首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Previous comparative and developmental studies have suggested that the cholinergic inner ear efferent system derives from developmentally redirected facial branchial motor neurons that innervate the vertebrate ear hair cells instead of striated muscle fibers. Transplantation of Xenopus laevis ears into the path of spinal motor neuron axons could show whether spinal motor neurons could reroute to innervate the hair cells as efferent fibers. Such transplantations could also reveal whether ear development could occur in a novel location including afferent and efferent connections with the spinal cord. Ears from stage 24-26 embryos were transplanted from the head to the trunk and allowed to mature to stage 46. Of 109 transplanted ears, 73 developed with otoconia. The presence of hair cells was confirmed by specific markers and by general histology of the ear, including TEM. Injections of dyes ventral to the spinal cord revealed motor innervation of hair cells. This was confirmed by immunohistochemistry and by electron microscopy structural analysis, suggesting that some motor neurons rerouted to innervate the ear. Also, injection of dyes into the spinal cord labeled vestibular ganglion cells in transplanted ears indicating that these ganglion cells connected to the spinal cord. These nerves ran together with spinal nerves innervating the muscles, suggesting that fasciculation with existing fibers is necessary. Furthermore, ear removal had little effect on development of cranial and lateral line nerves. These results indicate that the ear can develop normally, in terms of histology, in a new location, complete with efferent and afferent innervations to and from the spinal cord.  相似文献   

3.
Vertebrate hair cell systems receive innervation from efferent neurons in the brain. Here we report the responses of octavolateral efferent neurons that innervate the inner ear and lateral lines in a teleost fish, Dormitator latifrons, to directional linear accelerations, and compare them with the afferent responses from the saccule, the main auditory organ in the inner ear of this species. Efferent neurons responded to acoustic stimuli, but had significantly different response properties than saccular afferents. The efferents produced uniform, omnidirectional responses with no phase-locking. Evoked spike rates increased monotonically with stimulus intensity. Efferents were more broadly tuned and responsive to lower frequencies than saccular afferents, and efferent modulation of the otolithic organs and lateral lines is likely more pronounced at lower frequencies. The efferents had wide dynamic ranges, shallow rate-level function slopes, and low maximum discharge rates. These findings support the role of the efferent innervation of the otolithic organs as part of a general arousal system that modulates overall sensitivity of the peripheral octavolateral organs. In addition, efferent feedback may help unmask biologically relevant directional stimuli, such as those emitted by a predator, prey, or conspecific, by reducing sensitivity of the auditory system to omnidirectional ambient noise.  相似文献   

4.
In all vertebrates, eighth nerve fibres from the inner ear distribute to target nuclei situated in the dorsolateral wall of the rhombencephalon. In amniotes, primary auditory and vestibular nuclei are readily delineated in that acoustic nuclei lie dorsal and sometimes rostral to vestibular nuclei. Fishes and aquatic amphibians have, in addition to labyrinthine organs, hair cell receptors in the lateral line system. Eighth nerve and lateral line fibres from these sense organs project to the octavolateralis region of the rhombencephalon. In this region, the primary nuclei cannot be easily divided into functionally distinct units. However, modality-specific zones seem to be present for auditory as well as lateral line projections lie dorsal and sometimes rostral to those from vestibular organs. Projections from the primary auditory and vestibular nuclei to higher order centres follow pathways which are conservative in their architecture among vertebrates. Ascending auditory fibres project either directly or via relay nuclei to a large midbrain center, the torus semicircularis (inferior colliculus) and hence to the forebrain. In fishes and aquatic amphibians, the lateral line system also sends a projection to the midbrain and information from this system may be integrated with auditory input at that level. The organization of vestibulospinal and vestibulo-ocular pathways shows little variation throughout vertebrate phylogeny. The sense organs of the inner ear of all vertebrates and of the lateral line system of anamniotes receive an efferent innervation. In anamniotes and some reptiles, the efferent supply originates from a single nucleus (Octavolateralis Efferent Nucleus) while that of "higher" vertebrates arises from separate auditory and vestibular efferent nuclei. The biological significance of this innervation for all vertebrates is not yet understood. However, an important feature common to all is the association of the efferent system with the motor centres of the hindbrain.  相似文献   

