首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present studies have demonstrated that the medulla and inner root sheath cells develop within their cytoplasm a protein that is unique in composition and is present in the trichohyalin granules. The protein is rich in arginine residues, some of which undergo a side-chain conversion in situ into citrulline residues. An unusual Ca2+-dependent enzyme activity distinguishable from cross-linking transamidase has been detected in the hair follicle and will act in vitro on trichohyalin protein as the natural substrate. The conversion in vivo must occur during the time that the medullary and inner root sheath cells move up the follicle and their cytoplasm fills with cross-linked protein containing citrulline. The function of citrulline in these proteins is not understood but its formation is a major process during hair growth.  相似文献   

2.
Trichohyalin is a structural protein that is produced and retained in the cells of the inner root sheath and medulla of the hair follicle. The gene for sheep trichohyalin has been purified and the complete amino acid sequence of trichohyalin determined in an attempt to increase the understanding of the structure and function of this protein in the filamentous network of the hardened inner root sheath cells. Sheep trichohyalin has a molecular weight of 201,172 and is characterized by the presence of a high proportion of glutamate, arginine, glutamine, and leucine residues, together totaling more than 75% of the amino acids. Over 65% of trichohyalin consists of two sets of tandem peptide repeats which are based on two different consensus sequences. Trichohyalin is predicted to form an elongated alpha-helical rod structure but does not contain the sequences required for the formation of intermediate filaments. The amino terminus of trichohyalin contains two EF hand calcium-binding domains indicating that trichohyalin plays more than a structural role within the hair follicle. In situ hybridization studies have shown that trichohyalin is expressed in the epithelia of the tongue, hoof, and rumen as well as in the inner root sheath and medulla of the hair follicle.  相似文献   

3.
The fine structure and cornification of marsupial hairs are unknown. The distribution of keratins, trichohyalin, and transglutaminase in marsupial hairs was studied here for the first time by electron microscopy and immunocytochemistry. The localization of acidic and basic keratins in marsupial hairs is similar to that of hairs in placental mammals, and the keratins are mainly localized in the outer root sheath and surrounding epidermis. Marsupial trichohyalin in both medulla and inner root sheath (IRS) cross-reacts with a trichohyalin antibody that recognizes trichohyalin across placental species, indicating a common epitope(s) among mammalian trichohyalin. Roundish to irregular trichohyalin granules are composed of a network of immunolabeled 10-15-nm-thick coarse filaments within an amorphous matrix in which a weak labeling for transglutaminases is present. This suggests that the enzyme, and its substrate trichohyalin, are associated in mature granules. Transglutaminase labeling mainly occurs in condensing chromatin of mature cells of the outer and inner root sheaths, suggesting formation of the nuclear envelope connected with terminal differentiation of these cells. In mature Huxley or Henle layers the filaments lose the immunolabeling for trichohyalin when they are reoriented into parallel rows linked by short bridges, thus suggesting that the filaments with their reactive epitopes are chemically modified during cornification, as seen in the IRS of hairs of placental mammals. The Huxley layer probably acts as a cushion, absorbing the tensions connected with the distalward movement of the growing hair fiber. Variations in stratification of the Huxley layer are probably related to the diameter of the hair shaft. The cytoplasmic and junctional connections between cells of the Huxley layer and the companion layer and the outer root sheath enhance the grip of the IRS and hair fiber within the follicle. The role of cells of the IRS in sculpturing the fiber cuticle and in the mechanism of shedding that allows the exit of hair on the epidermal surface in mammals are discussed.  相似文献   

