2.5, 5, 10 microg/mL respectively), and 3) PMA(10(-7) mol/L)-activated neutrophils + ApoA-I (0, 2.5, 5, 10 microg/mL respectively). After incubation, we measured neutrophils adhesion to fibronectin, oxidative bust (O2- and H2O2 production), degranulation (release of MPO and elastase), and L929 cell mortality which were attacked by release-out of cytokines in activated neutrophils (using MTT). Our results showed that in vitro ApoA-I inhibits fMLP- and PMA- activated neutrophil adhesion, oxidative burst, degranulation and L929 cell mortality. These inhibition effects of ApoA-I on fMLP-activated neutrophils are more powerful than that on PMA-activated neutrophils. ApoA-I has no effect on resting neutrophils. We concluded that ApoA-I could diminish the function of activated neutrophils.  相似文献   

4.
内源性硫化氢在脂多糖引起的肺动脉高压中的作用   总被引:2,自引:0,他引:2  
Huang XL  Zhou XH  Wei P  Zhang XJ  Meng XY  Xian XH 《生理学报》2008,60(2):211-215
为观察硫化氢(hydrogen sulfide,H2s)在脂多糖(1ipopolysaccharide,LPS)引起的肺动脉高压中的作用,应用离体血管环张力测定方法测定肺动脉反应性,采用生物化学方法测定肺动脉组织中H2S产出率和胱硫醚-γ-裂解酶(cystathionine γ-lyase,CSE)活性,定量PCR方法测定肺动脉组织中CSE表达水平.结果如下:(1)与对照组相比,LPS可显著升高肺动脉平均压(mean pulmonary arterial pressure,mPAP)[(1.82±0.29)kPa vs(1.43±0.26)kPa,P<0.01],降低肺动脉组织中H2S产出率[(26.33±7.84)vs(42.92±8.73)pmoFg wet tissue per minute,P<0.01]和ACh诱导的肺动脉内皮依赖性舒张反应[(75.72±7.22)%vs(86.40±4.40)%,P<0.01];(2)NariS可部分逆转上述变化,而PPG加剧上述变化;(3)CSE活性和CSE mRNA表达的变化与H2S产出率的变化相同.结果提示,LPS对内皮依赖性舒张反应的抑制导致肺动脉高压的发生,此作用可能与H2S有关.  相似文献   

5.
Binding of Escherichia coli lipopolysaccharide (LPS) to the two cell types of the adrenal cortex: fasciculata-reticularis and glomerulosa cells has been studied by flow cytometry and using fluorescein-labeled lipopolysaccharide (FITC-LPS). The binding characteristics were different in relation to time course and number of binding sites. Both fasciculata-reticularis and glomerulosa cells bound LPS in a specific and saturable process. Fasciculata-reticularis cells showed a higher affinity for LPS binding than glomerulosa cells as deduced from Hill plots. Unlabeled LPS decreased FITC-LPS binding in both fasciculata-reticularis and glomerulosa cells, suggesting competition of both ligands for a limited number of binding sites. Lipid A seemed not to be essential for binding of LPS to fasciculata-reticularis cells. However, serum constituents inhibited FITC-LPS binding to both cell types, possibly due to cell interaction with HDL. The exposure of cells to LPS during cell culture did not modify the number of binding sites, but revealed cell size and surfaces structure changes.  相似文献   

6.
Gu SS  Shi N  Wu MP 《Life sciences》2007,81(9):702-709
It is well established that reperfusion of heart is the optimal method for salvaging ischemic myocardium, however, the success of this therapy could be limited by reperfusion injury, which is involved in inflammatory responses. High density lipoprotein (HDL) has an anti-inflammatory function and can protect the heart from ischemia-reperfusion (I/R) injury. In this study, we investigated the cardioprotective role of apolipoprotein A-I (ApoA-I), the major apolipoprotein of HDL, in I/R injury. Using rats subjected to myocardial I/R by ligation of left anterior descending coronary artery (LAD), we found that administration of ApoA-I (20 mg/kg, iv) before the onset of reperfusion of myocardial infarction can significantly reduce serum creatine kinase (CK) levels (62.1+/-13.8%, p<0.01) and heart TNF-alpha as well as IL-6 levels, compared with saline controls (40.4+/-14.7%, 44+/-9.8%, p<0.01 respectively). Moreover, ApoA-I treatment suppresses the expression of ICAM-1 on endothelium, thus diminishing neutrophil adherence, transendothelial migration, and the subsequent myocyte injury. We concluded that ApoA-I could effectively protect rat heart from I/R injury.  相似文献   

7.
The acute-phase protein secretory phospholipase A2 (sPLA2) influences the metabolism of high-density lipoproteins (HDL). The adrenals are known to utilize HDL cholesterol as a source of sterols. The aim of the present study was to test the hypothesis that sPLA2 enhances the selective uptake of HDL into the adrenals in response to acute inflammation as a possible physiological role for the sPLA2-HDL interaction. Human sPLA2-transgenic mice, in which sPLA2 expression is upregulated by inflammatory stimuli, were used. Ten hours after induction of the acute-phase response (APR) by injection of bacterial lipopolysaccharide (LPS), plasma levels of HDL cholesterol decreased significantly in sPLA2-transgenic mice (-18%, P < 0.05) but remained unchanged in wild-type mice. The fractional catabolic rates of both 125I-labeled tyraminecellobiose (TC)-HDL and [3H]cholesteryl ether increased significantly in the sPLA2-transgenic mice after induction of the APR (0.18 +/- 0.01 vs. 0.21 +/- 0.01 pool/h, P < 0.05, and 0.31 +/- 0.02 vs. 0.42 +/- 0.05 pool/h, P < 0.05, respectively) but remained unchanged in the wild-type mice (0.10 +/- 0.01 vs. 0.22 +/- 0.02 pool/h, respectively). After induction of the APR, in both groups HDL holoparticle uptake by the liver was increased (P < 0.001). sPLA2-transgenic mice had 2.4-fold higher selective uptake into the adrenals after induction of the APR than wild-type mice (156 +/- 6 vs. 65 +/- 5%/ micro g tissue protein, P < 0.001). In summary, upregulation of sPLA2 expression during the APR specifically increases the selective uptake of HDL cholesteryl ester into the adrenals. These data suggest a novel metabolic role for sPLA2: modification of HDL during the APR to promote increased adrenal uptake of HDL cholesteryl ester to serve as source for steroid hormone synthesis.  相似文献   

