首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Zheng BJ  Peng GH  Chen BB  Fang F  Zheng J  Wu Y  Liang LZ  Nan BY  Tang XW  Zhu Y  Lu JX  Guan MX 《遗传》2012,34(6):695-704
线粒体DNA(Mitochondrial DNA,mtDNA)突变是引起耳聋的重要原因之一。尤其是12S rRNA基因是药物性耳聋与非综合征型耳聋相关的突变热点区域。文章收集了浙江省各地区非综合征型及药物性耳聋患者标本318例,对其进行临床和分子遗传学评估。12S rRNA基因突变分析发现34个变异位点,已知的1555A>G、1494C>T和1095T>C突变分别占9.1%、0.6%和1.25%。结构和种系发生分析显示,839A>G和1452T>C突变位于12S rRNA基因的高度保守区域且未在449例正常对照组中发现,可能增加了耳毒性药物的敏感性。其他变异位点为多态性位点。文章数据支持了12S rRNA基因是耳毒性药物的作用靶点之一这一理论,为预测个体耳毒性的发生风险,提高氨基糖甙类药物治疗安全性提供了有价值的信息,以期降低耳聋的发生。  相似文献   

2.
线粒体12S rRNA A1555G突变是引起氨基糖甙类药物诱导的非综合征型耳聋的重要原因之一。文章对收集的25个携带A1555G突变的中国汉族非综合征型耳聋家系进行了临床和分子遗传学评估。结果表明,这25个家系的母系成员在耳聋外显率、听力损失严重程度和发病年龄上存在较大差异。当包括和不包括氨基糖甙类药物使用史时,耳聋的平均外显率分别为28.1%和21.5%,排除氨基糖甙类药物时,耳聋的平均发病年龄从1~15岁不等。线粒体全序列分析发现了16个新变异,不同的线粒体DNA多态性位点显示这25个家系分别属于东亚人群A、B、D、F、G、M、N和R单倍型,其中线粒体单倍型B的家系耳聋外显率和表现度较其他单倍型高。此外,7个继发突变位点和21个高保守性位点突变可能增加了这些家系的耳聋外显率。GJB2基因上未检测到与耳聋相关的突变,表明在本研究的耳聋家系中,GJB2基因可能没有参与A1555G突变的表型表达。以上各方面提示,线粒体单倍型和其他因素可能参与了这25个家系耳聋患者的表型修饰。  相似文献   

3.
应用基因芯片技术检测非综合征型耳聋基因突变   总被引:3,自引:0,他引:3  
目的:应用遗传性耳聋基因芯片对散发性聋患者进行分子病因学检测,评估其在遗传性耳聋快速基因诊断中的可靠性。方法:门诊收集散发性聋患者10例,取外周血,提取基因组DNA,用遗传性耳聋基因芯片检测4个中国人中常见的耳聋相关基因中的9个热点突变,包括GJB2(35delG、176del16bp、235delC及299delAT)、GJB3(C538T)、SLC26A4(IVS7-2AG、A2168G)和线粒体DNA 12S rRNA(A1555G、C1494T)。同时,PCR扩增GJB2、线粒体12S rRNA基因全序列,DNA测序,以验证基因芯片检测结果的准确性。结果:在10名耳聋患者中,基因芯片方法检出1例携带线粒体DNA 12S rRNA C1494T突变;2例GJB2基因235delC纯合突变;2例235delC杂合突变;SLC26A4基因和GJB3基因未检出突变。基因芯片的结果与测序结果完全一致。结论:遗传性耳聋基因芯片技术对中国人常见耳聋相关基因热点突变的检出率高,结果准确、可靠,具有快速、高通量、高准确性、低成本等特点,能够满足临床耳聋基因检测的要求,同时结合产前诊断技术能有效预防耳聋患儿的出生,因而具有广阔的临床应用前景。  相似文献   

