共查询到20条相似文献,搜索用时 0 毫秒
1.
Wood JP Choi YW Rogers JV Kelly TJ Riggs KB Willenberg ZJ 《Journal of applied microbiology》2011,110(5):1262-1273
Aims: To obtain data on the efficacy of various liquid and foam decontamination technologies to inactivate Bacillus anthracis Ames and Bacillus subtilis spores on building and outdoor materials. Methods and Results: Spores were inoculated onto test coupons and positive control coupons of nine different materials. Six different sporicidal liquids were spray‐applied to the test coupons and remained in contact for exposure times ranging from 10 to 70 min. Following decontamination, spores were recovered from the coupons and efficacy was quantified in terms of log reduction. Conclusions: The hydrogen peroxide/peracetic acid products were the most effective, followed by decontaminants utilizing hypochlorous acid chemistry. Decontamination efficacy varied by material type. Significance and Impact of the Study: The study results may be useful in the selection of technologies to decontaminate buildings and outdoor areas in the event of contamination with B. anthracis spores. These results may also facilitate selection of decontaminant liquids for the inactivation of other spore‐forming infectious disease agents. 相似文献
2.
Rogers JV Sabourin CL Choi YW Richter WR Rudnicki DC Riggs KB Taylor ML Chang J 《Journal of applied microbiology》2005,99(4):739-748
AIMS: To evaluate the decontamination of Bacillus anthracis, Bacillus subtilis, and Geobacillus stearothermophilus spores on indoor surface materials using hydrogen peroxide gas. METHODS AND RESULTS: Bacillus anthracis, B. subtilis, and G. stearothermophilus spores were dried on seven types of indoor surfaces and exposed to > or =1000 ppm hydrogen peroxide gas for 20 min. Hydrogen peroxide exposure significantly decreased viable B. anthracis, B. subtilis, and G. stearothermophilus spores on all test materials except G. stearothermophilus on industrial carpet. Significant differences were observed when comparing the reduction in viable spores of B. anthracis with both surrogates. The effectiveness of gaseous hydrogen peroxide on the growth of biological indicators and spore strips was evaluated in parallel as a qualitative assessment of decontamination. At 1 and 7 days postexposure, decontaminated biological indicators and spore strips exhibited no growth, while the nondecontaminated samples displayed growth. CONCLUSIONS: Significant differences in decontamination efficacy of hydrogen peroxide gas on porous and nonporous surfaces were observed when comparing the mean log reduction in B. anthracis spores with B. subtilis and G. stearothermophilus spores. SIGNIFICANCE AND IMPACT OF THE STUDY: These results provide comparative information for the decontamination of B. anthracis spores with surrogates on indoor surfaces using hydrogen peroxide gas. 相似文献
3.
Rogers JV Choi YW Richter WR Rudnicki DC Joseph DW Sabourin CL Taylor ML Chang JC 《Journal of applied microbiology》2007,103(4):1104-1112
AIMS: To evaluate the decontamination of Bacillus anthracis, Bacillus subtilis, and Geobacillus stearothermophilus spores on indoor surface materials using formaldehyde gas. METHODS AND RESULTS: B. anthracis, B. subtilis, and G. stearothermophilus spores were dried on seven types of indoor surfaces and exposed to approx. 1100 ppm formaldehyde gas for 10 h. Formaldehyde exposure significantly decreased viable B. anthracis, B. subtilis, and G. stearothermophilus spores on all test materials. Significant differences were observed when comparing the reduction in viable spores of B. anthracis with B. subtilis (galvanized metal and painted wallboard paper) and G. stearothermophilus (industrial carpet and painted wallboard paper). Formaldehyde gas inactivated>or=50% of the biological indicators and spore strips (approx. 1x10(6) CFU) when analyzed after 1 and 7 days. CONCLUSIONS: Formaldehyde gas significantly reduced the number of viable spores on both porous and nonporous materials in which the two surrogates exhibited similar log reductions to that of B. anthracis on most test materials. SIGNIFICANCE AND IMPACT OF THE STUDY: These results provide new comparative information for the decontamination of B. anthracis spores with surrogates on indoor surfaces using formaldehyde gas. 相似文献
4.
5.
Aims: This study evaluated the inactivation of Bacillus anthracis Vollum spores dried on a nonporous surface using a superabsorbent polymer (SAP) gel containing commercially available liquid decontaminants.
Methods and Results: The first phase determining the availability of the liquid decontaminant within the SAP showed that the SAP gel containing pH-adjusted sodium hypochlorite (NaOCl) inhibited B. anthracis growth while the water control SAP gel had no affect on growth. For testing surface decontamination, B. anthracis spores were dried onto steel coupons painted with chemical agent resistant coating and exposed to SAP containing either pH-adjusted NaOCl, chlorine dioxide (ClO2 ) or hydrogen peroxide/peracetic acid (H2 O2 /PA) for 5 and 30 min. At contact times of both 5 and 30 min, all of the SAP gels containing pH-adjusted NaOCl, ClO2 or H2 O2 /PA inactivated B. anthracis spores at levels ranging from 2·2 to ≥7·6 log reductions.
