首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
从2013年11月至2014年11月,采用尼龙网袋法对华西雨屏区天然常绿阔叶林凋落物进行原位分解试验,模拟N(NH4NO3)沉降水平分别为对照(0 g N·m-2·a-1)、低氮沉降(5 g N·m-2·a-1)、中氮沉降(15 g N·m-2·a-1)和高氮沉降(30 g N·m-2·a-1),研究了N沉降对常绿阔叶林凋落物分解及其木质素和纤维素降解的影响.结果表明:华西雨屏区天然常绿阔叶林凋落物在夏季分解较快,明显快于其他季节.N沉降显著抑制了阔叶林凋落物的分解,抑制作用随N沉降量的增加而加强.N沉降使凋落物质量损失95%的时间与对照(4.81年)相比增加了0.53~1.88年.经过1 年的分解,中氮沉降和高氮沉降处理木质素和纤维素残留率显著高于对照,表明N沉降显著抑制了凋落物木质素和纤维素的降解.凋落物质量残留率与木质素和纤维素残留率呈显著正相关.N沉降抑制凋落物分解的原因可能是无机N的添加对木质素和纤维素的降解造成了阻碍.  相似文献   

2.
氮钾对慈竹纤维素和木质素动态积累的调控效应   总被引:1,自引:0,他引:1  
以慈竹为材料,通过施用不同比例的氮、钾肥,研究其对慈竹木质素和纤维素分布和动态积累的调控效应,为慈竹优质栽培提供理论依据。研究结果表明,氮钾肥处理并没有改变木质素和纤维素动态积累趋势,不同处理的慈竹木质素的动态积累呈先上升后下降的趋势,而纤维素的动态积累呈上升的趋势;慈竹不同部位木质素和纤维素的分布呈下部>中部>上部的趋势。施用氮、钾肥可以降低慈竹木质素含量,降低幅度为1.05%~3.97%,提高纤维素含量,提高幅度为1.25%~3.36%。N、K肥和时间对慈竹木质素和纤维素含量总变异的贡献都是N×K>N>TIME>K>N×K×TIME>N×TIME>K×TIME。慈竹纤维素和木质素含量之间呈不明显的正相关关系(r=0.020 4)。  相似文献   

3.
In the U.S., high elevation spruce-fir forests receive greater amounts of nitrogen deposition relative to low elevation areas. At high elevations the cycling of nitrogen is naturally low due to slower decomposition and low biological N demand. The combination of these factors make spruce-fir ecosystems potentially responsive to changes in N inputs.Excess nitrogen deposition across the northeastern United States and Europe has provided an opportunity to observe ecosystem response to changing N inputs. Effects on foliar and forest floor chemistry were examined in a field study of 161 spruce-fir sites across a longitudinal (west-to-east) N deposition gradient. Both foliar elemental concentrations and forest floor elemental concentrations and rates of potential N mineralization were correlated with position along this gradient.Nitrogen deposition was positively correlated with potential forest floor nitrification and mineralization, negatively correlated with forest floor C:N and Mg concentrations and with spruce foliar lignin, lignin:N and Mg:N ratios. Foliar lignin:N and forest floor C:N were positively correlated and both were negatively correlated with nitrification and mineralization. Correlations found between forest floor and foliar N and Mg concentrations support the theory of nutrient imbalance as a potential cause of forest decline.  相似文献   

4.
滇中亚高山地带性植被凋落物分解对模拟氮沉降的响应   总被引:4,自引:0,他引:4  
模拟氮(N)沉降对凋落物分解特征的影响对研究森林生态系统物质循环响应大气N沉降的内在机理和应对N沉降全球化具有重要意义。从2018年2月至2019年1月,对滇中亚高山常绿阔叶林(Evergreen broad-leaf forest)和高山栎林(Quercus semecarpifolia forest)两种地带性植被进行模拟N沉降试验,利用尼龙网袋法对两种林型凋落叶和凋落枝进行原位分解试验,N沉降处理水平分别为对照CK(Control check,0 g N m-2 a-1)、低氮LN(Low nitrogen,5 g N m-2 a-1)、中氮MN(Medium nitrogen,15 g N m-2 a-1)和高氮HN(High nitrogen,30 g N m-2 a-1)。结果表明:常绿阔叶林凋落叶和凋落枝分解率分别为44.84%和21.96%,均高于高山栎林的35.97%(凋落叶)和17.51%(凋落枝);N沉降处理使得常绿阔叶林和高山栎林的凋落叶和凋落枝质量损失95%的时间在对照(CK)的基础上均有一定程度的增加,其中以HN处理下最为显著;经过1年的分解,两种林型凋落叶、枝纤维素和木质素降解均受到N沉降的抑制作用;两种林型中凋落物质量残留率、纤维素和木质素残留率三者间呈极显著正相关。针对滇中亚高山区域范围内的两种地带性植被,凋落物分解对N沉降的响应方向主要取决于凋落物基质质量,其中尤以纤维素和木质素为重要影响因素。  相似文献   

