首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
5.
6.
Homozygosity for Waardenburg syndrome.   总被引:3,自引:0,他引:3       下载免费PDF全文
In a large kindred including many individuals affected with Waardenburg (WS) type 1 (WS1) syndrome, a child affected with a very severe form of WS type 3 was born. This child presented with dystopia canthorum, partial albinism, and very severe upper-limb defects. His parents were first cousins, both affected with a mild form of WS1. Molecular analysis of PAX3, the gene that was determined by linkage to cause the disorder in the family, demonstrated a novel missense mutation (S84F) in exon 2 of PAX3 within the paired box. While individuals affected with WS1 were heterozygous for the mutation, the child with WS3 was homozygous for S84F. The observation that the PAX3 homozygote in humans may allow life at least in early infancy and does not cause neural tube defects was unexpected, since, in all the mutations known in mice (splotch), homozygosity has led to severe neural tube defects and intrauterine or neonatal death.  相似文献   

7.
Waardenburg syndrome type I (WS-I) is an autosomal dominant disorder characterized by sensorineural hearing loss, dystopia canthorum, pigmentary disturbances, and other developmental defects. Klein-Waardenburg syndrome (WS-III) is a disorder with many of the same characteristics as WS-I and includes musculoskeletal abnormalities. We have recently reported the identification and characterization of one of the first gene defects, in the human PAX3 gene, which causes WS-I. PAX3 is a DNA-binding protein that contains a structural motif known as the paired domain and is believed to regulate the expression of other genes. In this report we describe two new mutations, in the human PAX3 gene, that are associated with WS. One mutation was found in a family with WS-I, while the other mutation was found in a family with WS-III. Both mutations were in the highly conserved paired domain of the human PAX3 gene and are similar to other mutations that cause WS. The results indicate that mutations in the PAX3 gene can cause both WS-I and WS-III.  相似文献   

8.
9.
Waardenburg syndrome (WS) is a dominantly inherited and clinically variable syndrome of deafness, pigmentary changes, and distinctive facial features. Clinically, WS type I (WS1) is differentiated from WS type II (WS2) by the high frequency of dystopia canthorum in the family. In some families, WS is caused by mutations in the PAX3 gene on chromosome 2q. We have typed microsatellite markers within and flanking PAX3 in 41 WS1 kindreds and 26 WS2 kindreds in order to estimate the proportion of families with probable mutations in PAX3 and to study the relationship between phenotypic and genotypic heterogeneity. Evaluation of heterogeneity in location scores obtained by multilocus analysis indicated that WS is linked to PAX3 in 60% of all WS families and in 100% of WS1 families. None of the WS2 families were linked. In those families in which equivocal lod scores (between −2 and +1) were found, PAX3 mutations have been identified in 5 of the 15 WS1 families but in none of the 4 WS2 families. Although preliminary studies do not suggest any association between the phenotype and the molecular pathology in 20 families with known PAX3 mutations and in four patients with chromosomal abnormalities in the vicinity of PAX3, the presence of dystopia in multiple family members is a reliable indicator for identifying families likely to have a defect in PAX3.  相似文献   

10.
11.
12.
13.
目的:对PAX3基因和PAX3蛋白进行生物信息学分析,更多的了解该基因的相关信息,为进一步研究PAX3与神经管畸形的相关性研究提供基础。方法:运用生物信息学方法对PAX3基因的基因结构、单核苷酸多态性位点(SNP)、PAX3基因与其他基因的相互作用网络、PAX3蛋白结构域、蛋白二级结构、蛋白间相互作用网络、以及PAX3蛋白所调控和影响的靶基因进行分析。结果:PAX3基因有9中可变剪切形式,编码区存在14个SNP位点,其中错意突变13个,移码突变1个。PAX3蛋白由479个氨基酸组成,分子量52968Da,PAX3蛋白可能调控和影响151个靶基因的转录和表达,与PAX3基因存在相互作用的基因和与PAX3蛋白存在相互作用的蛋白多数与发育相关。结论:通过对PAX3基因和PAX3蛋白的生物信息学分析获得了其相应的分子生物学特征,为进一步研究提供基础。  相似文献   