Conclusions: Incorporation of three commercially available decontaminant technologies into a SAP gel promotes inactivation of B. anthracis spores without observable physical damage to the test surface.
Significance and Impact of the Study: This work provides preliminary data for the feasibility of using SAP in inactivating B. anthracis spores on a nonporous surface, supporting the potential use of SAP in surface decontamination. 相似文献
Methods and Results: The first phase determining the availability of the liquid decontaminant within the SAP showed that the SAP gel containing pH-adjusted sodium hypochlorite (NaOCl) inhibited B. anthracis growth while the water control SAP gel had no affect on growth. For testing surface decontamination, B. anthracis spores were dried onto steel coupons painted with chemical agent resistant coating and exposed to SAP containing either pH-adjusted NaOCl, chlorine dioxide (ClO
Conclusions: Incorporation of three commercially available decontaminant technologies into a SAP gel promotes inactivation of B. anthracis spores without observable physical damage to the test surface.
Significance and Impact of the Study: This work provides preliminary data for the feasibility of using SAP in inactivating B. anthracis spores on a nonporous surface, supporting the potential use of SAP in surface decontamination. 相似文献
6.
Aims: To determine the wet and dry density of spores of Bacillus anthracis and compare these values with the densities of other Bacillus species grown and sporulated under similar conditions. Methods and Results: We prepared and studied spores from several Bacillus species, including four virulent and three attenuated strains of B. anthracis, two Bacillus species commonly used to simulate B. anthracis (Bacillus atrophaeus and Bacillus subtilis) and four close neighbours (Bacillus cereus, Bacillus megaterium, Bacillus thuringiensis and Bacillus stearothermophilus), using identical media, protocols and instruments. We determined the wet densities of all spores by measuring their buoyant density in gradients of Percoll and their dry density in gradients of two organic solvents, one of high and the other of low chemical density. The wet density of different strains of B. anthracis fell into two different groups. One group comprised strains of B. anthracis producing spores with densities between 1·162 and 1·165 g ml?1 and the other group included strains whose spores showed higher density values between 1·174 and 1·186 g ml?1. Both Bacillus atrophaeus and B. subtilis were denser than all the B. anthracis spores studied. Interestingly and in spite of the significant differences in wet density, the dry densities of all spore species and strains were similar. In addition, we correlated the spore density with spore volume derived from measurements made by electron microscopy analysis. There was a strong correlation (R2 = 0·95) between density and volume for the spores of all strains and species studied. Conclusions: The data presented here indicate that the two commonly used simulants of B. anthracis, B. atrophaeus and B. subtilis were considerably denser and smaller than all B. anthracis spores studied and hence, these simulants could behave aerodynamically different than B. anthracis. Bacillus thuringiensis had spore density and volume within the range observed for the various strains of B. anthracis. The clear correlation between wet density and volume of the B. anthracis spores suggest that mass differences among spore strains may be because of different amounts of water contained within wet dormant spores. Significance and Impact of the Study: Spores of nonvirulent Bacillus species are often used as simulants in the development and testing of countermeasures for biodefense against B. anthracis. The similarities and difference in density and volume that we found should assist in the selection of simulants that better resemble properties of B. anthracis and, thus more accurately represent the performance of countermeasures against this threat agent where spore density, size, volume, mass or related properties are relevant. 相似文献
7.
AIM: To evaluate the efficacy of electrochemically activated solution (ECASOL) in decontaminating Bacillus anthracis Ames and Vollum 1B spores, with and without changing the source water hardness and final ECASOL pH. METHODS AND RESULTS: Five different ECASOL formulations were generated, in which the source water hardness and final ECASOL pH were varied, resulting in cases where significant changes in free available chlorine (FAC) and oxidative-reduction potential (ORP) were observed. B. anthracis Ames and Vollum 1B spores were suspended in the various ECASOL formulations for 30 min, and decontamination efficacy was determined; calcium hypochlorite [5% high-test hypochlorite (HTH)] was used as a positive control. The five different ECASOL formulations yielded mean FAC levels ranging from 305 to 464 ppm, and mean ORP levels ranging from +826 to +1000 mV. Exposure to all the ECASOL formulations and 5% HTH resulted in >or=7.0 log reductions in both B. anthracis Ames and Vollum 1B spores. CONCLUSIONS: The present testing demonstrated that ECASOL with a minimum of c. 300-ppm FAC levels and +800-mV ORP inactivated the B. anthracis spores in suspension, similar to 5% HTH. Significance and Impact of the Study: These results provide information for decontaminating B. anthracis Ames and Vollum 1B spores in suspension using ECASOL. 相似文献
8.