5.
To study the incorporation of carbon and nitrogen in different plant fractions, 3‐year‐old‐beech (Fagus sylvatica L.) seedlings were exposed in microcosms to a dual‐labelling experiment employing 13C and 15N throughout one season. Leaves, stems, coarse and fine roots were harvested 6, 12 and 18 weeks after bud break (June to September) and used to isolate acid‐detergent fibre lignins (ADF lignin) for the determination of carbon and nitrogen and their isotope ratios. Lignin concentrations were also determined with the thioglycolic acid method. The highest lignin concentrations were found in fine roots. ADF lignins of all tissues analysed, especially those of leaves, also contained significant concentrations of nitrogen. This suggests that lignin‐bound proteins constitute an important cell wall fraction and shows that the ADF method is not suitable to determine genuine lignin. ADF lignin should be re‐named as ligno‐protein fraction. Whole‐leaf biomass was composed of 50 to 70% newly assimilated carbon and about 7% newly assimilated nitrogen; net changes in the isotope ratios were not observed during the experimental period. In the other tissues analysed, the fraction of new carbon and nitrogen was initially low and increased significantly during the time‐course of the experiment, whereas the total tissue concentrations of carbon remained almost unaffected and nitrogen declined. At the end of the experiment, the whole‐tissue biomass and ADF lignins of fine roots contained about 65 and 50% new carbon and about 50 and 40% new nitrogen, respectively. These results indicate that significant metabolic activity was related to the formation of structural biopolymers after leaf growth, especially below‐ground and that this activity also led to a substantial binding of nitrogen to structural compounds.  相似文献   

6.
In Patagonian Monte, as in other arid ecosystems, grazing has triggered changes in vegetation and soil such as plant cover reduction, changes in species composition and soil nutrient losses. Several mechanisms were proposed interconnecting these changes, but evidence supporting them is very scarce. On the basis of published data concerning plant cover by species along grazing gradients and leaf litter production of dominant species, we estimated the effects of grazing on a – quality (N, soluble phenolics and lignin concentrations) and b – quantity (leaf litterfall (LLF) and inputs of nitrogen, soluble phenolics and lignin to the soil) of leaf litter in the Patagonian Monte, discriminating the effect of plant cover reduction from that of species composition. We also evaluated the relationship between senesced leaves traits and the response of species to grazing (i.e. their relative change in plant cover). Grazing causes a reduction in LLF and in the inputs of nitrogen, soluble phenolics and lignin to the soil. In the case of LLF, this reduction was not only a result of the decrease in plant cover but also due to changes in species composition. In contrast, our results showed that the reduction in nitrogen, soluble phenolics and lignin inputs to the soil by LLF is only a consequence of plant cover reduction. Additionally, litter quality was affected through increasing concentration of N and secondary compounds (soluble phenolics and lignin). N and soluble phenolics concentration on senesced leaves were positively related to the response of species to grazing, suggesting that other factors instead of N are relevant to sheep foraging decisions.  相似文献   

7.
Immobilization and mobilization of nitrogen and phosphorus were investigated in relation to the nitrogen (L/N) ratio and lignin to the phosphorus (L/P) ratio as indicators of the nitrogen and phosphorus dynamics. The present study was carried out on upper and lower parts of a forest slope in a cool temperate forest in Japan. Net immobilization and net mobilization characterized the dynamics of nitrogen and phosphorus in 14 litter types and were related to the changes in the L/N and L/P ratio. The critical values of the L/N and L/P ratio at which the mobilization began were 23–25 and 500–620, respectively. In litter types with the L/N and L/P ratio higher than critical values, nitrogen and phosphorus were immobilized until the ratios reached at the critical values and then nitrogen and phosphorus began decreasing. In litter types with initial L/N and L/P ratios lower than or equal to the critical values, nitrogen and phosphorus were released from litter. The critical values of the L/N and L/P ratios showed convergent trends among litter types as compared to their initial values, and were approached to those of underlying humus layers. These results indicated the usefulness of L/N and L/P ratios as indicators of the nitrogen and phosphorus dynamics in the study site. The general validity of the L/N ratio as an indicator of nitrogen dynamics and the convergent trend of critical L/N ratio at 25–30 were demonstrated by a review of literature on lignin and nitrogen dynamics in 47 litter types in temperate and boreal forests.  相似文献   