4.
为建立快速、简便、准确筛查线粒体DNA 12S rRNA基因A1555G突变的基因检测技术平台,收集1 758例(女性808例,男性950例)正常人群样本,利用Bsm AⅠ酶切法筛查线粒体DNA A1555G突变以及通过实时荧光定量Taqman探针法和直接测序法对筛查结果进行验证,结果检测到2例A1555G阳性突变样本,其中1例为男性,1例为女性。实时荧光定量Taqman探针法与Bsm AⅠ酶切法、直接测序法检测结果完全相符,未发现假阳性和假阴性,该方法具有结果准确直观、简单省时,特异性强,敏感性高的优点,适用于对母系遗传性耳聋线粒体DNA A1555G突变的大规模筛查或氨基糖甙类抗生素应用前的预防性检测。  相似文献   

5.
线粒体DNA G7444A突变可能影响A1555G突变的表型表达   总被引:2,自引:2,他引:0  
线粒体12S rRNA和tRNASer(UCN) 基因是导致非综合征型听力损失的两个突变热点区域。作者收集了1个母系遗传感音神经性聋家系, 该家系同时携带线粒体DNA (mtDNA) A1555G和G7444A突变。临床资料分析表明, 该家系包括药物致聋的耳聋外显率(所有耳聋患者/所有母系成员)为58%, 而非药物致聋的耳聋外显率(非药物性聋患者/所有母系成员)为25%, 明显高于其他携带A1555G突变的耳聋家系。先证者的线粒体全序列分析表明, 该线粒体基因组共有28个多态位点, 属于东亚人群B4c1单体型。在这些多态位点中, 除A1555G和G7444A突变外, 未发现其他有功能意义的突变。这表明mtDNA G7444A突变可能加重由A1555G突变造成的线粒体功能缺失, 从而增加耳聋的外显率。  相似文献   

6.
三例氨基糖甙类抗生素致聋患者的线粒体DNA测序分析   总被引:10,自引:2,他引:8  
应用PCR扩增产物直接对3名氨基糖甙类抗生素致聋患者的线粒体DNA进行序 列分析, 结果表明,他们的线粒体DNA均存在第1555位核苷酸A-G的突变。因此认为该突 变是人体对氨基糖甙类抗生素致聋遗传易感性的分子基础,与氨基糖甙类抗生素共同作用造成耳聋。 Abstract:The mitochondria DNAs(mtDNAs)of three patients with AAID were analysed using the method of direct sequencing of their PCR products.The results showed that all their mtDNAs had an A-G mutation at nucleotides 1555.It is considered that this mutation is the molecular basis causing human susceptibility to Aminoglycoside Antibiotics toxicity which in cooperation with Aminoglycoside Antibiotics results in deafness.  相似文献   

7.
人类线粒体DNA 12S rRNA A1555G突变可引起母系遗传性非综合征耳聋,并提高氨基糖甙类药物对该类耳聋的诱导作用。我们在江苏淮阴发现了一个非综合征耳聋大家系,家系个体发病呈典型的母系遗传特征,临床可表现为先天性耳聋、中年进行性耳聋乃至完全正常的表型。对家系个体进行研究后发现A1555G突变是引起该家系耳聋的主要原因。我们用EB病毒转化的方法对该家系部分个体行建系工作后,对家系中17个个体的类淋巴母细胞进行分析,其中包括具有耳聋症状的个体7人(患者组),具有同质性A1555G突变但表型正常的个体6人(携带组),正常婚配对照 5人,与正常婚配对照相比,患者组与携带组在线粒体蛋白合成速率及在葡萄糖或半乳糖培养基中的生长速度出现了不同程度的下降,且突变细胞系中线粒体功能缺陷的严重程度与个体的临床表型相关.这些发现强有力地支持了核基因参与了该疾病临床表型的形成。  相似文献   