9.
Carrera M Zandomeni RO Fitzgibbon J Sagripanti JL 《Journal of applied microbiology》2007,102(2):303-312
AIMS: To determine the size distribution of the spores of Bacillus anthracis, and compare its size with other Bacillus species grown and sporulated under similar conditions. METHODS AND RESULTS: Spores from several Bacillus species, including seven strains of B. anthracis and six close neighbours, were prepared and studied using identical media, protocols and instruments. Here, we report the spore length and diameter distributions, as determined by transmission electron microscopy (TEM). We calculated the aspect ratio and volume of each spore. All the studied strains of B. anthracis had similar diameter (mean range between 0.81 +/- 0.08 microm and 0.86 +/- 0.08 microm). The mean lengths of the spores from different B. anthracis strains fell into two significantly different groups: one with mean spore lengths 1.26 +/- 0.13 microm or shorter, and another group of strains with mean spore lengths between 1.49 and 1.67 microm. The strains of B. anthracis that were significantly shorter also sporulated with higher yield at relatively lower temperature. The grouping of B. anthracis strains by size and sporulation temperature did not correlate with their respective virulence. CONCLUSIONS: The spores of Bacillus subtilis and Bacillus atrophaeus (previously named Bacillus globigii), two commonly used simulants of B. anthracis, were considerably smaller in length, diameter and volume than all the B. anthracis spores studied. Although rarely used as simulants, the spores of Bacillus cereus and Bacillus thuringiensis had dimensions similar to those of B. anthracis. SIGNIFICANCE AND IMPACT OF THE STUDY: Spores of nonvirulent Bacillus species are often used as simulants in the development and testing of countermeasures for biodefence against B. anthracis. The data presented here should help in the selection of simulants that better resemble the properties of B. anthracis, and thus, more accurately represent the performance of collectors, detectors and other countermeasures against this threat agent. 相似文献
10.
Sanderson WT Stoddard RR Echt AS Piacitelli CA Kim D Horan J Davies MM McCleery RE Muller P Schnorr TM Ward EM Hales TR 《Journal of applied microbiology》2004,96(5):1048-1056
AIMS: Four inhalational anthrax cases occurred in a large mail processing and distribution center in Washington, DC, after envelopes containing Bacillus anthracis spores were processed. This report describes the results of sampling for B. anthracis spores during investigations conducted in October and December 2001. METHODS AND RESULTS: Wet swabs, wet wipes, vacuum sock, and air-filter samples were collected throughout the facility to characterize the extent of building contamination. The results showed widespread contamination of B. anthracis spores, particularly associated with one delivery bar code sorter (DBCS) machine that had sorted the spore-containing envelopes and an area where the envelopes were handled by postal workers. Spore concentrations decreased as distance from the DBCS machine increased, but spores were widely dispersed into surrounding areas. CONCLUSION: The spatial distribution of culture positive samples was closely related to the work areas of the inhalational anthrax cases and supported epidemiological evidence that the workers became ill from exposure to B. anthracis spores in areas where the contaminated envelopes had travelled. SIGNIFICANCE AND IMPACT OF THE STUDY: The results of this investigation were used to guide decontamination efforts and provided baseline spore concentrations for follow-up measurements after the building had been cleaned. Implementing methods to reduce aerosolization and dispersion of dust within the facility would reduce postal workers' potential exposures to bioterrorism agents. 相似文献
11.
Xiuli Dong 《Biofouling》2014,30(10):1165-1174
This study reports the inhibitory effect of single walled carbon nanotubes (SWCNTs) on biofilm formation from Bacillus anthracis spores. Although the presence of 50 to 100 μg ml?1 of SWCNTs in the suspension increased spore attachment in the wells of 96-well plates, the presence of 200 μg ml?1 of SWCNTs in the germination solution decreased the germination percentage of the attached spores by 93.14%, completely inhibiting subsequent biofilm formation. The inhibition kinetics of 50 μg ml?1 SWCNTs on biofilm formation showed that this concentration inhibited biofilm formation by 81.2% after incubation for 48 h. SWCNT treatment in the earlier stages of biofilm formation was more effective compared to treatment at later stages. Mature biofilms were highly resistant to SWCNT treatment. 相似文献
12.