8.
Nitrogen release from litter in relation to the disappearance of lignin   总被引:5,自引:1,他引:4  
Nitrogen dynamics were followed in several decomposing forest foliage litters in two contrasting ecosystem types. Litter types showing a significant net accumulation before a net release started were subjected to a study on nitrogen release mechanisms. In all cases no net release of nitrogen took place until a decomposition of the recalcitrant lignin fraction had started. The use of lignin as a predictor for the onset of a net nitrogen release was found to be better than the C/N ratio.  相似文献   

9.
Comparing two tree species, we tested the effects of root diameter (up to 30 mm) and soil depth (down to 1.2 m) on the concentrations of lignin, cellulose and nitrogen (N) in roots of approximately 50-year-old Douglas fir and European beech growing in a temperate forest in South-western Germany. Fine roots (diameter 0.5–2 mm) exhibited significantly higher lignin concentrations, but lower cellulose concentrations than medium or coarse roots (diameter >5 mm). The cellulose and lignin concentrations of the roots as well as their lignin:cellulose ratios did not differ significantly among soil depths. In the Douglas fir, there was a tendency of decreasing N concentrations and increasing lignin:N ratios with increasing soil depth. This trend was absent or less pronounced in the beech. Beech roots displayed significantly higher cellulose and N concentrations and lower lignin:cellulose and lignin:N ratios than roots of the Douglas fir. Generally, the lignin concentrations of the roots did not differ between the tree species. Cellulose and lignin concentrations exhibited a significantly negative correlation. As several studies have demonstrated that plant litter decomposition is governed by the lignin:cellulose and lignin:N ratios more than by the lignin concentration of the detritus, the fraction of individual tree species in the stand composition might affect the decomposability of roots in beech–Douglas fir forests, and might also have an influence on soil carbon sequestration.  相似文献   

10.
Magill  Alison H.  Aber  John D. 《Plant and Soil》1998,203(2):301-311
Decomposition rates and N dynamics of foliar litter from 4 tree species were measured over a 72 month period on the Chronic Nitrogen Addition plots at the Harvard Forest, Petersham MA, beginning in November 1988. Plots received nitrogen additions of 0, 5 and 15 g N m-2yr-1 in two different stand types: red pine and mixed hardwood. Bags were collected in August and November of each year and litter analysed for mass remaining, nitrogen, cellulose and lignin content. Mass remaining was significantly greater for litter in nitrogen treated plots than in control plots after 48 months. Lignin content of litter was significantly higher with nitrogen treatments but there was little effect of treatment on cellulose content. N concentration was similar between treatments, but greater mass remaining in treated plots resulted in a higher total amount of N in humus produced in the high N plot. This mechanism could be a sink for up to 1.5 g N·m-2yr-1 of the 1.5 g N·m-2yr-1 added annually to the high N plots. Reduced decomposition rates in conjunction with increased lignin accumulation could impact global carbon sequestration as well.  相似文献   