8.
目的:探究非综合征型耳聋患者耳聋易感基因的携带情况及突变类型,为耳聋患者治疗或遗传咨询提供理论依据。方法:收集821例非综合征型耳聋患者的外周静脉血,提取基因组DNA后,进行4个常见耳聋易感基因GJB2、GJB3、SLC26A4和线粒体12S r RNA的9个突变热点筛查。结果:821例非综合征型耳聋患者中耳聋易感基因筛查阳性375例,阳性率为45.7%,不同性别之间阳性率无明差异(P=0.625)。375例存在耳聋易感基因突变的研究对象中,4个易感基因的9突变热点共检测出447例点突变,其中GJB2基因的有241例点突变(53.9%),以235 del C位点突变率最高;SLC26A4基因的有126例点突变(28.2%),以IVS7-2 AG位点突变为主;线粒体12S r RNA基因的有79例点突变(17.7%),绝大部分为1555 AG位点突变;而GJB3基因仅有1例点突变(0.2%)。375例存在耳聋易感基因突变的研究对象中,304例发生1种突变(81.1%),有70例发生2种突变(18.7%),仅有1例发生3种突变(0.3%)。结论:非综合征型耳聋患者中GJB2基因的235 del C位点以及SLC26A4基因的IVS7-2 AG位点突变率较高,常见耳聋易感基因筛查有助于非综合征型耳聋患者的诊断、干预及治疗。  相似文献   

9.
线粒体DNA突变与氨基糖甙类抗生素致聋   总被引:8,自引:0,他引:8  
傅四清  陈观明 《遗传》2000,22(1):61-63
近年来的研究表明,氨基糖甙类抗生素致聋与线粒体DNA突变有关。本文从分子水平阐述了线粒体DNA突变的发生情况及其在氨基糖甙类抗生素致聋中的作用。  相似文献   

10.
唐霄雯  李智渊  吕建新  朱翌  李荣华  王金丹  管敏鑫 《遗传》2008,30(10):1287-1294
摘要: 对1个中国汉族耳聋家系进行了临床和分子遗传学特征分析。家系中听力下降的母系成员表现为程度不等、听力图形态不同的听力损害, 但同为双侧对称的感觉神经性耳聋。该家系耳聋外显率很高, 包括药物致聋的耳聋外显率为75%, 而非药物致聋的外显率为41.7%。对母系成员进行线粒体DNA(mtDNA)全序列扩增分析, 发现了耳聋相关12S rRNA A1555G同质性突变位点和多态性位点, 属于东亚人群B5b单体型。在这些变异位点中, mtDNA 15927位点的G-A碱基变化破坏tRNAThr反密码子结构上十分保守的C-G碱基对, 这可能加重由A1555G突变造成的线粒体功能缺陷。这表明tRNAThrG15927A突变可能增强携带12S rRNA A1555G的中国汉族耳聋家系的外显率和表现度。  相似文献   

11.
The 12S rRNA gene was shown to be a hot spot for aminoglycoside-induced and non-syndromic hearing loss since several deafness-associated mtDNA mutations were identified in this gene. Among them, we distinguished the A1555G, the C1494T and the T1095C mutations and C-insertion or deletion at position 961. One hundred Tunisian patients with non-syndromic hearing loss and 100 hearing individuals were analysed in this study. A PCR-RFLP analysis with HaeIII restriction enzyme showed the presence of the A1555G mutation in the 12S rRNA gene in only one out of the 100 patients. In addition, PCR-RFLP and radioactive PCR revealed the presence of a new HaeIII polymorphic restriction site in the same gene of 12S rRNA site in 4 patients with non-syndromic hearing loss. UVIDOC-008-XD analyses showed the presence of this new polymorphic restriction site with a variable heteroplasmic rates at position +1517 of the human mitochondrial genome. On the other hand, direct sequencing of the entire mitochondrial 12S rRNA gene in the 100 patients and in 100 hearing individuals revealed the presence of the A750G and A1438G polymorphisms and the absence of the C1494T, T1095C and 961insC mutations in all the tested individuals. Sequencing of the whole mitochondrial genome in the 4 patients showing the new HaeIII polymorphic restriction site revealed only the presence of the A8860G transition in the MT-ATP6 gene and the A4769G polymorphism in the ND2 gene.  相似文献   