4.
A precursor protein associated with the formation of the citrulline-containing intermediate filaments of the hair follicle has been isolated and characterized. The protein, with a molecular weight of 190,000, was isolated from sheep wool follicles and purified until it yielded a single band on a SDS polyacrylamide gel. The Mr 190,000 protein has a high content of lysine and glutamic acid/glutamine residues and is rich in arginine residues, some of which, it is postulated, undergo a side chain conversion in situ into citrulline residues. Polyclonal antibodies were raised to the purified protein, and these cross-react with similar proteins from extracts of guinea pig and human follicles and rat vibrissae inner root sheaths. Tissue immunochemical methods have localized the Mr 190,000 protein to the trichohyalin granules of the developing inner root sheath of the wool follicle. We propose that the old term trichohyalin be retained to describe this Mr 190,000 protein. Immunoelectron microscopy has located the Mr 190,000 protein to the trichohyalin granules but not to the newly synthesized filaments. This technique has revealed that trichohyalin becomes associated with the filaments at later stages of development. These results indicate a possible matrix role for trichohyalin.  相似文献   

5.
The hair follicle consists of several distinctive epidermal cell layers. The hair root, which undergoes keratinization, is surrounded by two sheaths: the inner root sheath (IRS) and the outer root sheath (ORS). The ORS is continuous with the basal layer of the epidermis. Its cells do not keratinize in situ, unlike IRS. We have previously demonstrated that keratinization of the ORS was prevented by contact with the IRS in hair follicle mid-segments (i.e. fragments dissected from skin at the level above the hair bulb and below the opening of the sebaceous gland duct) cultured on agarose layer. The purpose of this study was to determine whether the same applies to the hair bulb. After isolation, intact bulbs or hair bulb-derived cells were incubated in suspension in a low or high calcium medium. The level of mRNA for differentiation markers: involucrin, filaggrin, keratinocyte differentiation associated protein and trichohyalin, was studied by RealTime PCR. We observed increased Ca(2+) upregulated expression of involucrin, filaggrin, trichohyalin and Kdap in cultures of bulb-derived cells, but in hair bulbs downregulation of involucrin and trichohyalin was observed. We concluded that the inner root sheath exerts an inhibitory effect on the expression of involucrin and trichohyalin already in the hair bulbs. The observation that downregulation of involucrin expression under Ca(2+) influence occurs both in hair bulb and midsegments could simplify future experiments, since their separation does not seem to be necessary.  相似文献   

6.
This work forms a part of a study of the mechanism and control of protein synthesis in the hair follicle and concerns the characterization of the proteins of hair-follicle tissue and for comparative reasons those of the hair itself. 1. Five different groups of reduced carboxymethylated proteins were delineated from both tissues; these were: group 1A proteins, which appeared to be aggregates of the group 2 proteins; group 1B proteins, soluble at pH4.4, which were thought to originate from the medulla and inner-rootsheath layers; group 2 proteins, which were defined as the main low-sulphur keratin proteins insoluble at pH4.4; group 3 proteins, the precise origin of which is not known; and the group 4 proteins, which were defined as the main high-sulphur keratin proteins soluble at pH4.4. 2. With the single exception of the group 1B proteins, the types and properties of all hair and hair-follicle proteins were identical as far as could be determined by use of such criteria as multiplicity of components, molecular charge, molecular weight and amino acid composition. 3. Two significant quantitative differences were noted: in follicle extracts there were more group 2 proteins but less group 3 and group 4 proteins than in hair extracts; and secondly, in the follicle group 4 proteins, there were more proteins of lowest molecular weight and S-carboxymethylcysteine content, but fewer proteins of the highest molecular weight and S-carboxymethylcysteine conent than in the hair group 4 proteins. 4. These quantitative differences are discussed in terms of the mechanism of synthesis of the keratin proteins. 5. Follicle group 1B proteins are postulated to have arisen from the trichohyalin droplets of the developing medulla and inner-root-sheath layers of the follicle and may be precursors of the proteins of the mature medulla and inner root sheath.  相似文献   