5.
The function of the orphan glutamate receptor delta subunits (GluRdelta1 and GluRdelta2) remains unclear. GluRdelta2 is expressed exclusively in the Purkinje cells of the cerebellum, and GluRdelta1 is prominently expressed in inner ear hair cells and neurons of the hippocampus. We found that mice lacking the GluRdelta1 protein displayed significant cochlear threshold shifts for frequencies of >16 kHz. These deficits correlated with a substantial loss of type IV spiral ligament fibrocytes and a significant reduction of endolymphatic potential in high-frequency cochlear regions. Vulnerability to acoustic injury was significantly enhanced; however, the efferent innervation of hair cells and the classic efferent inhibition of outer hair cells were unaffected. Hippocampal and vestibular morphology and function were normal. Our findings show that the orphan GluRdelta1 plays an essential role in high-frequency hearing and ionic homeostasis in the basal cochlea, and the locus encoding GluRdelta1 represents a candidate gene for congenital or acquired high-frequency hearing loss in humans.  相似文献   

6.
Hair cells, the sensory cells of inner ear, perform essential functions in hearing and balance. However, mammalian hair cells, like most of the CNS neurons, lack the capacity to regenerate. This is in sharp contrast to lower vertebrates in which hair cell regeneration occurs spontaneously through cell division of supporting cells, which leads to hearing restoration. It is believed that the lack of regeneration in mammals is, to a large degree, due to the block of cell cycle re-entry imposed by negative cell growth genes in the inner ear. Recent studies have identified retinoblastoma gene, a well-known tumor suppressor, as the key gene involved in cell cycle exit of inner ear sensory cells. In the inner ear of pRb conditional knockout mice, hair cells undergo continuous cell division, and at the same time differentiate and become functional. Cell division continues in early postnatal cochlea and adult vestibule. Remarkably, the vestibular hair cells without pRb survive, and function at both the cellular and system levels. The time course and effects of pRb inhibition shows that there is a separation between the roles of pRb in cell cycle exit, and subsequent maturation and apoptosis. Those studies reveal distinctly different roles of pRb in the cochlear and vestibular sensory epithelia. The review discusses additional areas to be studied for regeneration of mature hair cells, and highlights the importance of transient and reversible block of pRb function as one of the routes to be explored for regeneration.  相似文献   

7.
The inner ear of mammals uses neurosensory cells derived from the embryonic ear for mechanoelectric transduction of vestibular and auditory stimuli (the hair cells) and conducts this information to the brain via sensory neurons. As with most other neurons of mammals, lost hair cells and sensory neurons are not spontaneously replaced and result instead in age-dependent progressive hearing loss. We review the molecular basis of neurosensory development in the mouse ear to provide a blueprint for possible enhancement of therapeutically useful transformation of stem cells into lost neurosensory cells. We identify several readily available adult sources of stem cells that express, like the ectoderm-derived ear, genes known to be essential for ear development. Use of these stem cells combined with molecular insights into neurosensory cell specification and proliferation regulation of the ear, might allow for neurosensory regeneration of mammalian ears in the near future.  相似文献   

8.
The evolutionary origin of novelties is a central problem in biology. At a cellular level this requires, for example, molecularly resolving how brainstem motor neurons change their innervation target from muscle fibers (branchial motor neurons) to neural crest-derived ganglia (visceral motor neurons) or ear-derived hair cells (inner ear and lateral line efferent neurons). Transplantation of various tissues into the path of motor neuron axons could determine the ability of any motor neuron to innervate a novel target. Several tissues that receive direct, indirect, or no motor innervation were transplanted into the path of different motor neuron populations in Xenopus laevis embryos. Ears, somites, hearts, and lungs were transplanted to the orbit, replacing the eye. Jaw and eye muscle were transplanted to the trunk, replacing a somite. Applications of lipophilic dyes and immunohistochemistry to reveal motor neuron axon terminals were used. The ear, but not somite-derived muscle, heart, or liver, received motor neuron axons via the oculomotor or trochlear nerves. Somite-derived muscle tissue was innervated, likely by the hypoglossal nerve, when replacing the ear. In contrast to our previous report on ear innervation by spinal motor neurons, none of the tissues (eye or jaw muscle) was innervated when transplanted to the trunk. Taken together, these results suggest that there is some plasticity inherent to motor innervation, but not every motor neuron can become an efferent to any target that normally receives motor input. The only tissue among our samples that can be innervated by all motor neurons tested is the ear. We suggest some possible, testable molecular suggestions for this apparent uniqueness.  相似文献   

