共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
We previously isolated a gene encoding thioltransferase (TTase1) from the fission yeast Schizosaccharomyces pombe. Using a TTase-lacZ fusion plasmid, carrying a 666 bp region upstream of the translation initiation point, we found that expression of TTase1 was enhanced by metal ions, diamide and NO-generating S-nitroso-N-acetylpenicillamine (SNAP). In the present work, we examined the regulation of TTase1 expression using a series of deletion mutants and identified a negatively acting sequence between bp -469 and -339. Atf1 is required for basal expression of TTase1, and Pap1 is required for its inducible expression by mercuric chloride, diamide and SNAP. The -469 approximately -339 bp region is also responsible for mediating the inducible expression. 相似文献
5.
The mammalian period (Per) genes are components of the circadian clock and appear to be regulated via an autoregulatory feedback loop. Here we show that the human PER1 (hPER1) gene is synergistically activated by protein kinases A and C (PKA, PKC) and cAMP responsive element binding protein. Activators and inhibitors of PKA as well as PKC modulate endogenous hPER1 expression and hPER1 promoter-driven reporter gene activity in a dose-dependent manner. Our results suggest that the hPER1 promoter acts as a sensor for multiple signaling molecules thereby integrating different physiological parameters. This regulation of hPER1 appears to be significant for rapid adaptation to changing environmental conditions. 相似文献
6.
7.
Plaisance V Thompson N Niederhauser G Haefliger JA Nicod P Waeber G Abderrahmani A 《Biochemical and biophysical research communications》2002,293(1):174-181
We have established that focal adhesion kinase (FAK)-transfected HL-60 (HL-60/FAK) cells were highly resistant to hydrogen peroxide and etoposide-induced apoptosis compared to vector-transfected cells. Mutagenesis study revealed that Y397 is required for anti-apoptotic activity in HL-60/FAK, since Y397F-mutated FAK (397FAK) lost anti-apoptotic function. Assuming that 397FAK functions as a dominant negative FAK, we introduced 397FAK cDNA into a human glioma cell line, T98G, using an adenoviral vector. We found that 397FAK induced marked apoptosis with significant FAK degradation. As PI3-kinase-Akt survival pathway was constitutively activated in T98G cells, we hypothesized that this pathway was shut off by 397FAK gene transfection. As expected, activation of PI3-kinase-Akt survival pathway was decreased by the 397FAK gene transfection. 397FAK activated mainly caspase-6 which induced degradation of transfected FAK as well as endogenous FAK. These results indicated that 397FAK induces apoptosis in T98G cells, by interrupting signals of FAK leading to the survival pathway in T98G glioma cells. 相似文献
8.
Fission yeast Mrc1 (mediator of replication checkpoint 1) is an adaptor checkpoint protein required for Rad3-dependent activation of the checkpoint kinase Cds1 in response to arrest of replication forks. Here we report studies on the regulation of Mrc1 by phosphorylation. Replication arrest induced by hydroxyurea (HU) induces Mrc1 phosphorylation that is detected by a change in Mrc1 electrophoretic mobility. Phosphorylation is maintained in cds1Delta, rad3Delta, and tel1Delta single mutants but eliminated in a rad3Delta tel1Delta double mutant. Mrc1 has two clusters of S/TQ motifs that are potential Rad3/Tel1 phosphorylation sites. Mutation of six S/TQ motifs in these two clusters strongly impairs Mrc1 phosphorylation. Two motifs located at S604 and T645 are vital for HU resistance. The T645A mutation strongly impairs a Cds1-Mrc1 yeast two-hybrid interaction that is dependent on a functional forkhead-associated (FHA) domain in Cds1, indicating that phosphorylation of T645 mediates Mrc1's association with Cds1. Consistent with this model, the T645 region of Mrc1 effectively substitutes for the T11 region of Cds1 that is thought to be phosphorylated by Rad3 and to mediate FHA-dependent oligomerization of Cds1. The S/TQ cluster that includes S604 is needed for Mrc1's increased association with chromatin in replication-arrested cells. These data indicate that Rad3 and Tel1 regulate Mrc1 through differential phosphorylation to control Cds1. 相似文献
9.
10.
11.