7.
8.
The fine structure of hairs in the most ancient extant mammals, the monotremes, is not known. The present study analyzes the ultrastructure and immunocytochemistry for keratins, trichohyalin, and transglutaminase in monotreme hairs and compares their distribution with that present in hairs of the other mammals. The overall ultrastructure of the hair and the distribution of keratins is similar to that of marsupial and placental hairs. Acidic and basic keratins mostly localize in the outer root sheath. The inner root sheath (IRS) comprises 4-8 cell layers in most hairs and forms a tile-like sheath around the hair shaft. No cytological distinction between the Henle and Huxley layers is seen as cells become cornified about at the same time. Externally to the last cornified IRS cells (homologous to the Henle layer), the companion layer contains numerous bundles of keratin. Occasionally, some granules in the companion layer show immunoreactivity for the trichohyalin antibody. This further suggests that the IRS in monotremes is ill-defined, as the companion layer of placental hairs studied so far does not express trichohyalin. A cross-reactivity with an antibody against sheep trichohyalin is present in the IRS of monotremes, suggesting conserved epitopes across mammalian trichohyalin. Trichohyalin granules in the IRS consist of a framework of immunolabeled coarse filaments of 10-12 nm. The latter assume a parallel orientation and lose the immunoreactivity in fully cornified cells. Transglutaminase immunolabeling is diffuse among trichohyalin granules and among the parallel 10-12 nm filaments of maturing inner root cells. Transglutaminase is present where its substrate, trichohyalin, is modified as matrix protein. Cornification of IRS is different from that of hair fiber cuticle and from that of the cornified layer of the epidermis above the follicle. The different consistency among cuticle, IRS, and corneous layer of the epidermis determines separation between hair fiber, IRS, and epidermis. This allows the hair to exit on the epidermal surface after shedding from the IRS and epidermis. Based on comparative studies of reptilian and mammalian skin, a speculative hypothesis on the evolution of the IRS and hairs from the skin of synapsid reptiles is presented.  相似文献   

9.
Hair evolution contributed to the biological success of mammals. Hair origin from synapsid scales is speculative and requires extensive modifications of the morphogenetic process transforming lens-shaped dermis of scales into small dermal papillae in hair. Hair evolution from glands is hypothetical but is supported from studies on the signaling control of hair vs. glandular morphogenesis. Based on immunocytochemical and comparative studies, it is hypothesized that the onion-like organization of hair derived from glandular pegs which central part produced lipids and some keratin. In a following stage, involucrin, trichohyalin, and keratins were produced in the central cells of the gland and formed a solid medulla surrounded by keratinocytes of the inner root sheath. The origin of this protohair was possibly related to increased concentration of beta-catenin and other signaling molecules in epithelial cells following the evolution of a dermal papilla. The latter activated the keratogenic genes, already utilized in cells of the claws, in concentric layers of cells of the glandular peg. Lipidogenic genes were depressed. As new genes evolved in the genome of synapsids, new circular layers of keratinocytes containing specialized hard keratins and keratin-associated proteins were formed around medullary cells. The new keratinocytes probably originated the cortex separating medulla from the external cells that became the inner root sheath. The hypothesis indicates that in a following stage, the medulla was obliterated or replaced by cortical cells while the external part of the cortex formed a cuticular surface due to the different growth rate with inner root sheath cells.  相似文献   

10.
Trichohyalin is a highly expressed protein within the inner root sheath of hair follicles and is similar, or identical, to a protein present in the hair medulla. In situ hybridization studies have shown that trichohyalin is a very early differentiation marker in both tissues and that in each case the trichohyalin mRNA is expressed from the same single copy gene. A partial cDNA clone for sheep trichohyalin has been isolated and represents approximately 40% of the full-length trichohyalin mRNA. The carboxy-terminal 458 amino acids of trichohyalin are encoded, and the first 429 amino acids consist of full- or partial-length tandem repeats of a 23 amino acid sequence. These repeats are characterized by a high proportion of charged amino acids. Secondary structure analyses predict that the majority of the encoded protein could form alpha-helical structures that might form filamentous aggregates of intermediate filament dimensions, even though the heptad motif obligatory for the intermediate filament structure itself is absent. The alternative structural role of trichohyalin could be as an intermediate filament-associated protein, as proposed from other evidence.  相似文献   