9.
Originally, intestinal motility was thought to be exclusively regulated by myenteric neurons. Some years ago, however, it was demonstrated in large mammals that submucous neurons also participate in the innervation of the circular smooth muscle layer. To date, no information is available about the submucous innervation of the longitudinal smooth muscle layer (LM). This study provides evidence that in the small intestine of large mammals, the LM is innervated not only by the myenteric plexus, but also by the inner and outer submucous plexuses (ISP and OSP). In the porcine small intestine, the involved neurons can be subdivided into the following neurochemically distinct populations: leu-enkephalin (ENK)- and/or substance P (SP)-IR neurons and nitric oxide synthase (NOS)- and/or vasoactive intestinal polypeptide (VIP)-IR neurons. In the myenteric plexus, the majority of VIP- and/or NOS-IR neurons and ENK(+)/SP(-)-IR neurons exhibit descending projections, whereas ENK(+)/SP(+)-IR neurons preferentially have ascending projections. The ENK(-)/SP(+)-IR neurons do not show a polarized pattern. In the OSP, only ENK(+)/SP(-)- and VIP(+)/NOS(-)-IR neurons display a polarized (descending) projection pattern, whereas no polarization can be noted in the ISP. Morphological analysis of the traced neurons revealed that, in general, myenteric descending LM motor neurons have larger cell bodies than ascending ones and, in addition, myenteric descending VIP- and/or NOS-IR neurons have longer projections than ENK and/or SP-IR neurons. In conclusion, the present study demonstrates the involvement of not only myenteric, but also submucous neurons in the innervation of the LM. The two major populations are descending nitrergic neurons and ascending tachykinergic motor neurons, but also other subpopulations with specific projection patterns and neurochemical features have been identified.  相似文献   

10.
The distribution of acetylcholinesterase (AChE) in the central vocal control nuclei of the zebra finch was studied using enzyme histochemistry. AChE fibres and cells are intensely labelled in the forebrain nucleus area X, strongly labelled in high vocal centre (HVC) perikarya, and moderately to lightly labelled in the somata and neuropil of vocal control nuclei robust nucleus of arcopallium (RA), medial magnocellular nucleus of the anterior nidopallium (MMAN) and lateral magnocellular nucleus of the anterior nidopallium (LMAN). The identified sites of cholinergic and/or cholinoceptive neurons are similar to the cholinergic presence in vocal control regions of other songbirds such as the song sparrow, starling and another genus of the zebra finch (Poephila guttata), and to a certain extent in parallel vocal control regions in vocalizing birds such as the budgerigar. AChE presence in the vocal control system suggests innervation by either afferent projecting cholinergic systems and/or local circuit cholinergic neurons. Co-occurrence with choline acetyltransferase (ChAT) indicates efferent cholinergic projections. The cholinergic presence in parts of the zebra finch vocal control system, such as the area X, that is also intricately wired with parts of the basal ganglia, the descending fibre tracts and brain stem nuclei could underlie this circuitry’s involvement in sensory processing and motor control of song.  相似文献   