8.
Carvedilol (CAR) is a vasodilating beta-blocker which also has antioxidant properties. CAR produces dose-related reduction in mortality in patients with congestive heart failure. In the present study, we tested the hypothesis that CAR protects against doxorubicin (DOX)-induced cardiomyopathy in rats. Sprague-Dawley rats were treated with DOX, CAR, CAR+DOX, or atenolol (ATN)+DOX. DOX (cumulative dose, 15 mg/kg) was administered intraperitoneally, and CAR (30 mg/kg daily) or ATN (150 mg/kg daily) was administered orally. Three weeks after the completion of these treatments, cardiac performance and myocardial lipid peroxidation were assessed. Mortality was observed in the DOX (25%) and ATN+DOX (12.5%) groups. Compared with control rats, DOX significantly decreased systolic blood pressure (104+/-4 vs. 120+/-4 mmHg, P<0.05) and left ventricular fractional shortening (38.8+/-3.1 vs. 55.4+/-1.3%, P<0.01), and resulted in a significant accumulation of ascites (14.4+/-4.9 vs. 0 ml, P<0.01). CAR significantly prevented the cardiomyopathic changes caused by DOX, while ATN did not. The myocardial thiobarbituric acid reactive substances (TBARS) content was significantly higher in DOX-treated rats than in control rats (80.4+/-7.1 vs. 51.5+/-1.2 nmol/g heart, p<0.01). CAR prevented the increase in TBARS content (48.8+/-3.0 nmol/g heart, P<0.01 vs. DOX group), whereas ATN had no significant effect (74.3+/-5.2 nmol/g heart). CAR also significantly prevented the increase in both myocardial and plasma cholesterol concentrations caused by DOX. These data indicate that CAR protects against DOX-induced cardiomyopathy and that this effect may be attributed to the antioxidant and lipid-lowering properties of CAR, not to its beta-blocking property.  相似文献   

9.
The anti-inflammatory effects of high density lipoprotein (HDL) are well described, however, such effects of Apolipoprotein A-I (ApoA-I) are less studied. Building on our previous study, we further explored the mechanism of anti-inflammatory effects of ApoA-I, and focused especially on the interaction between monocyte and endothelial cells and plasma HDL inflammatory index in LPS-challenged rabbits. Our results show that ApoA-I significantly decreased LPS-induced MCP-1 release from THP-1 cells and ox-LDL-induced THP-1 migration ratio (P < 0.01, respectively). ApoA-I significantly decreased sL-selectin, sICAM-1 and sVCAM-1 release (P < 0.01, P < 0.01, P < 0.05, respectively) from LPS-stimulated THP-1 cells. Furthermore, ApoA-I significantly inhibited LPS-induced CD11b and VCAM-1 expression on THP-1 cells (P < 0.01, P < 0.05, respectively). ApoA-I diminished LPS-induced mCD14 expression (P < 0.01) and NFκB nuclear translocation in THP-1 cells. After single dose treatment of ApoA-I, the value of plasma HDL inflammatory index in LPS-challenged rabbits was improved significantly (P < 0.05). These results suggest that ApoA-I can inhibit chemotaxis, adhesion and activation of human monocytes and improve plasma HDL inflammatory index with presenting beneficial anti-inflammatory effects.  相似文献   

10.
Cai G  He G  Qi C 《Molecular biology reports》2012,39(11):9879-9884
Endothelial lipase (EL) is a novel member of the triglyceride (TG) lipase family. A growing body of evidence has indicated that EL gene polymorphism might contribute to the process of cardiovascular diseases. This study was aimed to reveal the potential relationship between EL -384A/C gene polymorphism and acute coronary syndrome (ACS) in a Chinese Han population. The subjects were composed of 320 ACS patients and 315 age- and gender- matched controls. We detected the EL -384A/C genotypes and allele frequencies by using polymerase chain reaction-restriction fragment length polymorphism analysis. There was significant difference in AA genotype and AC+CC genotype between ACS and control groups (P?=?0.014). The A allele frequency was significantly higher in ACS group than in control group (87.8 vs 83.8?%, P?=?0.041). The relationship between the variant and ACS remained significant after adjusting for current smoker, hypertension, diabetes mellitus, total cholesterol and TG (OR?=?0.682, 95?% CI?=?0.472-0.986). The levels of HDL and ApoA-I were significantly higher in AC+CC genotype than in AA genotype (HDL: 1.20?±?0.35 vs 1.11?±?0.29?mmol/L, P?=?0.001; ApoA-I: 1.14?±?0.25 vs 1.08?±?0.21?g/L, P?=?0.009). We found that the EL -384A/C gene polymorphism might be associated with ACS in Chinese Han population, suggesting that the variant might be involved in the pathogenesis of ACS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号