11.
Trans glutaminase-mediated cross-linking in mammalian epidermis   总被引:2,自引:0,他引:2  
Summary The -(-glutamyl)lysine isopeptide bond has been identified in certain structural proteins of the hair fibre and the epidermis. The major cross-linked proteins are not keratins and generally have little or no cysteine, but have a high glutamic acid/ glutamine residue content. In the hair fibre the cross-link appears in the citrulline-containing proteins of the medulla and the inner root sheath of the follicle. In the epidermis the cross-linked proteins are involved in the formation of the cornified envelope of the stratum corneum cells. In both cases, the cross-linked proteins contribute the characteristic property of chemical resistance to their b biological structures.  相似文献   

12.
Keratins K14 and K5 have long been considered to be biochemical markers of the stratified squamous epithelia, including epidermis (Moll, R., W. Franke, D. Schiller, B. Geiger, and R. Krepler. 1982. Cell. 31:11-24; Nelson, W., and T.-T. Sun. 1983. J. Cell Biol. 97:244-251). When cells of most stratified squamous epithelia differentiate, they downregulate expression of mRNAs encoding these two keratins and induce expression of new sets of keratins specific for individual programs of epithelial differentiation. Frequently, as in the case of epidermis, the expression of differentiation-specific keratins also leads to a reorganization of the keratin filament network, including denser bundling of the keratin fibers. We report here the use of monospecific antisera and cRNA probes to examine the differential expression of keratin K14 in the complex tissue of human skin. Using in situ hybridizations and immunoelectron microscopy, we find that the patterns of K14 expression and filament organization in the hair follicle are strikingly different from epidermis. Some of the mitotically active outer root sheath (ORS) cells, which give rise to ORS under normal circumstances and to epidermis during wound healing, produce only low levels of K14. These cells have fewer keratin filaments than basal epidermal cells, and the filaments are organized into looser, more delicate bundles than is typical for epidermis. As these cells differentiate, they elevate their expression of K14 and produce denser bundles of keratin filaments more typical of epidermis. In contrast to basal cells of epidermis and ORS, matrix cells, which are relatively undifferentiated and which can give rise to inner root sheath, cuticle and hair shaft, show no evidence of K14, K14 mRNA expression, or keratin filament formation. As matrix cells differentiate, they produce hair-specific keratins and dense bundles of keratin filaments but they do not induce K14 expression. Collectively, the patterns of K14 and K14 mRNA expression and filament organization in mitotically active epithelial cells of the skin correlate with their relative degree of pluripotency, and this suggests a possible basis for the deviation of hair follicle programs of differentiation from those of other stratified squamous epithelia.  相似文献   

13.
Epidermal and hair follicle trans glutaminases and crosslinking in skin   总被引:2,自引:0,他引:2  
Summary Epidermal and hair follicle transglutaminases crosslink structural proteins in the skin by epsilon-(gamma-glutamyl)-lysine bonds. This crosslinking produces protein polymers that are extremely insoluble and, until recently, difficult to characterize.Epidermal transglutaminase is localized to the granular layer of the epidermis. It catalyzes the crosslinking of a soluble cytoplasmic precursor to form the cornified envelope that lines the inner membrane of the mature keratinocyte in the stratum corneum.Hair follicle transglutaminase is localized to the inner root sheath and medulla of the hair follicle. It crosslinks a poorly characterized citrulline-rich protein.The enzymes and their substrates have been shown to be important markers of normal differentiation. Regulation of these processes is currently under investigation.  相似文献   