11.
The functional role of efferent innervation of the vestibular end-organs in the inner ear remains elusive. This study provides the first physiological characterization of the cholinergic vestibular efferent (VE) neurons in the brainstem by utilizing a transgenic mouse model, expressing eGFP under a choline-acetyltransferase (ChAT)-locus spanning promoter in combination with targeted patch clamp recordings. The intrinsic electrical properties of the eGFP-positive VE neurons were compared to the properties of the lateral olivocochlear (LOC) brainstem neurons, which gives rise to efferent innervation of the cochlea. Both VE and the LOC neurons were marked by their negative resting membrane potential <−75 mV and their passive responses in the hyperpolarizing range. In contrast, the response properties of VE and LOC neurons differed significantly in the depolarizing range. When injected with positive currents, VE neurons fired action potentials faithfully to the onset of depolarization followed by sparse firing with long inter-spike intervals. This response gave rise to a low response gain. The LOC neurons, conversely, responded with a characteristic delayed tonic firing upon depolarizing stimuli, giving rise to higher response gain than the VE neurons. Depolarization triggered large TEA insensitive outward currents with fast inactivation kinetics, indicating A-type potassium currents, in both the inner ear-projecting neuronal types. Immunohistochemistry confirmed expression of Kv4.3 and 4.2 ion channel subunits in both the VE and LOC neurons. The difference in spiking responses to depolarization is related to a two-fold impact of these transient outward currents on somatic integration in the LOC neurons compared to in VE neurons. It is speculated that the physiological properties of the VE neurons might be compatible with a wide-spread control over motion and gravity sensation in the inner ear, providing likewise feed-back amplification of abrupt and strong phasic signals from the semi-circular canals and of tonic signals from the gravito-sensitive macular organs.  相似文献   

12.
Slitrks are type I transmembrane proteins that share conserved leucine-rich repeat domains similar to those in the secreted axonal guidance molecule Slit. They also show similarities to Ntrk neurotrophin receptors in their carboxy-termini, sharing a conserved tyrosine residue. Among 6 Slitrk family genes in mammals, Slitrk6 has a unique expression pattern, with strong expression in the sensory epithelia of the inner ear. We generated Slitrk6-knockout mice and investigated the development of their auditory and vestibular sensory organs. Slitrk6-deficient mice showed pronounced reduction in the cochlear innervation. In the vestibule, the innervation to the posterior crista was often lost, reduced, or sometimes misguided. These defects were accompanied by the loss of neurons in the spiral and vestibular ganglia. Cochlear sensory epithelia from Slitrk6-knockout mice have reduced ability in promoting neurite outgrowth of spiral ganglion neurons. Indeed the Slitrk6-deficient inner ear showed a mild but significant decrease in the expression of Bdnf and Ntf3, both of which are essential for the innervation and survival of sensory neurons. In addition, the expression of Ntrk receptors, including their phosphorylated forms was decreased in Slitrk6-knockout cochlea. These results suggest that Slitrk6 promotes innervation and survival of inner ear sensory neurons by regulating the expression of trophic and/or tropic factors including neurotrophins from sensory epithelia.  相似文献   

13.
Pluripotent stem cells from the adult mouse inner ear   总被引:42,自引:0,他引:42  
Li H  Liu H  Heller S 《Nature medicine》2003,9(10):1293-1299
In mammals, the permanence of acquired hearing loss is mostly due to the incapacity of the cochlea to replace lost mechanoreceptor cells, or hair cells. In contrast, damaged vestibular organs can generate new hair cells, albeit in limited numbers. Here we show that the adult utricular sensory epithelium contains cells that display the characteristic features of stem cells. These inner ear stem cells have the capacity for self-renewal, and form spheres that express marker genes of the developing inner ear and the nervous system. Inner ear stem cells are pluripotent and can give rise to a variety of cell types in vitro and in vivo, including cells representative of ectodermal, endodermal and mesodermal lineages. Our observation that these stem cells are capable of differentiating into hair cell-like cells implies a possible use of such cells for the replacement of lost inner-ear sensory cells.  相似文献   

14.
15.
The importance of individual members of the fibroblast growth factor gene family during innervation of the vertebrate inner ear is not clearly defined. Here we address the role of fibroblast growth factor 2 (FGF-2 or basic FGF) during development of the chicken inner ear. We found that FGF-2 stimulated survival of isolated cochlear and vestibular neurons during distinct phases of inner ear innervation. The potential neurotrophic role of FGF-2 was confirmed by its expression in the corresponding sensory epithelia and the detection of one of its high-affinity receptors in inner ear neurons. Finally, we have analysed the potential of the amplicon system based on defective herpes simplex virus type 1 (HSV-1) vectors to express FGF-2 in cochlear neurons. Overexpression of FGF-2 in cochlear neurons resulted in neuronal differentiation demonstrating the presence of biologically active growth factor. This study underlines the potential of FGF-2 to control innervation and development of sensory epithelia in the avian inner ear. Furthermore, amplicon vectors may provide a useful tool to analyse gene function in isolated neurons of the vertebrate inner ear.  相似文献   