12.
Mutations in mitochondrial DNA (mtDNA) have been found to be associated with sensorineural hearing loss. We report here a systematic mutational screening of the mitochondrial 12S rRNA gene in 128 Chinese pediatric subjects with sporadic aminoglycoside-induced and non-syndromic hearing loss. We show that aminoglycoside ototoxicity accounts for 48% of cases of hearing loss in this Chinese pediatric population. Of the known deafness-associated mutations in this gene, the incidence of the A1555G mutation is ~13% and ~2.9% in this Chinese pediatric population with aminoglycoside-induced and non-syndromic hearing loss, respectively. Furthermore, mutations at position 961 in the 12S rRNA gene account for ~1.7% and 4.4% of cases of aminoglycoside-induced and non-syndromic hearing loss in this Chinese clinical population, respectively. The T1095C mutation has been identified in one maternally inherited family with aminoglycoside-induced and non-syndromic hearing loss. However, the C1494T mutation was not detected in this clinical population. In addition, three variants, A827G, T1005C and A1116G, in the 12S rRNA gene, localized at highly conserved sites, may play a role in the pathogenesis of aminoglycoside ototoxicity. These data strongly suggest that the mitochondrial 12S rRNA is a hot-spot for deafness-associated mutations in the Chinese population.Z. Li and R. Li contributed equally to this work.  相似文献   

13.
Guan MX 《Mitochondrion》2011,11(2):237-245
The mitochondrial 12S rRNA is a hot spot for mutations associated with both aminoglycoside-induced and nonsyndromic hearing loss. Of those, the homoplasmic 1555A>G and 1494C>T mutations at the highly conserved decoding region of the 12S rRNA have been associated with hearing loss worldwide. In particular, these two mutations account for a significant number of cases of aminoglycoside ototoxicity. The 1555A>G or 1494C>T mutation is expected to form a novel 1494C-G1555 or 1494U-A1555 base-pair at the highly conserved A-site of 12S rRNA. These transitions make the human mitochondrial ribosomes more bacteria-like and alter binding sites for aminoglycosides. As a result, the exposure to aminoglycosides can induce or worsen hearing loss in individuals carrying one of these mutations. Biochemical characterization demonstrated an impairment of mitochondrial protein synthesis and subsequent defects in respiration in cells carrying the A1555G or 1494C>T mutation. Furthermore, a wide range of severity, age-at-onset and penetrance of hearing loss was observed within and among families carrying these mutations. Nuclear modifier genes, mitochondrial haplotypes and aminoglycosides should modulate the phenotypic manifestation of the 12S rRNA 1555A>G and 1494C>T mutations. Therefore, these data provide valuable information and technology: (1) to predict which individuals are at risk for ototoxicity; (2) to improve the safety of aminoglycoside antibiotic therapy; and (3) eventually to decrease the incidence of hearing loss.  相似文献   

14.
Mutations in mitochondrial DNA (mtDNA) are one of the most important causes of hearing loss. Of these, the homoplasmic A1555G and C1494T mutations at the highly conserved decoding site of the 12S rRNA gene are well documented as being associated with either aminoglycoside-induced or nonsyndromic hearing loss in many families worldwide. Moreover, five mutations associated with nonsyndromic hearing loss have been identified in the tRNASer(UCN) gene: A7445G, 7472insC, T7505C, T7510C, and T7511C. Other mtDNA mutations associated with deafness are mainly located in tRNA and protein-coding genes. Failures in mitochondrial tRNA metabolism or protein synthesis were observed from cybrid cells harboring these primary mutations, thereby causing the mitochondrial dysfunctions responsible for deafness. This review article provides a detailed summary of mtDNA mutations that have been reported in deafness and further discusses the molecular mechanisms of these mtDNA mutations in deafness expression.  相似文献   