Peter Setlow 《Journal of applied microbiology》2019,126(2):348-358
The purpose of this article is to highlight some areas of research with spores of bacteria of Firmicute species in which the methodology too commonly used is not optimal and generates misleading results. As a consequence, conclusions drawn from data obtained are often flawed or not appropriate. Topics covered in the article include the following: (i) the importance of using well-purified bacterial spores in studies on spore resistance, composition, killing, disinfection and germination; (ii) methods for obtaining good purification of spores of various species; (iii) appropriate experimental approaches to determine mechanisms of spore resistance and spore killing by a variety of agents, as well as known mechanisms of spore resistance and killing; (iv) common errors made in drawing conclusions about spore killing by various agents, including failure to neutralize chemical agents before plating for viable spore enumeration, and equating correlations between changes in spore properties accompanying spore killing with causation. It is hoped that a consideration of these topics will improve the quality of spore research going forward. 相似文献
13.
14.
15.
Aims: To determine the mechanism of wet heat killing of spores of Bacillus cereus and Bacillus megaterium. Methods and Results: Bacillus cereus and B. megaterium spores wet heat‐killed 82–99% gave two bands on equilibrium density gradient centrifugation. The lighter band was absent from spores that were not heat‐treated and increased in intensity upon increased heating times. These spores lacked dipicolinic acid (DPA) were not viable, germinated minimally and had much denatured protein. The spores in the denser band had viabilities as low as 2% of starting spores but retained normal DPA levels and most germinated, albeit slowly. However, these largely dead spores outgrew poorly if at all and synthesized little or no ATP following germination. Conclusions: Wet heat treatment appears to kill spores of B. cereus and B. megaterium by denaturing one or more key proteins, as has been suggested for wet heat killing of Bacillus subtilis spores. Significance and Impact of the Study: This work provides further information on the mechanisms of killing of spores of Bacillus species by wet heat, the most common method for spore inactivation. 相似文献
16.
17.
I. Grand M.‐N. Bellon‐Fontaine J.‐M. Herry D. Hilaire F.‐X. Moriconi M. Naïtali 《Journal of applied microbiology》2010,109(5):1706-1714
Aims: To evaluate the impact of the mode of contamination in relation with the nature of solid substrates on the resistance of spores of Bacillus atrophaeus ‐selected as surrogates of Bacillus anthracis‐ to a disinfectant, peracetic acid. Methods and Results: Six materials confronted in urban and military environments were selected for their different structural and physicochemical properties. In parallel, two modes of contamination were examined, i.e. deposition and immersion. Deposition was used to simulate contamination by an aerosol and immersion by an extended contact with liquids. A pronounced difference in the biocontamination levels and spatial organization of spores was observed depending on the mode of contamination and the nature of the solid substrate considered, with consequences on decontamination. Contamination by immersion led to lower efficiency of peracetic acid decontamination than contamination by deposition. Infiltration of spores into porous materials after immersion is one reason. In contrast, the deposition mode aggregates cells at the surface of materials, explaining the similar disinfecting behaviour of porous and nonporous substrates when considering this inoculation route. Conclusions: The inoculation route was shown to be as influential a parameter as material characteristics (porosity and wettability) for decontamination efficacy. Significance and Impact of the Study: These results provide comparative information for the decontamination of B. atrophaeus spores in function of the mode of contamination and the nature of solid substrates. 相似文献
18.
19.
20.
Evelyne Couture‐Tosi Jean‐Luc Ranck Georges Haustant Gerard Pehau‐Arnaudet Martin Sachse 《Biology of the cell / under the auspices of the European Cell Biology Organization》2010,102(11):609-619
Background information. Under conditions of starvation, bacteria of Bacillus ssp. are able to form a highly structured cell type, the dormant spore. When the environment presents more favourable conditions, the spore starts to germinate, which will lead to the release of the vegetative form in the life cycle, the bacillus. For Bacillus anthracis, the aetiological agent of anthrax, germination is normally linked to host uptake and represents an important step in the onset of anthrax disease. Morphological studies analysing the organization of the spore and the changes during germination at the electron microscopy level were only previously performed with techniques relying on fixation with aldehydes and osmium, and subsequent dehydration, which can produce artefacts. Results and conclusions. In the present study, we describe the morphology of dormant spores using CEMOVIS (Cryo‐Electron Microscopy of Vitreous Sections). Biosafety measures do not permit freezing of native spores of B. anthracis without chemical fixation. To study the influence of aldehyde fixation on the ultrastructure of the spore, we chose to analyse spores of the closely related non‐pathogen Bacillus cereus T. For none of the investigated structures could we find a difference in morphology induced by aldehyde fixation compared with the native preparations for CEMOVIS. This result legitimizes work with aldehyde‐fixed spores from B. anthracis. Using CEMOVIS, we describe two new structures present in the spore: a rectangular structure, which connects the BclA filaments with the basal layer of the exosporium, and a repetitive structure, which can be found in the terminal layer of the coat. We studied the morphological changes of the spore during germination. After outgrowth of the bacillus, coat and exosporium stay associated, and the layered organization of the coat, as well as the repetitive structure within it, remain unchanged. 相似文献