14.
15.
16.
17.
张敏  权力  张霆 《生物磁学》2011,(1):36-40
目的:对PAX3基因和PAX3蛋白进行生物信息学分析,更多的了解该基因的相关信息,为进一步研究PAX3与神经管畸形的相关性研究提供基础。方法:运用生物信息学方法对PAX3基因的基因结构、单核苷酸多态性位点(SNP)、PAX3基因与其他基因的相互作用网络、PAX3蛋白结构域、蛋白二级结构、蛋白间相互作用网络、以及PAX3蛋白所调控和影响的靶基因进行分析。结果:PAX3基因有9中可变剪切形式,编码区存在14个SNP位点,其中错意突变13个,移码突变1个。PAX3蛋白由479个氨基酸组成,分子量52968Da,PAX3蛋白可能调控和影响151个靶基因的转录和表达,与PAX3基因存在相互作用的基因和与PAX3蛋白存在相互作用的蛋白多数与发育相关。结论:通过对PAX3基因和PAX3蛋白的生物信息学分析获得了其相应的分子生物学特征,为进一步研究提供基础。  相似文献   

18.
19.
Screening for novel PAX3 polymorphisms and risks of spina bifida   总被引:2,自引:0,他引:2  
BACKGROUND:PAX3 plays an important role in mammalian embryonic development. Known mutations in PAX3 are etiologically associated with Waardenburg syndrome and syndromic neural tube defects (NTDs). Mutations in the murine homologue, pax3, are responsible for the phenotype of splotch mice, in which nullizygotes are 100% penetrant for NTDs. METHODS: The study sample included 74 infants with spina bifida (cases) and 87 nonmalformed infant controls. The conserved paired-box domain as well as the upstream genomic region of PAX3 were subjected to resequencing and those identified SNPs were evaluated as haplotypes. The associations of haplotypes for selected gene regions and the risks of spina bifida were further studied. RESULTS: Nineteen SNPs were observed; 15 observed in controls had been submitted to the National Center for Biotechnology Information (NCBI) database with allele frequencies. The PAX3 gene variant T-1186C (rs16863657) and its related haplotype, TCTCCGCCC of nine SNPs, were found to be associated with an increased risk of spina bifida, with an OR of 3.5 (95% CI: 1.2-10.0) among Hispanic Whites. CONCLUSIONS: Our analyses indicated that PAX3 SNPs were not strong risk factors for human spina bifida. However, additional follow-up of the PAX3 gene variant T-1186C (rs16863657) and its related haplotype, TCTCCGCCC, may be important in other populations.  相似文献   

20.
Waardenburg syndrome (WS) is an autosomal-dominant neurocristopathy characterized by sensorineural hearing loss, pigmentary abnormalities of the iris, hair, and skin, and is responsible for about 3% of congenital hearing loss. Point mutations in PAX3 have been identified in more than 90% of affected individuals with WS Type 1/WS Type 3. MITF point mutations have been identified in 10-15% of individuals affected with WS Type 2 (lacking dystopia canthorum). Multiplex ligation-dependent probe amplification (MLPA) is now a standard technology in the molecular genetics laboratory to detect copy number changes in targeted genes. We employed MLPA for PAX3 and MITF in a cohort of patients submitted with a diagnosis of WS1, 2 or 3 who were sequence negative for PAX3 and/or MITF. All coding exons of PAX3 and exons 1, 2, 3, and 10 of MITF were included in the MLPA assay. MLPA on 48 patients with WS 1 or 3 revealed 3 PAX3 whole gene deletions (2 WS1; 1 WS3), 2 PAX3 partial gene deletions [WS1, exon 1 and promoter (1st report); WS1, exons 5-9], and 1 partial MITF deletion ("WS1", exons 3-10) (6/48 approximately 12.5%). MLPA on 41 patients with WS2 and 20 patients submitted with a diagnosis of either WS1 or WS2 revealed no copy number changes. The detection of both partial and whole gene deletions of PAX3/MITF in this clinical cohort increases the mutation detection yield by at least 6% and supports integrating MLPA into clinical molecular testing primarily for patients with WS1 and 3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号