14.
The cornified envelope, located beneath the plasma membrane of terminally differentiated keratinocytes, is formed as protein precursors are cross-linked by a membrane associated transglutaminase. This report characterizes a new precursor to the cornified envelope. A monoclonal antibody derived from mice immunized with cornified envelopes of human cultured keratinocytes stained the periphery of more differentiated cells in epidermis and other stratified squamous epithelia including hair and nails. The epitope was widely conserved among mammals as determined by immunohistochemical and Western analysis. Immunoelectron microscopy localized the epitope to the cell periphery in the upper stratum spinosum and granulosum of epidermis. In the hair follicle, the epitope was present in the internal root sheath and in the infundibulum, the innermost aspect of the external root sheath. The antibody recognized a protein of relative mobility (M(r)) 82,000, pI 7.8. The protein was a transglutaminase substrate as shown by a dansylcadaverine incorporation assay. Purified cornified envelopes absorbed the reactivity of the antibody to the partially purified protein and cleavage of envelopes by cyanogen bromide resulted in release of immunoreactive fragments. The protein was soluble only in denaturing buffers such as 8 M urea or 2% sodium dodecyl-sulfate (SDS). Partial solubility could be achieved in 50 mM TRIS pH 8.3 plus 0.3 M NaCl (high salt buffer); the presence of a reducing agent did not affect solubility. Extraction of cultured keratinocytes in 8 M urea and subsequent dialysis against 50 mM TRIS pH 8.3 buffer resulted in precipitation of the protein with the keratin filaments. Dialysis against high salt buffer prevented precipitation of the protein. The unique solubility properties of this protein suggest that it aggregates with itself and/or with keratin filaments. The possible role of the protein in cornified envelope assembly is discussed. We have named this protein Sciellin (from the old english "sciell" for shell).  相似文献   

15.
The intermediate filament keratin, K15, is present in variable abundance in stratified epithelia. In this study we have isolated and characterized the sheepK15gene, focusing on its expression in the follicles of sheep and mice. We show thatK15is expressed throughout the hair cycle in the basal layer of the outer root sheath that envelops the follicle. Strikingly, however, in large medullated wool follicles, a small group of basal outer root sheath cells located in the region thought to contain hair follicle stem cells areK15-negative. In the follicle bulbK15is expressed in cells situated next to the dermal papilla but not in the inner bulb cells. Elsewhere,K15is expressed at a low, variable level in the basal layer of the epidermis and sebaceous gland, often in a punctate pattern. In the esophagus of the sheepK15expression is restricted to the basal layer, in contrast to human esophagus where it is expressed throughout the epithelium. Transgenic mouse lines established with a 15-kb sheepK15gene construct exhibited faithful expression and showed no phenotypic consequences ofK15overexpression. An investigation of transgene expression showed thatK15is continuously expressed in outer root sheath cells during the hair cycle. Given its expression in the mitotically active basal cell layers of diverse epithelia and the follicle,K15expression appears to signal an early stage in the pathway of keratinocyte differentiation that precedes the decision of a cell to become epidermal or hair-like.  相似文献   

16.
Interactions between ectodermal and mesenchymal extracellular signaling pathways regulate hair follicle (HF) morphogenesis and hair cycling. Bone morphogenetic proteins (BMPs) are known to be important in hair follicle development by affecting the local cell fate modulation. To study the role of BMP signaling in the HF, we disrupted Bmpr1a, which encodes the BMP receptor type IA (BMPR1A) in an HF cell-specific manner, using the Cre/loxP system. We found that the differentiation of inner root sheath, but not outer root sheath, was severely impaired in mutant mice. The number of HFs was reduced in the dermis and subcutaneous tissue, and cycling epithelial cells were reduced in mutant mice HFs. Our results strongly suggest that BMPR1A signaling is essential for inner root sheath differentiation and is indispensable for HF renewal in adult skin.  相似文献   