15.
Mutations in mitochondrial DNA (mtDNA) are associated with sensorineural hearing loss. In this study, we traced the origin of the 12S rRNA C1494T mutation through analysis of the clinical, genetic, and molecular characteristics of 13 Han Chinese pedigrees with aminoglycoside-induced and non-syndromic bilateral hearing loss that were selected by C1494T screening in 3133 subjects with non-syndromic hearing impairment from 27 regions of China (13/3133). Clinical evaluation revealed the variable phenotypes of hearing impairment including severity, age-of-onset, and audiometric configuration in these subjects. Through the whole mitochondrial genome DNA sequence analysis, we identified two evolutionarily conservative variants in protein-coding genes: tRNAAla T 5628C and tRNATyr A5836G mutations. However, the pedigrees with these mutations did not have a higher or lower penetrance of deafness than in other pedigrees. These results suggested that both T 5628C and A5836G mutations might not significantly modify the manifestation of the C1494T mutation. Sequencing analysis of the whole mitochondrial genome of the probands showed that 13 pedigrees from seven different provinces were classified into 10 haplogroups by the distinct sets of mtDNA polymorphisms, including haplogroups A, B, D, D4, D4b2, F1, M, M7c, N9a1, and H2b. This result suggested that the C1494T mutation occurred sporadically with multi-origins through the evolution of the mtDNA in China, and these mtDNA haplogroup-specific variants may not play an important role in the phenotypic expression of the C1494T mutation in these Chinese families with different penetrance of hearing loss. In addition, the lack of a significant mutation in the GJB2 gene ruled out the possible involvement of GJB2 in the phenotypic expression of the C1494T mutation in those affected subjects. Therefore, the aminoglycosides is solo well-established factor to contribute to the deafness manifestation of the C1494T mutation, and prevention by avoiding the administration of aminoglycosides in individuals carrying C1494T mutation is the most effective way to protect their vulnerability to deafness.  相似文献   

16.
Mutations in mitochondrial DNA are one of the important causes of hearing loss. We report here the clinical, genetic, and molecular characterization of two Han Chinese pedigrees with maternally transmitted aminoglycoside-induced and nonsyndromic bilateral hearing loss. Clinical evaluation revealed the wide range of severity, age-at-onset, and audiometric configuration of hearing impairment in matrilineal relatives in these families. The penetrances of hearing loss in these pedigrees were 20% and 18%, when aminoglycoside-induced deafness was included. When the effect of aminoglycosides was excluded, the penetrances of hearing loss in these seven pedigrees were 10% and 15%. Sequence analysis of the complete mitochondrial genomes in these pedigrees showed the presence of the deafness-associated 12S rRNA C1494T and CO1/tRNA(Ser(UCN)) G7444A mutations. Their distinct sets of mtDNA polymorphism belonged to Eastern Asian haplogroup C4a1, while other previously identified six Chinese mitochondrial genomes harboring the C1494T mutation belong to haplogroups D5a2, D, R, and F1, respectively. This suggested that the C1494T or G7444A mutation occurred sporadically and multiplied through evolution of the mitochondrial DNA (mtDNA). The absence of functionally significant mutations in tRNA and rRNAs or secondary LHON mutations in their mtDNA suggest that these mtDNA haplogroup-specific variants may not play an important role in the phenotypic expression of the 12S rRNA C1494T and CO1/tRNA(Ser(UCN)) G7444A mutations in those Chinese families. However, aminoglycosides and other nuclear modifier genes play a modifying role in the phenotypic manifestation of the C1494T mutation in these Chinese families.  相似文献   

17.
We reported here the clinical and molecular characterization of a Chinese subject with childhood-onset hearing impairment. Clinical evaluations showed that the patient suffered from profound and non-syndromic sensorineural hearing loss with flat configurations. Sequence analysis of the mitochondrial 12S rRNA and tRNASer(UCN) genes led to the identification of double deafness-associated mutations of A1555G and T1095C in the 12S rRNA gene which apparently in the homoplasmic forms. In additional, there was no other functionally significant nucleotide variants found in this subject. As previous studies have indicated that the A1555G mutation was a primary contributing factor underlying the development of deafness but not sufficient to produce clinical phenotype, the co-segregation of two mitochondrial DNA mutations raises the possibility that the T to C transition at position 1095 plays a role in the phenotypic expression of deafness-associated A1555G mutation. Actually, the T1095C mutation disrupted an evolutionarily conserved base-pair at stem-loop of helix 25 of 12S rRNA, resulting in impaired translation in mitochondrial protein synthesis and a significant reduction of cytochrome c oxidase activity. As a result, it may enhance the biochemical defect in patient carrying the A1555G mutation, thus changing the age of onset and the severity of hearing impairment.  相似文献   