16.
The differentiation of facial motoneurons and inner ear (octaval) efferents was examined in chicken embryos by applying Dil or dextran amines to the cut VII/VIII nerve (peripheral label) or to the basal/floor plate of rhombomeres 4/5 (central label). Central labeling found axons of these efferent neurons to leave the brain as early as 2.5 days of incubation. Peripheral labeling identified cell bodies ipsilaterally in rhombomeres 4 and 5 at 2.5 days. Central labeling at 3.5 days showed these fibers to have fully segregated into separate pathways to the facial nerve and the inner ear and that the octaval efferent axons had reached the otocyst wall. By 3.5 days many peripherally labeled octaval efferent somata were found in the floor plate and by 5 days they were found bilaterally. At 6 days, selective peripheral labeling of either the VIIth or VIIIthe nerve showed that the contralateral population consisted of octaval efferents and central label applied to the floor plate of rhombomeres 4/5 identified fibers that entered the octaval nerve via the facial root and entered the vestibular sensory epithelia. To gether these data suggest an initial mingling of two different motoneuron populations (facial and octaval) in rhombomeres 4/5 and a subsequent segregation by differential migration. Our data also find a much earlier arrival of octaval efferent axons at the otic vesicle than previously described and suggest a contralateral migration of many octaval efferents beginning shortly after their axons reach the facial nerve root. © 1993 John Wiley & Sons, Inc.  相似文献   

17.
The adult mammalian cochlea receives dual afferent innervation: the inner sensory hair cells are innervated exclusively by type I spiral ganglion neurons (SGN), whereas the sensory outer hair cells are innervated by type II SGN. We have characterized the spatiotemporal reorganization of the dual afferent innervation pattern as it is established in the developing mouse cochlea. This reorganization occurs during the first postnatal week just before the onset of hearing. Our data reveal three distinct phases in the development of the afferent innervation of the organ of Corti: (1) neurite growth and extension of both classes of afferents to all hair cells (E18-P0); (2) neurite refinement, with formation of the outer spiral bundles innervating outer hair cells (P0-P3); (3) neurite retraction and synaptic pruning to eliminate type I SGN innervation of outer hair cells, while retaining their innervation of inner hair cells (P3-P6). The characterization of this developmental innervation pattern was made possible by the finding that tetramethylrhodamine-conjugated dextran (TMRD) specifically labeled type I SGN. Peripherin and choline-acetyltransferase immunofluorescence confirmed the type II and efferent innervation patterns, respectively, and verified the specificity of the type I SGN neurites labeled by TMRD. These findings define the precise spatiotemporal neurite reorganization of the two afferent nerve fiber populations in the cochlea, which is crucial for auditory neurotransmission. This reorganization also establishes the cochlea as a model system for studying CNS synapse development, plasticity and elimination.  相似文献   

18.
Synapses between cochlear nerve terminals and hair cells are the most vulnerable elements in the inner ear in both noise-induced and age-related hearing loss, and this neuropathy is exacerbated in the absence of efferent feedback from the olivocochlear bundle. If age-related loss is dominated by a lifetime of exposure to environmental sounds, reduction of acoustic drive to the inner ear might improve cochlear preservation throughout life. To test this, we removed the tympanic membrane unilaterally in one group of young adult mice, removed the olivocochlear bundle in another group and compared their cochlear function and innervation to age-matched controls one year later. Results showed that tympanic membrane removal, and the associated threshold elevation, was counterproductive: cochlear efferent innervation was dramatically reduced, especially the lateral olivocochlear terminals to the inner hair cell area, and there was a corresponding reduction in the number of cochlear nerve synapses. This loss led to a decrease in the amplitude of the suprathreshold cochlear neural responses. Similar results were seen in two cases with conductive hearing loss due to chronic otitis media. Outer hair cell death was increased only in ears lacking medial olivocochlear innervation following olivocochlear bundle cuts. Results suggest the novel ideas that 1) the olivocochlear efferent pathway has a dramatic use-dependent plasticity even in the adult ear and 2) a component of the lingering auditory processing disorder seen in humans after persistent middle-ear infections is cochlear in origin.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号