17.
目的探讨常见毛囊细胞角蛋白在毛囊周期中的表达特征。 方法取毛囊发育期、生长期启动、生长期、退化期和静止期的小鼠皮肤,石蜡切片后通过免疫荧光的方法,检测细胞角蛋白Krt5、Krt6、Krt10、Krt14、Krt15和Krt19的表达情况。 结果Krt5在静止期和生长期启动表达于所有毛囊上皮细胞,在其他时期表达不一致;Krt6表达于所有时期的外根鞘细胞和内根鞘细胞;Krt10表达于生长期和退化期的毛母质和内根鞘细胞,在其他时期表达不一致;Krt14在生长期和退化期表达于所有毛囊上皮细胞,在其他时期表达不一致;Krt15和Krt19表达于毛囊发育期、生长期启动和静止期的毛囊隆突区细胞,在生长期和退化期表达不一致。 结论角蛋白作为毛囊结构或毛囊干细胞标记物仅适用于特定的毛囊周期。研究者在使用毛囊角蛋白作为标记物时,应首先明确其在毛囊周期中的表达情况。  相似文献   

18.
The Notch signaling pathway has been shown to control cell-fate decisions during mouse development. To study the role of Notch1 in epidermal differentiation and the development of the various cell types within the mouse hair follicle, we generated transgenic mice that express a constitutive activated form of Notch1 under the control of the involucrin promoter. Transgenic animals express the transgene in the suprabasal epidermal keratinocytes and inner root sheath of the hair follicle, and develop both skin and hair abnormalities. Notch1 overexpression leads to an increase of the differentiated cell compartment in the epidermis, delays inner root sheath differentiation, and leads to hair shaft abnormalities and alopecia associated with the anagen phase of the hair cycle.  相似文献   

19.
The sites of the incorporation of labeled cystine into keratinizing structures were studied in electron microscopic autoradiographs. The tracer used was cystine labeled with S35 emitting long-range ionizing particles. During exposure for 1 to 2 months, according to our method of electron microscopic autoradiography, emulsion-coated specimens were exposed to a static magnetic field which appeared to result in a marked increase in the number of reacted silver grains. In young Swiss mice receiving intraperitoneal injections at 1, 3, and 6 hours before biopsy, conventional autoradiography demonstrated that S35-cystine was intensely localized in the keratogenous zone of anagen hair follicles, and that the radioactivity there increased in intensity progressively with time while the radioactivity in the hair bulb always remained very low. Our observations with electron microscopic autoradiography in a magnetic field appeared to indicate that at 3 and 6 hours after injection the S35-cystine was directly and specifically incorporated into tonofibrils in the hair cortex and into amorphous keratin granules of the hair cuticle layer, possibly without any particular concentration of this substance in the other cellular components. There seemed to be an appreciable concentration of cystine in tonofibrils of the cuticle of the inner root sheath. However, trichohyalin granules in the hair medulla and inner root sheath failed to show any evidence of cystine concentration. The improved sensitivity of the electron microscopic autoradiography with S35-cystine appeared to be partly due to the application of a static magnetic field. However, the reason for this could not be explained theoretically.  相似文献   

20.
Wnt-10b promotes differentiation of skin epithelial cells in vitro   总被引:6,自引:0,他引:6  
To evaluate the role of Wnt-10b in epithelial differentiation, we investigated the effects of Wnt-10b on adult mouse-derived primary skin epithelial cells (MPSEC). Recombinant Wnt-10b protein (rWnt-10b) was prepared using a gene engineering technique and MPSEC were cultured in its presence, which resulted in morphological changes from cuboidal to spindle-shaped and inhibited their proliferation. Further, involvement of the canonical Wnt signal pathway was also observed. MPSEC treated with rWnt-10b showed characteristics of the hair shaft and inner root sheath of the hair follicle, in results of Ayoub Shklar staining and immunocytochemistry. Further, the cells expressed mRNA for differentiated epithelial cells, including keratin 1, keratin 2, loricrin, mHa5, and mHb5, in association with a decreased expression of the basal cell marker keratin 5. These results suggest that Wnt-10b promotes the differentiation of MPSEC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号