18.
Co-occurrence of double pathogenic mtDNA mutations with different claimed pathological roles in one mtDNA is infrequent. It is tentative to believe that each of these pathogenic mutations would have its own deleterious effect. Here we reported one three-generation Chinese family with a high penetrance of LHON (78.6%). Analysis of the complete mitochondrial genome in the proband revealed the presence of the LHON primary mutation G11778A in the NADH dehydrogenase 4 (ND4) gene and a deafness-associated mutation A1555G in the 12S rRNA gene. The other mtDNA variants in this family suggested a haplogroup status G2b. Although A1555G has long been confirmed to be a primary mutation for aminoglycoside-induced and non-syndromic hearing loss, none of the maternally related members in this family showed hearing impairment. It thus seems that the occurrence of A1555G in this family had no pathological manifestation. However, whether A1555G has a synergistic effect with G11778A and contribute to the high penetrance of LHON remained an open question. To our knowledge, this is the first report that identified the co-existence of a deafness mutation A1555G and a primary LHON mutation G11778A in one family.  相似文献   

19.
JW Bae  DB Kim  JY Choi  HJ Park  JD Lee  DG Hur  SH Bae  da J Jung  SH Lee  UK Kim  KY Lee 《PloS one》2012,7(8):e42463
Hearing loss, which is genetically heterogeneous, can be caused by mutations in the mitochondrial DNA (mtDNA). The A1555G mutation of the 12S ribosomal RNA (rRNA) gene in the mtDNA has been associated with both aminoglycoside-induced and non-syndromic hearing loss in many ethnic populations. Here, we report for the first time the clinical and genetic characterization of nine Korean pedigrees with aminoglycoside-induced and non-syndromic hearing loss. These Korean families carry in the A1555G mutation of 12S rRNA gene and exhibit variable penetrance and expressivity of hearing loss. Specifically, the penetrance of hearing loss in these families ranged between 28.6% and 75%, with an average of 60.8%. These results were higher than the 29.8% penetrance that was previously reported in a Chinese population but similar to the 65.4% and 54.1% penetrance observed in a large Arab-Israeli population and nineteen Spanish pedigrees, respectively. The mutational analysis of the complete mtDNA genome in these families showed that the haplogroups of the Korean population, which belongs to the eastern Asian population, were similar to those of the Chinese population but different from the Spanish population, which belongs to the European-Caucasian population. The mtDNA variants that may act as modifier factors were also found to be similar to the Chinese population. Although the mtDNA haplogroups and variants were similar to the eastern Asian population, we did find some differing phenotypes, although some subjects had the same variants. This result suggests that both the ethnic background and environmental factors lead to a variable phenotype of the A1555G mutation.  相似文献   

20.
Mutations in the mitochondrial DNA are one of the most important causes of sensorineural hearing loss, especially in the 12S ribosomal RNA (rRNA) gene. We have analyzed the mtDNA 12S rRNA gene in a cohort of 443 families with hearing impairment, and have identified the A1555G mutation in 69 unrelated cases. A1555G is not a fully penetrant change, since only 63% of subjects with this change have developed hearing impairment. In addition, only 22% of the 183 A1555G deaf subjects were treated with aminoglycosides. Two novel nucleotide changes (T1291C and T1243C) were identified. T1243C was found in five deafness cases and one control sample. Mutation T1291C was detected in all maternally related individuals of a pedigree and in none of 95 control samples. Conservation analysis and comparison of the 12S rRNA structure with the 16S rRNA of Escherichia coli showed that the T at nucleotide 1243 and A at nucleotide 1555 are conserved positions. Prediction of RNA secondary structure showed changes in all 12S rRNA variants, the most severe being for T1291C. The reported data confirm the high prevalence of mutation A1555G in deafness cases and the major role of the 12S rRNA gene in hearing. The two novel changes reported here might have different contributions as deafness-related variants. T1291C fulfills the criteria of a disease-causing change. As in the case of mutation A1555G, the underlying phenotype of T1291C is not homogeneous for all family members, providing evidence for the implication of environmental and/or additional genetic factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号