11.
不同林龄马尾松凋落物基质质量与土壤养分的关系   总被引:9,自引:0,他引:9  
凋落物的质量、数量及分解速率在一定程度上代表了土壤的营养状况。为了精确估算凋落物分解对土壤碳库的年净归还量及凋落物-土壤生物化学连续体的深层理解,从凋落物基质质量的角度分析了三峡库区不同林龄马尾松凋落物基质质量与土壤养分的作用关系,结果表明:中龄林、近熟林、成熟林马尾松凋落物基质质量中的C、C/N比、C/P比、木质素/N比、木质素/P比差异显著,其中近熟林凋落物叶木质素/N分别比中龄林和成熟林的高33.65%、39.24%,N、P、K、木质素含量差异不显著;但各组织器官的N、P、K含量差异显著,均是皮<枝<叶<杂物,C/N比、C/P比的变化则相反。不同林龄马尾松0-20 cm(0-5 cm、5-10 cm、10-20 cm)土壤有机质、总氮、有效磷含量均表现出近熟林<中龄林<成熟林,0-5 cm最大,10-20 cm最小,且随着土壤深度的增加而明显降低,总磷则是中林龄最低,成熟林最大,pH值则各土层均表现为中龄林<成熟林<近熟林,平均pH值为4.55-5.51。凋落物基质质量指标与土壤养分之间冗余分析(RDA)表明:马尾松凋落物基质质量和土壤养分之间关系紧密,N、P、纤维素、半纤维素、木质素、木质素/N比、C/N比对土壤养分影响比较大;凋落物中木质素/N比、C/N比与土壤有机质呈显著负相关,其含量越高越不利于土壤有机质的形成,土壤养分积累的越慢;凋落物基质质量氮含量与土壤氮含量呈显著正相关;土壤pH值、容重与N含量呈显著负相关,与凋落物C/N比、木质素/N比呈显著正相关。马尾松土壤表面有机质、N、P养分含量与凋落物基质质量对应养分含量变化规律一致,土壤养分高,凋落物基质质量相对较高,土壤贫瘠,凋落物基质质量相对较低。  相似文献   

12.
模拟氮沉降对华西雨屏区苦竹林凋落物基质质量的影响   总被引:2,自引:0,他引:2  
凋凋落物基质质量是影响凋落物分解速率的决定性因子之一,本研究旨在探究模拟氮沉降对苦竹林凋落物基质质量的影响。2007年11月至2010年12月每月一次连续对华西雨屏区苦竹人工林进行了模拟氮沉降试验,施氮水平分别为:低氮(5 g N?m–2?a–1),中氮(15 g N?m–2?a–1)和高氮(30 g N?m–2?a–1)。在施氮2 a后,于2010年1月开始收集各样方的凋落物样品,连续收集12个月,分析测定凋落物基质质量。结果表明:施氮显著增加了凋落叶中N、P元素含量,中氮处理显著增加了凋落枝中N元素含量,中氮和高氮处理均显著增加了凋落枝中P元素含量;施氮对凋落物中C元素含量影响很微弱,显著降低了凋落叶中的C/N,中氮处理显著降低了凋落枝中的C/N,对木质素和纤维素含量均未造成显著影响。由于模拟氮沉降增加了苦竹凋落物的N、P含量,降低了其C/N,因此氮沉降可能会促进苦竹凋落物的初期分解速率。  相似文献   

13.
Green manures from seven tropical leguminous trees were incubated with soil to determine the rates and controls of net nitrogen release. Fresh green manure (leaves and succulent twigs) was mixed with moist soil and incubated in polyethylene bags. Net N mineralization from green manures was estimated by the accumulation of extractable ammonium and nitrate minus the accumulation in soil alone. Patterns of N mineralization were complex, differed among species, and at 12 weeks ranged from 10 to 65 percent of original green-manure N. Cumulative net N mineralization was negatively correlated with initial soluble polyphenol content in the early phases of decomposition (1 through 8 weeks) and with initial lignin content in later phases (4 through 12 weeks). Neither initial percent N nor lignin: N ratio were strongly correlated with N mineralization. The best chemical index of N release was the initial polyphenol: N ratio. This study confirms previous findings that N mineralization from tropical legumes is controlled more by soluble polyphenols than by lignin or N content.  相似文献   

14.
A 12-week greenhouse experiment was conducted to determine the effect of the polyphenol, lignin and N contents of six legumes on their N mineralization rate in soil and to compare estimates of legume-N release by the difference and 15N-recovery methods. Mature tops of alfalfa (Medicago sativa L.), round leaf cassia (Cassia rotundifolia Pers., var. Wynn), leucaena (Leucaena leucocephala Lam., deWit), Fitzroy stylo (Stylosanthes scabra Vog., var Fitzroy), snail medic (Medicago scutellata L.), and vigna (Vigna trilobata L., var verde) were incorporated in soil at the rate of 100 mg legume N kg-1 soil. The medic and vigna were labeled with 15N. Sorghum-sudan hybrid (Sorghum bicolor, L. Moench) was used as the test crop. A non-amended treatment was used as a control. Net N mineralization after 12 weeks ranged from 11% of added N with cassia to 47% of added N for alfalfa. With the two legumes that contained less than 20 g kg-1 of N, stylo and cassia, there was net N immobilization for the first 6 weeks of the experiment. The legume (lignin + polyphenol):N ratio was significantly correlated with N mineralization at all sampling dates at the 0.05 level and at the 0.01 level at 6 weeks (r2=0.866). Legume N, lignin, or polyphenol concentrations or the lignin:N ratio were not significantly correlated with N mineralization at any time. The polyphenol:N ratio was only significantly correlated with N mineralization after 9 weeks (r2=0.692). The (lignin + polyphenol):N ratio appears to be a good predictor of N mineralization rates of incorporated legumes, but the method for analyzing plant polyphenol needs to be standardized. Estimates of legume-N mineralization by the difference and 15N recovery methods were significantly different at all sampling dates for both 15N-labeled legumes. After 12 weeks, estimates of legume-N mineralization averaged 20% more with the difference method than with the 15N recovery method. This finding suggests that estimates of legume N available to subsequent crops should not be based solely on results from 15N recovery experiments.  相似文献   