The cyclin D1 gene is transcriptionally repressed by caveolin-1 总被引:11,自引:0,他引:11
Hulit J Bash T Fu M Galbiati F Albanese C Sage DR Schlegel A Zhurinsky J Shtutman M Ben-Ze'ev A Lisanti MP Pestell RG 《The Journal of biological chemistry》2000,275(28):21203-21209
12.
The fission yeast chromo domain encoding gene chp1(+) is required for chromosome segregation and shows a genetic interaction with alpha-tubulin. 总被引:2,自引:0,他引:2 下载免费PDF全文
C L Doe G Wang C Chow M D Fricker P B Singh E J Mellor 《Nucleic acids research》1998,26(18):4222-4229
In eukaryotes, the segregation of chromosomes is co-ordinated by the centromere and must proceed accurately if aneuploidy and cell death are to be avoided. The fission yeast centromere is complex, containing highly repetitive regions of DNA showing the characteristics of heterochromatin. Two proteins, Swi6p and Clr4p, that are associated with the fission yeast centromere also contain a chromo (chromatin organisation modifier) domain and are required for centromere function. We have analysed a novel fission yeast gene encoding a putative chromo domain called chp 1(+) (chromo domain protein in Schizosaccharomyces p ombe ). In the absence of Chp1p protein, cells are viable but show chromosome segregation defects such as lagging chromosomes on the spindle during anaphase and high rates of minichromosome loss, phenotypes which are also displayed by swi 6 and clr 4. A fusion protein between green fluorescent protein (GFP) and Chp1p, like Swi6p, is localized to discrete sites within the nucleus. In contrast to Swi6p and Clr4p, Chp1p is not required to repress silent mating-type genes. We demonstrate a genetic interaction between chp 1(+) and alpha-tubulin ( nda 2(+)) and between swi 6(+) and beta-tubulin ( nda 3(+)). Chp1p and Swi6p proteins may be components of the kinetochore which captures and stabilizes the microtubules of the spindle. 相似文献
13.
During the course of meiotic prophase, intrinsic double-strand breaks (DSBs) must be repaired before the cell can engage in meiotic nuclear division. Here we investigate the mechanism that controls the meiotic progression in Schizosaccharomyces pombe that have accumulated excess meiotic DSBs. A meiotic recombination-defective mutant, meu13Delta, shows a delay in meiotic progression. This delay is dependent on rec12+, namely on DSB formation. Pulsed-field gel electrophoresis analysis revealed that meiotic DSB repair in meu13Delta was retarded. We also found that the delay in entering nuclear division was dependent on the checkpoint rad+, cds1+ and mek1+ (the meiotic paralog of Cds1/Chk2). This implies that these genes are involved in a checkpoint that provides time to repair DSBs. Consistently, the induction of an excess of extrinsic DSBs by ionizing radiation delayed meiotic progression in a rad17(+)-dependent manner. dmc1Delta also shows meiotic delay, however, this delay is independent of rec12+ and checkpoint rad+. We propose that checkpoint monitoring of the status of meiotic DSB repair exists in fission yeast and that defects other than DSB accumulation can cause delays in meiotic progression. 相似文献
14.
15.
16.
17.
18.
We have isolated a mutation in nup184(nup184-1) that is synthetically lethal with the mRNA export defective rae1-167 mutation in Schizosaccharomyces pombe. The consequence of the synthetic lethality is a defect in mRNA export. The predicted Nup184p is similar to Nup188p of Saccharomyces cerevisiae, and a Nup184p-GFP fusion localizes to the nuclear periphery in a punctate pattern. The Deltanup184 null mutant is viable and also is synthetically lethal with rae1-167. In a rae1(+) background, both the nup184-1 and Deltanup184 mutations confer sensitivity to growth in nutrient-rich medium (YES) that is accompanied by nuclear poly(A)+ RNA accumulation. Removal of the cAMP-dependent protein kinase, Pka1p, relieved the growth and mRNA export defects of nup184 mutants when grown in nutrient-rich medium. The activation of Pka1p is necessary, but not sufficient, to cause the severe poly(A)+ RNA export defects when nup184 mutant cells are incubated in YES, suggesting nutritional status can also regulate poly(A)+ RNA export. Our results suggest that the regulation of poly(A)+ RNA export by Pka1p kinase appears to be indirect, via a translation-dependent step, but post-translationally in response to YES. 相似文献
19.