15.
2018年2月至2019年1月,利用尼龙网袋法对滇中亚高山华山松和云南松两种人工林开展模拟氮(N)沉降下凋落叶和凋落枝原位分解试验,N沉降水平分别为对照(CK, 0 g N·m-2·a-1)、低N(LN, 5 g N·m-2·a-1)、中N(MN, 15 g N·m-2·a-1)和高N(HN, 30 g N·m-2·a-1)。结果表明: 华山松凋落叶和凋落枝年分解率分别为34.8%和18.0%,分别高于云南松凋落叶的32.2%和凋落枝的16.1%。模拟N沉降下,LN处理使华山松凋落叶、枝分解95%所需时间较对照分别减少0.202和1.624年,MN处理分别减少0.045和1.437年,HN处理则分别增加0.840和2.112年;LN处理使云南松凋落叶、枝分解95%所需时间较对照分别减少0.766和4.053年,MN处理分别增加0.366和0.455年,HN处理分别增加0.826和0.906年。经过1年的分解,低N处理促进了华山松和云南松凋落物(叶、枝)的分解,而高N处理表现为抑制作用;N沉降对两种林型凋落物分解的影响与凋落物中纤维素和木质素含量密切相关。可见,凋落物基质质量在一定程度上决定了凋落物分解对N沉降的响应情况,尤其是纤维素和木质素含量。  相似文献   

16.
为研究湿地植物分解过程中木质素分解与碳、氮、磷元素释放之间的关系及其对不同地下水位环境梯度的响应,在鄱阳湖典型碟形湖泊-白沙湖设置了200 m×300 m分解试验样地,沿地下水位梯度划分4个试验样带(从湖岸到湖心依次为GT-A, GT-B, GT-C, GT-D),采用分解袋法模拟了典型湿地植物灰化薹草在不同地下水位环境的分解过程。结果表明,分解15 d后,地下水位的升高促进了木质素的分解和碳、氮、磷元素的释放;在分解第60—90天,碳、氮、磷元素的相对归还指数随着木质素分解速率的升高而显著增大,并且相关性程度随着分解时间先增强,后减弱;分解过程中土壤pH、含水量和微生物量碳、氮对木质素的分解和碳、氮、磷元素的归还具有显著的促进作用。研究结果将有助于深化对湿地植物分解和生物地球化学循环过程的认识,为湿地自然保护区的科学有效管理提供理论依据。  相似文献   

17.
通过对阔叶红松林和红松人工林2种林型凋落物处理(分别为不添加凋落物(原样组)、添加凋落物(双倍组)和去除凋落物(去除组)等3个处理)与模拟氮磷沉降(分别为对照CK (0 g N m-2 a-1、0 g P m-2 a-1)、低浓度氮磷(5 g N m-2 a-1、5 g P m-2 a-1)、中浓度氮磷(15 g N m-2 a-1、10g P m-2 a-1)和高浓度氮磷(30 g N m-2 a-1、20 g P m-2 a-1)等4个强度)原位培养试验,研究凋落物质量的增加与氮磷沉降及两种处理的耦合作用对碳(C)和木质素分解释放的影响。结果表明:凋落物添加在试验前期(6月)抑制人工林L层的C释放,促进H层的C释放;试验后期(10月)促进人工林L层C释放,而抑制H层的C释放。凋落物添加在前期(6月)是促进天然林L层C释放的,但在后期(10月)产生抑制作用。与L层相反,凋落物添加持续促进天然林H层的C释放。低、中浓度氮磷沉降显著促进了红松人工林和阔叶红松林L、H层C释放和木质素降解,但高浓度的氮磷添加会抑制C释放和木质素的降解,两种处理之间无交互作用。  相似文献   

18.
为理解氮沉降对华西雨屏区天然常绿阔叶林凋落物分解过程的影响,采用立地控制实验和凋落物分解袋法,研究了低氮沉降(L,50 kg N hm~(-2)a~(-1))、中氮沉降(M,150 kg N hm~(-2)a~(-1))和高氮沉降(H,300 kg N hm~(-2)a~(-1))对华西雨屏区天然常绿阔叶林凋落叶分解过程中基质质量的影响。结果表明:N沉降抑制了凋落叶的分解,并随着N沉降量的增加,抑制作用增强。N沉降遏制了凋落叶的C、N释放和纤维素降解,促进了P释放。N沉降提高了凋落叶的C/P比,中氮和高氮处理提高了凋落叶C/N比。N沉降显著增加了凋落叶N、木质素和纤维素的含量,分解1年后,各N沉降处理的木质素/N和纤维素/N均显著高于对照。N沉降提高了质量残留率与C/N、木质素/N和纤维素/N的相关性,降低了与C/P的相关性。可见,模拟N沉降显著影响了华西雨屏区天然常绿阔叶林凋落叶分解过程中的基质质量,进而影响了凋落叶的分解过程。  相似文献   

19.
(sup14)C-synthetic lignin mineralization by the basidiomycete Ceriporiopsis subvermispora occurs at the highest rate (about 30% after 29 days) in liquid cultures containing 1% glucose and a growth-limiting amount (1 mM) of ammonium tartrate. The titers of manganese peroxidase (MnP) and laccase are lower in these cultures than in cultures containing 1% glucose and 10 mM ammonium tartrate, where the extent of lignin mineralization in the same period is only about 15%. The inverse correlation between enzyme activity and lignin mineralization is also observed when ammonium tartrate is replaced by ammonium chloride or Casamino Acids as the source of nitrogen. This phenomenon can be explained by a gradual increase in the pH of the medium that takes place only in the cultures with high nitrogen concentrations. Supporting this finding, when cultures with 1 mM ammonium tartrate were grown at different pHs, (sup14)CO(inf2) evolved more rapidly from those with pH values near the optimum for MnP activity. On the other hand, (sup14)CO(inf2) evolution from cultures containing 1% glucose supplemented with 1 mM ammonium tartrate plus 9 mM sodium tartrate was as low as that from cultures with a high ammonium tartrate concentration. Since the changes in the pH of these cultures were not as pronounced as those in cultures containing high nitrogen concentrations, tartrate itself may also be contributing to limit the extent of lignin mineralization. Considering that pH instability seems to constitute a common feature of fungal cultures, precautions must be taken to avoid underestimation of their ligninolytic efficiencies.  相似文献   

20.
Previous work in a young Hawaiian forest has shown that nitrogen (N) limits aboveground net primary production (ANPP) more strongly than it does decomposition, despite low soil N availability. In this study, I determined whether (a) poor litter C quality (that is, high litter lignin) poses an overriding constraint on decomposition, preventing decomposers from responding to added N, or (b) high N levels inhibit lignin degradation, lessening the effects of added N on decomposition overall. I obtained leaf litter from one species, Metrosideros polymorpha, which dominates a range of sites in the Hawaiian Islands and whose litter lignin concentration declines with decreasing precipitation. Litter from three dry sites had lignin concentrations of 12% or less, whereas litter from two wet sites, including the study site, had lignin concentrations of more than 18%. This litter was deployed 2.5 years in a common site in control plots (receiving no added nutrients) and in N-fertilized plots. Nitrogen fertilization stimulated decomposition of the low-lignin litter types more than that of the high-lignin litter types. However, in contrast to results from temperate forests, N did not inhibit lignin decomposition. Rather, lignin decay increased with added N, suggesting that the small effect of N on decomposition at this site results from limitation of decomposition by poor C quality rather than from N inhibition of lignin decay. Even though ANPP is limited by N, decomposers are strongly limited by C quality. My results suggest that anthropogenic N deposition may increase leaf litter decomposition more in ecosystems characterized by low-lignin litter than in those characterized by high-lignin litter. Received 26 October 1999; accepted 2 June 2000.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号